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Abstra
t

A physi
al model of brass instrument is 
onsidered in this paper : a one degree-of-freedom

outward-striking valve for the lips, non-linearly 
oupled to a modal representation of the air


olumn. It is studied through Linear Stability Analysis (LSA) of the equilibrium solution.

This approa
h provides the threshold blowing pressure value, at whi
h instability o

urs, and

the instability frequen
y value. The relevan
e of the results of this method is theoreti
ally

limited to the neighbourhood of the equilibrium solution. This paper 
he
ks the e�
ien
y of

LSA to understand the behaviour of the model 
omputed through time-domain simulations.

As expe
ted, a good agreement is observed between LSA and numeri
al simulations of the


omplete nonlinear model around the os
illation threshold. For blowing pressures far above the

os
illation threshold, the pi
ture is more 
ontrasted. In most of the 
ases tested, a periodi


regime 
oherent with the LSA results is observed, but over-blowing, quasi-periodi
ity and

period-doubling also o

ur. Interestingly, LSA predi
ts the produ
tion of the pedal note by

a trombone, for whi
h only nonlinear hypotheses have been previously proposed. LSA also

predi
ts the produ
tion of a saxhorn note whi
h, although known to musi
ians, has barely

been do
umented.

1 Introdu
tion

Linear Stability Analysis (LSA) 
an be used to analyse the behaviour of dynami
al systems around

equilibrium points (i.e. non-os
illating solutions). LSA 
onsists in writing a linearised version of a

dynami
al system. The stability of the linearised system is then assessed by studying its response

to harmoni
 perturbations.
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LSA has already been applied to physi
al models of musi
al instruments, su
h as woodwind

instruments [Wilson and Beavers, 1974, Chang, 1994, Silva et al., 2008, Karkar et al., 2012℄,

�ute-like instruments [Terrien et al., 2014℄ and brass instruments [Cullen et al., 2000,

Lopez et al., 2006, Silva et al., 2007℄. By de�nition, the domain of relevan
e of the LSA re-

sults is theoreti
ally limited to the neighbourhood of the equilibrium solution. However, re
ent

results on �utes have highlighted that LSA 
an predi
t important features of periodi
 regimes,

su
h as their frequen
ies [Terrien et al., 2014℄. This paper examines to what extent LSA 
an be

used to understand some aspe
ts of the behaviour of a physi
al model of brass instrument.

Physi
al models of brass instuments have been proposed in multiple stud-

ies [Eliott and Bowsher, 1982, Flet
her, 1993, Ada
hi and Sato, 1996b, Cullen et al., 2000,

Campbell, 2004, Silva et al., 2007℄. Sin
e our fo
us in this study is a simple model, a one

degree-of-freedom system is retained to model the player's lips: the outward-striking valve,

also referred to as "(+,−)" in some publi
ations. The same goal of simpli
ity makes us

ignore nonlinear propagation in the bore of the instrument, whi
h is responsible for "brassy

sounds" at high sound levels [Myers et al., 2012℄. The 
oupling by the air�ow blown be-

tween the lips and the air 
olumn inside the bore is modelled through a usual nonlinear

algebrai
 equation [Hirs
hberg et al., 1995℄. This model is detailed in Se
tion 2.1. Even

su
h a simple brasswind model has more parameters needing to be tuned than the sim-

plest models of woodwind instruments, whi
h is based on two dimensionless parameters

only [Hirs
hberg et al., 1995, Dalmont et al., 1995, Taillard et al., 2010, Bergeot et al., 2013℄.

However, brasswind players make their instrument os
illate on several modes, whi
h implies a

signi�
ant modi�
ation of the me
hani
al 
hara
teristi
s of their lips. In musi
al terms, this


orresponds to playing multiple notes without pulling a slide nor depressing a valve, whi
h is part

of the playing te
hnique of all brass instruments. Therefore, the lip dynami
s 
annot be ignored,

whi
h implies an in
rease in the number of parameters to tune. A bibliographi
al review is given

in Se
tion 2.2 to give grounds to the 
hoi
e of the values 
hosen for ea
h parameter of the model.

In Se
tion 2.3, details are given on how LSA is applied to the model. There are several possible

approa
hes to highlighting nonlinear model behaviours to 
ompare them with LSA results. For

instan
e, the Harmoni
 Balan
e Method gives a Fourier series approximation of the steady state of

periodi
 regimes, in
luding unstable ones [Gilbert et al., 1989, Co
helin and Vergez, 2009℄. Sin
e

the pioneering work des
ribed in [M
Intyre et al., 1983, S
huma
her, 1981℄, it is also possible to


arry out time-domain simulations at moderate 
omputational 
ost, providing a

ess to transients

and possibly non-periodi
 solutions. The se
ond approa
h is retained here (see Se
tion 2.4).

Se
tion 3 
ompares LSA results and numeri
al simulations for di�erent sets of parameter values.

Periodi
 regimes, 
orresponding to the usual sound of the instrument, are explored, along with

less 
ommon regimes su
h as quasi-periodi
ity and period-doubling. In Se
tion 4, we fo
us on

the lowest a
ousti
 resonan
e of brass instruments, 
alled the pedal note, for whi
h LSA provides

interesting unforeseen information on numeri
al simulation results.
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2 Tools

2.1 Brass instrument model

In most wind instruments [Flet
her, 1993, Chaigne and Kergomard, 2016℄, in
luding brass instru-

ments [Eliott and Bowsher, 1982, Yoshikawa, 1995, Cullen et al., 2000℄, the os
illation results from

the 
oupling between an ex
iter and a resonator. More generally, the 
losed-loop system repre-

sentation shown in Figure 1 has been widely used by the musi
al a
ousti
s 
ommunity sin
e the

seminal work of Helmholtz [von Helmholtz, 1877, M
Intyre et al., 1983℄.

Figure 1: Closed-loop model in free os
illation, suitable for the des
ription of most self-sustained

musi
al instruments. Self-sustained os
illations are generated by the lo
alised nonlinear 
oupling

between a linear ex
iter and a linear resonator. For brass instruments, the ex
iter is the lip reed

while the resonator is the air 
olumn inside the bore, and the 
oupling is due to the air �ow between

the lips.

For brass instruments, the ex
iter is the lips of the musi
ian. It is represented by a linear,

os
illator-like valve linking the height of the lip aperture h(t) and the pressure di�eren
e a
ross

the lips δp(t) = pb − p(t), where pb is the blowing pressure, and p(t) is the os
illating pressure

signal inside the mouthpie
e (the input of the bore).

A one degree of freedom valve (referred to hereafter as "1-DOF valve") [Flet
her, 1993℄ is

enough to model the lips for 
ommon playing situations [Yoshikawa, 1995℄ with a tra
table number

of parameters. Two kinds of 1-DOF valves 
an be 
onsidered : the "outward-striking" valve tends

to open when δp grows, while the "inward-striking" valve tends to 
lose.

While it is now admitted that woodwind reeds 
an be satisfa
torily modelled by inward striking

valves [Wilson and Beavers, 1974, Dalmont et al., 1995℄, there is no 
onsensus about the modelling

of the lip reed, as neither the outward nor the inward valve model reprodu
es all the behaviours

observed with real musi
ians. Parti
ularly, brass players are able to rea
h a playing frequen
y

fosc either above or below the nth
bore resonan
e frequen
y fac,n [Campbell, 2004℄, while a 1-DOF

inward or outward valve model is limited to playing frequen
ies respe
tively below or above fac,n

to meet the regeneration 
ondition explained in [Eliott and Bowsher, 1982℄. Moreover, measure-

ments of the me
hani
al response of arti�
ial [Cullen et al., 2000, Neal et al., 2001℄ and natural

lips [Newton et al., 2008℄ revealed the 
oexisten
e of both inward and outward resonan
es - this


oexisten
e allowing fosc to be below or above fac,n.

However, situations where fosc is below fac,n (inward-striking behaviour) are mostly spe
i�
 to

some musi
al e�e
ts. For normal playing situations, the playing frequen
y is above fac,n, and an
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outward valve model is preferred. Moreover, the geometry of human lips makes them open when

the pressure in the mouth in
reases, whi
h is 
onsistent with the behaviour of the outward valve

model. The relevan
e of this 
hoi
e will be reinfor
ed throughout this arti
le, by 
omparing the

results of the model analysis with experimental behaviours of brasswinds.

The outward-striking valve model gives the relation below, linking the height of the 
hannel

between the lips and the pressure di�eren
e a
ross the lips :

d2h

dt2
+

ωl

Ql

dh

dt
+ ω2

l (h− h0) =
1

µ
(pb − p(t)), (1)

where ωl = 2πfl (rad · s−1) is the lip resonan
e angular frequen
y; Ql the (dimensionless) quality

fa
tor of the lips; h0 the value of h(t) at rest; µ a lip surfa
e mass equivalent; (kg ·m−2). The

variables are reported on the sket
h of the lip region in Figure 2:

pb h(t) u(t) p(t)

Figure 2: Sket
h of the mouth and lips of the musi
ian and the instrument mouthpie
e. The

mouth (left) is 
onsidered as a 
avity under a stati
 pressure pb. The lips (red ellipses) separate

the mouth and the mouthpie
e. The height between the lips is h(t), the air�ow between the lips

is u(t) and the pressure in the mouthpie
e is p(t).

This model assumes the mouth pressure to be 
onstant, even though the existen
e of an os
il-

lating 
omponent in the mouth has been demonstrated experimentally [Fréour and S
avone, 2013℄.

A more pre
ise model would 
onsider this os
illating 
omponent, and would also 
onsider the tun-

able resonant 
avity formed by the vo
al tra
t [Eliott and Bowsher, 1982℄. A signi�
ant role of

the vo
al tra
t has been shown for saxophone and 
larinet playing [Clin
h et al., 1982, Fritz, 2005,

Guillemain et al., 2010, Chen et al., 2011℄. For brass instrument playing on the other hand, the

role of the vo
al tra
t does not seem to be signi�
ant when playing periodi
 regimes in the usual

musi
al range of the instrument - although its intera
tion with the lips has been highilighted by

experimental studies [Chen et al., 2012, Fréour and S
avone, 2013, Boutin et al., 2015℄.

The resonator is the air 
olumn inside the bore of a trombone or a saxhorn (see Se
tion 4.4.2).

It is modelled by its input impedan
e, whi
h is the ratio of the pressure at the input of the resonator

P (ω) and the a
ousti
 �ow at the same point U(ω) in the frequen
y domain:

Z(ω) =
P (ω)

U(ω)
. (2)

Nonlinear e�e
ts in the resonator should be taken into a

ount to a

urately des
ribe

the behaviour of brass instruments at medium/high playing levels [Hirs
hberg et al., 1996,
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Myers et al., 2012℄ parti
ularly the "brassy sound" related to the formation of sho
k waves. How-

ever, the main obje
tive of this work is the study of os
illation around threshold (i.e. at low lev-

els). Therefore the a
ousti
 propagation along the bore is assumed to be linear and thus the input

impedan
e fully des
ribes the resonator in our model. Here, input impedan
es of a Courtois "T149"

tenor trombone (and when mentioned, a Couesnon "Ex
elsior" baritone-saxhorn in B♭) are used.

Impedan
es are measured with the impedan
e sensor des
ribed in [Ma
aluso and Dalmont, 2011℄.

They are �tted by a sum of 
omplex modes (Lorentzian fun
tions) using a Least Mean Squares

method, as des
ribed in [Silva, 2009, p.28�40℄. The 
hara
teristi
 impedan
e of the resonator is

Zc = ρc/S, S being the input 
ross Se
tion of the bore, lo
ated at the mouthpie
e rim. The

modal-�tted impedan
e is written:

Z(ω) = Zc

N
∑

n=1

Cn

jω − sn
, (3)

sn and Cn being the 
omplex poles and the 
omplex residues of the nth

omplex mode, respe
-

tively. Comparison between the measured trombone impedan
e and an 18-mode �t 
an be found

in Figure 3. The maximum relative di�eren
e between the measured and the �tted 
urves, for

frequen
ies above 30Hz, is lower than 2.6 % for the magnitude, and 4.7 % for the phase. Some

measurement points in low frequen
y are biased due to the pre
ision of the impedan
e sensor.
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Figure 3: (
olor online) Magnitude (top) and phase (bottom) of the input impedan
e of a Courtois

tenor trombone. The solid (blue) 
urve depi
ts the measured impedan
e, the dashed (red) 
urve

is the �tted version with 18 
omplex modes.The di�eren
e between �t and measure is also plotted.

Those two linear elements (ex
iter and resonator) are non-linearly 
oupled by the air�ow

through the lip 
hannel. The air jet is assumed to be laminar in the lip 
hannel, but tur-

bulent in the mouthpie
e, all its kineti
 energy being dissipated without any pressure re
ov-

ery. Applying the Bernoulli law and the mass 
onservation law gives the following expression

of the �ow between lips, depending on the pressure di�eren
e and the height of the lip 
han-

nel [Wilson and Beavers, 1974, Eliott and Bowsher, 1982, Hirs
hberg et al., 1995℄:
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u(t) =

√

2

ρ
Wh(t)

√

pb − p(t), (4)

where u(t) is the air�ow (m3 · s−1
), h(t) the height of the 
hannel between the lips (m), ρ = 1.19

kg ·m−3
the density of the air at 20 ◦C and W the width of the lip 
hannel (m).

The dynami
s of the system des
ribed by (4), (1) and (3) 
an be put into a state-spa
e repre-

sentation Ẋ = F (X), where F is a nonlinear ve
tor fun
tion, and X the state ve
tor, 
ontaining the

observables of the system. Taking p(t) =
∑N

n=1 2Re(pn(t)), where pn is the nth
modal 
omponent

of the pressure at the input of the bore:







d2h(t)
dt2

= −ω2
l h(t)− ωl

Ql

dh(t)
dt

− p(t)
µ

+ ω2
l h0 +

pb
µ

dpn
dt

= snpn(t) + ZcCn

√

2
ρ
Wh(t)

√

pb − p(t) for n ∈ [1 : N ].
(5)

This leads to the following state ve
tor, similar to the one proposed in [Silva et al., 2014℄:

X =

[

h(t);
dh

dt
; {pn(t), n ∈ [1 : N ]}

]

′

, (6)

and the fun
tion F 
an be written as:

dX

dt
=



























dh

dt
d2h

dt2
dp1
dt
.

.

.

dpn
dt



























=



























X(2)

−ω2
l X(1)− ωl

Ql

X(2)− 1

µ

∑N+2
k=3 2Re[X(k)] + ω2

l h0 +
pb
µ

s1X(3) + C1.Zc.

√

2

ρ
WX(1)

√

pb −
∑N+2

k=3 2Re[X(k)]

.

.

.

snX(n+ 2) + Cn.Zc.

√

2

ρ
WX(1)

√

pb −
∑N+2

k=3 2Re[X(k)]



























. (7)

2.2 Choi
e of lip parameters

Setting the values for the parameters of the lip model is not obvious, as measuring the me
hani
al

impedan
e (velo
ity over for
e ratio)under playing 
onditions (os
illating lips) seems out of rea
h.

Adjusting parameters to get results 
omparable with measured signals does not seem a good

approa
h: Indeed, even though a one-DOF model depends on a small number of parameters,

di�erent sets of parameter values may lead to similar results [Hélie et al., 1999℄. Moreover, lip

valve parameters are expe
ted to vary far more than reed valve parameters, parti
ularly the lip

resonan
e frequen
ies.

A bibliographi
al review on lip parameter values has been done. Results from the literature

are gathered in Table 1 along with a brief summary of the method used in the reviewed arti
les.
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Referen
e h0 (m) W (m) fl (Hz) µ−1 (m2kg−1) Ql Summary

[Eliott and Bowsher, 1982℄ N/A N/A 200 0.2 0.5 Ql measured on 
heek

[Cullen et al., 2000℄ 1st (Outward) mode

Soft 6.3 · 10−4 18 · 10−3
189 0.07 10.5 arti�
ial lips

Medium 5.3 · 10−4 12 · 10−3
203.5 0.11 6 3 embou
hures

Tight 4.4. · 10−4 11 · 10−3
222 0.09 9

[Lopez et al., 2006℄ 2 · 10−4 30 · 10−3
162 0.03 5 arti�
ial lips

[Gazengel et al., 2007℄ human lips;

Soft N/A N/A 115.7 N/A 0.79 saxophone-like

Medium N/A N/A 479.9 N/A 0.46 position;

Tight N/A N/A 1073 N/A 0.46 3 embou
hures

[Newton et al., 2008℄ N/A N/A 32 N/A 1.2�1.8 Human lips

High-speed 
amera

[Ri
hards, 2003℄ 5 · 10−4 7 · 10−3
162 0.19 3.7 arti�
ial lips

�t for good results

[Rodet and Vergez, 1996℄ N/A N/A 428.4 0.67 2.88 Trumpet; adjusted

for simulation

[Ada
hi and Sato, 1996b℄ 1 · 10−3 7 · 10−3
60�700 variable 0.5�3 Adj. for simulation

Table 1: Review of di�erent values of lip parameters from literature, along with a brief explanation

of the method. In some arti
les, 
ertain values are not available (N/A). For papers presenting 2-

DOF lip models, only the �rst, outward DOF is reported.

This work 
omplements the review published in [Newton, 2009, p.119℄. Many authors do not

provide the parameter values they use, nor do they give explanations about their method to get

these values, ex
ept the fa
t that these parameters allow periodi
 self-sustained os
illation of the

model. Measurements on human or arti�
ial lips were made in 
onditions as similar as possible

to the playing 
onditions. The list of publi
ations is not exhaustive: we left aside most of the

publi
ations sin
e they do not justify their values or do not �t their measurements with a modal

lip-reed model.

Geometri
 parameters (lip 
hannel width, and lip 
hannel height when the player is not blowing)

given in all studies are very similar, around h0 = 5.10−4 m andW = 12.10−3 m. Parametri
 studies

have shown that variations in these values do not drasti
ally 
hange the qualitative behaviour of

the model: the threshold values 
hange but the overall shape of the 
urves is the same. Similar

observations have been made about µ, even though the range of the values gathered is a little

wider (µ ∈ [3.7 : 11.1] for the trombone).

Measurements from [Gazengel et al., 2007, Newton et al., 2008℄ tend to give low quality-fa
tor

values between 0.5 and 2 for human lips. However, preliminary analysis 
arried out with Ql ≈ 1

showed very unrealisti
 pressure thresholds (order of magnitude : 104 to 105 Pa). Thus, a value

for Ql = 7 was 
hosen, 
loser to the values measured on arti�
ial lips (Ql ∈ [5 : 10]). The set of
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parameters used for simulation and LSA throughout this paper is given in Table 2:

h0 (m) W (m) 1/µ (m2kg−1) Ql

5.10−4 12.10−3
0.11 7

Table 2: Lip parameters retained in this study.

The value of fl is 
onstantly adapted by the musi
ian while playing. For this reason, we performed

LSA with fl values ranging from 20 Hz to 500 Hz. This allows os
illation on the �rst eight regimes

of the instrument, whi
h 
orrespond to the usual notes of the trombone, from B♭1 to B♭4.

2.3 Stability of the equilibrium solution

Linearising a 
losed-loop system to assess potential instabilities is a widely used method, in the dy-

nami
al systems 
ommunity [Bergé et al., 1995℄ as well as in musi
al a
ousti
s for brasswind, wood-

wind and �ute-like instruments [Wilson and Beavers, 1974, Cullen et al., 2000, Silva et al., 2008,

Auvray et al., 2012, Terrien et al., 2014℄. Basi
ally, the equations modelling the system are lin-

earised around a known equilibrium solution. Then, the stability of this solution is determined.

When the system des
ribed in Se
tion 2.1 is in stati
 equilibrium, the lip opening position has

a stati
 value h(t) = he. This equilibrium position is slightly larger than the lip opening at

rest h0, due to the 
onstraint of the blowing pressure on the inner sides of the lips. Similarly,

there is a small stati
 overpressure pe at the input of the bore of the instrument, as Z(ω = 0) is

nonzero. This is related to the pressure loss in the instrument. Mathemati
ally, this equilibrium

is obtained by 
an
elling all time derivatives in the system, as des
ribed in appendix A. The value

of A =
√
pb − pe is obtained by solving:

A3 +
A2

β
+ h0µω

2
l A− pb

β
= 0, (8)

with β = WZ(ω=0)

µω2

l

√

2
ρ
. The value of Z(ω = 0) is extrapolated from the �tted version of the

impedan
e. Equation (8) has 1 or 3 real roots. In the latter 
ase, the smallest real positive root

should be 
onsidered to 
ompute pe = pb −A2
[Silva, 2009℄, as Z(ω = 0) is small. The lip 
hannel

height at equilibrium he is then given by (1) with ḧ = ḣ = 0.

In the vi
inity of the equilibrium solution Xe, the linearised fun
tion F̃ 
an be written as:

F̃ (X) = F (Xe) + JF (Xe)(X −Xe), (9)

where JF (X) is the Ja
obian matrix of the fun
tion F and Xe the state ve
tor at the equilibrium

solution. The solutions of Ẋ = F̃ (X) are under the form :

X(t)−Xe =

N
∑

i=1

Uie
λi·t, (10)

where λi are the eigenvalues of JF (X) and Ui the 
orresponding eigenve
tors.
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Thus, the eigenvalues of the Ja
obian matrix give information about the stability of the equilibrium

solution for a given set of parameters. If at least one of these eigenvalues λ has a positive real

part, the amplitude of the linearised solution tends toward in�nity, whi
h means the equilibrium

is unstable and the solution starts os
illating. Referring to (10), this means that one of the

terms of the sum dominates the solution, all other terms being de
reasing exponentials. As a �rst

approximation, the solution of the linearised system 
an be written:

X(t)−Xe = Xae
λ·t, (11)

In the transient phase of the os
illation, the exponential growth of the amplitude is determined

by the positive real part of λ, and the angular frequen
y is given by the imaginary part of the

eigenvalue ω = Im(λ). However, the nonlinearities of the system limit the �nal amplitude and

also a�e
t the os
illation frequen
y of the steady state.

This method only dete
ts instabilities emerging from the equilibrium solution. If a stable os
il-

lating regime 
oexists along with the stable equilibrium solution, it will not be dete
ted. This

situation o

urs for example in 
ertain woodwind instruments, where the Hopf bifur
ation (
on-

ne
ting the equilibrium solution to the os
illating one) is inverse in some 
ases [Grand et al., 1997,

Dalmont et al., 2000, Farner et al., 2006, B. Ri
aud, 2009℄.

2.4 Time-domain simulation

Another approa
h for studying musi
al instruments relies on time-domain ab initio simulations of

the 
hosen model, for a given set of parameters.

Multiple numeri
al methods have been developed to simulate wind instruments with models

similar to the one presented in Se
tion 2.1. Various approa
hes have been proposed to im-

plement the resonator a
ousti
 behaviour. The re�e
tion fun
tion of the bore has been widely

used [M
Intyre et al., 1983, S
huma
her, 1981, Ada
hi and Sato, 1996a, Vergez and Rodet, 1997,

Gilbert and Aumond, 2008℄. The modal de
omposition of the bore has been 
hosen for this arti-


le, and 
omputations are 
arried out with the open-sour
e MoReeSC software tool, freely avail-

able [MoReeSC, 2013℄. Its prin
iples and results have been des
ribed in [Silva et al., 2014℄. This

simulation tool uses the state-spa
e paradigm, similar to the one presented in Se
tion 2.1. It al-

lows the simulation of the behaviour of the model with a high number of a
ousti
 modes for the

resonator (18 in this study), and o�ers the ne
essary �exibility to modify the model parameters,

in
luding the resonator parameters, as it is done in Se
tion 4.
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3 Results

3.1 Linear Stability Analysis

The LSA method detailed in Se
tion 2.3 is applied to the model de�ned in Se
tion 2.1, with the

set of lip parameters de�ned in Table 2. The resonator is modelled with a modal �t (N=18 in

Equation (3)) of a measured impedan
e (B♭ trombone, �rst position).

For ea
h value of fl 
onsidered, the eigenvalues of the Ja
obian matrix JF (Xe) presented in Equa-

tion (9) are 
omputed for in
reasing values of pb, until a �rst instability, 
hara
terized by at least

one eigenvalue with positive real part, o

urs. Results are reported in Figure 4. For ea
h value

of fl, Figure 4a represents the lowest value of pb giving rise to an unstable equilibrium solution,

further referred to as the threshold pressure pthresh. Figure 4b represents the imaginary part of

the 
orresponding eigenvalue divided by 2π, whi
h is the os
illation frequen
y at threshold, fur-

ther 
alled fthresh. Ea
h horizontal dashed line in Figure 4b represents the nth
a
ousti
 resonan
e

frequen
y of the instrument fac,n, given by the lo
al maximum of the input impedan
e amplitude.

It should be noted that, for pb values higher than pthresh, other pairs of 
onjugate eigenvalues may

have a positive real part, whi
h implies a system with multiple instabilities. If di�erent os
illating

solutions are stable with these parameters, the system is able to start os
illating on di�erent

a
ousti
 resonan
es. In Figure 4 and similar �gures, the �rst instability (the one 
orresponding to

pb = pthresh) is shown for ea
h fl value (solid 
urve). The se
ond instability is reported only for a

narrow range of fl (dash-dotted 
urve).

On the [20, 500 Hz] frequen
y range represented, Figure 4 plots 
an both be divided into 9 subranges

of fl, ea
h subrange 
orresponding to one regime of os
illation, related to one a
ousti
 resonan
e of

the instrument: [30 : 63 Hz] (�rst regime), [72, 123 Hz] (se
ond regime), [124, 179 Hz], [180, 234 Hz],

[235, 288 Hz], [289, 352 Hz], [353, 404 Hz], [405, 460 Hz], [462, 500 Hz]. In Figure 4b, an os
illating

frequen
y plateau is maintained just above ea
h value of fac,n. This is the usual behaviour of an

outward valve 
oupled to an air 
olumn [Campbell, 2004℄. For ea
h regime, fthresh monotonously

follows the variation of fl. This mat
hes the experien
e of the brass player, who 
an slightly

"bend" the sound (in
rease or de
rease the pit
h) by adjusting fl through the mus
ular tension of

the lips, and by adapting the blowing pressure to the 
hange in pthresh. The width of ea
h plateau,

i.e. the attainable musi
al range on ea
h a
ousti
 resonan
e, has analyti
al limits depending on

the lip quality fa
tor Ql, as detailed in [Silva et al., 2007℄. In the fl = [64, 71 Hz] range, the

equilibrium solution is un
onditionally stable whatever the value of pb: this range 
orresponds to

the neigborhood of the impedan
e minimum between 1st and 2d peaks, whi
h are farther apart

from one another than the other peaks due to the �rst peak inharmoni
ity.

As for pb, it 
an be observed in Figure 4a that the os
illation threshold globally in
reases with

the rank of the a
ousti
 resonan
e. A larger pb value is required to rea
h the higher notes of the

instrument, in a

ordan
e with the musi
al experien
e. For ea
h regime, the pthresh 
urve is U-

shaped, as already observed in [Silva et al., 2007℄. Its minimum value popt,n, marked with a 
ir
le

in Figure 4, is known to depend signi�
antly on the quality fa
tor of the lips Ql. In the following,

10



we assume as in [Lopez et al., 2006℄ that popt,n and the asso
iated lip resonan
e frequen
y fopt,n

represent the optimal playing 
on�guration for a human performer. This hypothesis is in line

with what musi
ians 
laim, i.e. they develop a strategy to minimize the e�ort to produ
e a sound

on a given regime. The values of popt,n, between 500 Pa and 10 kPa are in the same order of

magnitude as blowing pressure measures [Bouhuys, 1968, Fréour, 2013℄. The pressure threshold

in
reases faster when fl is above fopt,n than below (see zoom-box in Figure 4b). These results are


ompatible with brasswind playing experien
e, as "bending down" a note requires less e�ort from

a musi
ian than "bending up" a note.

The rest of this Se
tion fo
uses on some examples of [pb, fl] points to illustrate the di�erent be-

haviours observed for the model. For ea
h 
ase, the agreement between LSA results and the sound

produ
ed by the time-domain simulation des
ribed in Se
tion 2.4 is dis
ussed.
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Figure 4: (
olour online) Results of the LSA of the model detailed in Se
tion 2.1 with parameters

from Table 2. For a range of lip resonan
e frequen
ies fl, (a) shows the threshold pressure pthresh,
while (b) shows the 
orresponding os
illation frequen
y fthresh. Dotted lines are the values of fac,n.
Cir
les indi
ate the "optimal" values popt,n and fopt,n as de�ned in the text. The magni�ed subplot

(zoom on 4th regime) highlights the asymmetri
al pthresh behaviour above and below popt,n for

the third regime. For illustration, the se
ond destabilisation threshold (a) and the 
orresponding

frequen
y (b) are also plotted on a narrow fl interval.
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3.2 Exa
t mat
h between simulation and LSA

The simulated pressure at the input of the instrument is 
ompared with the LSA results. In

parti
ular, the pressure threshold pthresh is assessed by performing simulations with pb in the

vi
inity of pthresh. The fthresh values are also 
ompared with the fosc values. This latter quantity

is measured by applying a zero-
rossing algorithm, with a sliding Hanning window (width 0.3s,

overlapping 99%).

A simulation with the exa
t value of pthresh would theoreti
ally lead to an in�nite transient time,

de�ned as the time it takes to rea
h steady state. Therefore, values of pb slightly below and above

pthresh are tested. To illustrate a periodi
 os
illation of the model, the lip resonan
e frequen
y is

set to fl = 90 Hz, everything else being given in Table 2. The 
orresponding mouthpie
e pressure

waveforms are represented in the �rst two plots in Figure 5. The third plot shows a situation

where pb is mu
h higher than pthresh.

When the mouth pressure is below the threshold (pb = 1210 Pa whereas pthresh = 1222 Pa)

(Fig. 5 a), the os
illation de
reases exponentially towards the stati
, non-os
illating solution. The

mouthpie
e pressure 
onverges towards 115.5 Pa, whi
h is the value of pe 
omputed with LSA. The

thi
k line represents the exponential de
rease in the amplitude Xa.e
Im(λ)t

(amplitude of solutions

taken from Eq. (11)). In this 
ase, λ is the eigenvalue of JF with the highest (negative) real

part. The 
al
ulated os
illation frequen
y (dash-dotted line) is 
onstant and equal to fthresh = 116

Hz = Im(λ)/2π.

When the mouth pressure is slightly above the threshold (pb = 1234 Pa) (Fig. 5, 
entre), the

pressure waveform envelope (thi
k line) in
reases exponentially during the transient phase, in

agreement with Equation (11), before rea
hing a steady-state regime. The 
al
ulated os
illation

frequen
y fosc (dash-dots) begins at fthresh = 116 Hz; it be
omes quite higher in the permanent

regime (126 Hz, that is, 8.6 % or 143 musi
al 
ents above fthresh).
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Figure 5: (
olour online) Time-domain simulations with parameters from Table 2 and fl = 90 Hz,
with mouth pressure pb lower (a) and higher (b) than the linearised model threshold (pthresh = 1222
Pa). Mouth pressure (steady) and mouthpie
e pressure (os
illating) are plotted (left verti
al axis)

along with the expe
ted exponential growth/diminution of amplitude (thi
k 
urves: envelope of

Equation (11)). The expe
ted os
illation frequen
y at threshold is fthresh = 116 Hz. The third

plot (
) 
orresponds to a blowing pressure mu
h higher than the threshold (pb = 3 kPa; zoom on

�rst se
ond of signal). The dash-dotted 
urve depi
ts the instantaneous playing frequen
y.
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As expe
ted, the behaviour of time-domain simulations is a

urately predi
ted by LSA as long

as pb remains in the vi
inity of pthresh (Figure 4a and 4b). The value of pthresh in simulation is

in agreement with the value given by LSA. The eigenvalue with the largest real part predi
ts the

frequen
y and the amplitude of the os
illation at the beginning of the simulation. However, after

t = 8 s, the simulated amplitude gets a�e
ted by nonlinear phenomena and is no longer exponential.

Thus, this linearised tool provides relevant information about the signal, but is obviously unable

to fully predi
t the amplitude of the sustained regime waveform.

The third plot shows the results with pb = 3 kPa mu
h higher than pthresh. LSA and time-domain

simulation still give 
oherent information. As in Figure 5b), the os
illating frequen
y fosc = 130.5

Hz is 8 % higher than Im(λ)/(2π) = 120.8 Hz. The di�eren
e is 134 musi
al 
ents, larger than a

semitone. fosc is higher than near the threshold. An in vivo experiment has also shown that the

pit
h rises when the player in
reases the blowing pressure [Campbell and Greated, 1994℄. However,

this remark should be 
onsidered 
arefully be
ause during pra
ti
e a brass player always apply


orrelated 
ontrol over mouth pressure and lip mus
ular a
tivity.

pb (Pa) Re(λ) Im(λ)/2π fosc (Hz) measured transient duration (s)

1234 0.2864 116.74 126.5 9.71

1500 5.5591 117.66 127.6 0.74

2000 12.0262 118.99 128.9 0.31

2500 16.0891 120.01 129.7 0.215

3000 18.8507 120.82 130.5 0.1675

Table 3: Values of the real part of the destabilising eigenvalue λ, its imaginary part divided by

2π, the os
illation frequen
y and the duration of the transient (both measured on simulations)

for di�erent values of the blowing pressure (all other parameters un
hanged). The real part of λ
in
reases with pb, whi
h implies a faster-growing envelope as pb in
reases. This is 
onsistent with
the transient duration measured with MIRonsets fun
tion estimating the time needed to rea
h the

maximum value of p(t) [MIR, ℄.

Transient times have been measured with di�erent values of pb. The values are reported in Table 3.

The transient time de
reases while Re(λ) in
reases, whi
h 
an be modelled: during the transient,

the amplitude grows exponentially as des
ribed in (11). The transient time 
an be de�ned as the

time needed for this amplitude to rea
h its maximum value. This maximum is approximately the

amplitude of the steady regime whi
h, in a �rst approximation, varies as

√
pb − pthresh while in

the neighbourhood of a dire
t Hopf bifur
ation [Bergé et al., 1995℄. If the stati
 value of p(t) is

negle
ted, a simple analyti
al model for the transient time is:

transient =
1

Re(λ)
· ln(A

√
pb − pthresh). (12)

With A = 4.75 �tted on values measured on time-domain simulations, this model mat
hes very

well with the evolution of transient durations measured on simulations with di�erent values of pb,

as shown in Figure 6.
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Figure 6: (
olor online) Transient durations measured on time-domain simulations, plotted along

the Re(λ) value (blue marks). The green line is the transient duration model des
ribed by Eq.(12).

The os
illation frequen
y also in
reases with pb. An estimate of the frequen
y is also given (imag-

inary part of λ divided by 2 · π) whi
h mat
hes well the pseudo-frequen
y of the transient phase

of ea
h signal.

This example is representative of most 
ases tested: LSA predi
ts 
orre
tly whether the solution

is os
illating, with an estimation of the os
illation frequen
y. The transient duration 
an be

a

urately predi
ted with the real part of λ, as des
ribed in (12) even for pb far above the threshold.

However, the a

ura
y of the os
illation frequen
y predi
tion is limited, and LSA 
an predi
t

neither the steady-state waveform nor the nature of the os
illation regime. This latter observation

will be further highlighted in the following sub-se
tion.

3.3 Unforeseen behaviours

The LSA provides a lot of relevant information about the os
illation threshold and the transient

phase. This is parti
ularly true when pb is near pthresh. However, some simulations (detailed

below) show nonlinear phenomena, whi
h obviously this method 
annot per
eive.

Quasi-periodi
 os
illations

Firstly, the previous 
omparison between LSA an time-domain simulation is reprodu
ed with a

di�erent lip resonan
e frequen
y. Three simulations are performed with the parameters in Table 2

and fl = 110 Hz. For these parameters, pthresh is equal to 711 Pa. Again, three di�erent pb

values are tested: pb = 701 Pa, pb = 720 Pa to illustrate the behaviour just below and above

the threshold, and pb = 2 kPa for an example far above the threshold (
). Results are plotted in

Figure 7. When pb is under the threshold, results are very similar to the previous 
ase with fl = 90

Hz (Fig. 7 (a) and (d)). However, when pb be
omes large enough to destabilize the equilibrium

solution, the os
illation of the mouthpie
e pressure be
omes quasi-periodi
 (Figure 7 (b),(e), (
)
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and (f)). The quasi-periodi
 nature of the signal is 
learly visible on the spe
tra (Figure 7(e) and

(f)) with se
ondary peaks around the prin
ipal frequen
y peaks.
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Figure 7: (
olour online) Simulation results for fl = 110 Hz, the pressure threshold being pthresh =
711Pa. Like in Figure 5 three simulations are shown with pb = 701 Pa (a), pb = 720 Pa (b)

and pb = 2 kPa (
, mu
h higher than pthresh). Other parameters (lip 
hara
teristi
s) are given in

Table 2. Figures (d), (e) and (f) are the spe
tra 
orresponding to (a), (b) and (
), respe
tively

((e) and (f) taken on steady regimes of (b) and (
).

This illustrates the aforementioned limitation of LSA. The existen
e of an os
illating solution

is attested in the vi
inity of the bifur
ation, and the pressure threshold pthresh is a

urately

predi
ted, but the o

urren
e of a quasi-periodi
 regime 
annot be predi
ted.

Period doubling

When 
omputed with fl = 55 Hz, pb = 400 Pa (pthresh being 161 Pa), and the other parameters

are the values given in Table 2, the simulation result os
illates at fosc = 32.5 Hz, far below

fthresh = 59.78 Hz. This is a pe
uliar behaviour, as this os
illation frequen
y is signi�
antly

under the trombone �rst a
ousti
 resonan
e (fac,1 = 38 Hz). Indeed, the 
hosen model indu
es

playing frequen
ies above the a
ousti
 resonan
e frequen
y (fosc > fac,n), at least near the pressure

threshold, to 
omply with the regeneration 
ondition [Eliott and Bowsher, 1982℄.

Figure 8 
ompares the spe
trum of the mouthpie
e pressure simulated with the aforementioned

parameters (dotted plot) and simulated with parameters un
hanged, ex
ept fl = 50 Hz, i.e., 5 Hz

lower (solid plot). For fl = 50 Hz, fosc = 65 Hz is higher than fthresh = 56.3 Hz, like in previous
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simulations in Se
tion 3.2. For fl = 55 Hz, a reasonable expe
tation would be an os
illation

frequen
y slightly higher than 65 Hz, as fosc tends to in
rease with fl. However, the simulation

os
illation frequen
y at fl = 55 Hz is fosc = 32.47 Hz, 
lose to half of its value at fl = 50 Hz.
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Figure 8: (
olour online) Spe
tra of the simulated trombone mouthpie
e pressures, with (pb =
400Pa) for both lip resonan
e frequen
ies, fl = 50 Hz (solid) and fl = 55 Hz (dotted) (other

parameters from Table 2). Cross markers give the values of fthresh = 56.3 Hz for fl = 50 Hz and

fthresh = 59.78 Hz for fl = 55 Hz. The solid verti
al line indi
ates the �rst a
ousti
 resonan
e

frequen
y of the trombone bore, fac,1 = 38Hz.

Further simulations were 
arried out, fl going from 50 to 61 Hz in steps of 1 Hz, all other parameters

being un
hanged: pb = 400 Pa, others from Table 2. Table 4 reports the os
illation frequen
y

measured on the simulated signals, along with the fthresh value predi
ted by LSA. Between 54 and

55 Hz, the os
illation frequen
y is almost halved. Then, between 56 and 57 Hz, the frequen
y

is again halved, be
oming a quarter of its value for fl < 55 Hz. For fl = 59 Hz and above, the

fundamental frequen
y rises sharply to a value 
lose to its original value, but the energy is far

more distributed in the spe
trum.

fl (Hz) 50 51 52 53 54 55 56 57 58 59 60 61

fosc (Hz) 65.45 65.48 65.49 65.49 65.46 32.53 32.54 16.32 16.32 65.1 65.1 65.1

fthresh (Hz) 56.3 56.97 57.71 58.36 59.08 59.78 60.51 61.27 62 62.77 63.58 64.44

Table 4: Os
illation frequen
ies measured on the simulated mouthpie
e pressure, for lip frequen
ies

from 50 to 61 Hz, pb = 400 Pa and other parameters from Table 2. Os
illation frequen
ies at

threshold given by LSA are also reported.

These results are 
lose to those reported in [Gibiat and Castellengo, 2000℄, with a trombone

player performing two su

essive period doublings. When in
reasing fl in this range, the model

undergoes multiple period-doubling bifur
ations. Similar s
enarios have been observed on nu-

meri
al models of woodwind instruments [Gibiat, 1988, Kergomard et al., 2004℄. This su

ession

of period doublings is also known as subharmoni
 
as
ade or Feigenbaum s
enario and leads to


haoti
 behaviour, whi
h may explain the noisiness of signals above fl > 58 Hz. Again, explaining
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the o

urren
e of su
h phenomena is out of rea
h for LSA.

Overblowing

Besides these two nonlinear phenomena, other di�eren
es between eigenvalue-based LSA and time-

domain simulation 
an be observed. Another example is given with fl = 120 Hz, the parameters

given in Table 2 and a high blowing pressure: pb = 6.5 kPa while the threshold is pthresh = 1056 Pa.

While fthresh = 128.4 Hz is just above the 2nd a
ousti
 resonan
e frequen
y of the bore (fac,2 = 112

Hz), the simulation os
illation frequen
y is fosc = 187.5 Hz, near the 3rd resonan
e frequen
y

(fac,3 = 170 Hz). Figure 9 shows the spe
trum of a simulation os
illating on the third a
ousti


resonan
e, while the predi
ted os
illation at threshold 
orresponds to the se
ond one.
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Figure 9: (
olour online) Spe
trum of simulated mouthpie
e pressure for fl = 120 Hz and pb = 6.5
kPa with other parameters taken from Table 2. The self-sustained os
illation o

urs at fosc = 187.5
Hz, 
orresponding to the third a
ousti
 resonan
e, while LSA predi
ts an os
illation at fthresh =
128.4 Hz (solid line) for pthresh = 1056 Pa. Ea
h dash-dotted line represents the nth

a
ousti


resonan
e frequen
y fac,n of the trombone bore.

The method previously used, whi
h 
onsists in retaining the lowest pb value 
ausing a destabilisa-

tion, does not predi
t the behaviour of the system with su
h a high blowing pressure. Yet, this

os
illation on the third regime 
an be understood, sin
e another pair of eigenvalues of the Ja
obian

matrix with a positive real part appears for pb > pthresh. The dashed line in Figure 4a) and b)

shows the pressure threshold 
orresponding to the se
ond pair of su
h eigenvalues (
alled λ2), and

the asso
iated frequen
y. For fl = 120 Hz the se
ond threshold is 6116 Pa with an os
illation

frequen
y equal to Im(λ2)/2π = 172 Hz, 
orresponding to the third regime of os
illation of the

system. This is 
onsistent with the behaviour observed in the numeri
al simulation.

For a better understanding of the origin of the di�erent instabilities, another LSA formalism is

used, as it gives visual information about the stability margins of the di�erent os
illation regimes.
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It 
onsists in studying a linearised version of the open-loop transfer fun
tion (OLTF) of the system

de�ned by Equation (4), (1) and (3) [Saneyoshi et al., 1987, Ferrand et al., 2010℄. This OLTF is

divided into two parts: the ex
iter admittan
e Ya whi
h des
ribes the lip reed behaviour, from

Equation (4) and (1), and the resonator input impedan
e, whi
h is modelled with a modal �t of

its input impedan
e Z like in the other formalism (see Equation (3)).

The linearisation of the ex
iter admittan
e Ya simpli�es to a 1st degree Taylor expansion of Equa-

tion (4) near the equilibrium point; Equation (1) is then put into the result. Details 
an be found

in Appendix B about the 
al
ulation whi
h leads to the following expression of Ya:

Ya = Whe

√

2pe
ρ

(

−D(ω)

Khe

− 1

2pe

)

, (13)

where D(ω) represents the dynami
s of the lip reed.

The stability of the OLTF, 
alled HOL, is then evaluated with the Barkhausen 
rite-

rion [von Wangenheim, 2011℄, whi
h points to possibly unstable solutions when HOL = Ya.Z = 1.

On a Bode diagram, points with HOL having a 0 dB magnitude and 0

◦
phase are limits of stability.

This method has already been used for 
larinet models with inward valves, and for brass and

�ute-like instruments [Saneyoshi et al., 1987, Ferrand et al., 2010, Terrien et al., 2014℄.

Figure 10 shows the Bode diagram of the OLTF of the system fed with the parameters in Figure 9.

The stability limits are indi
ated with 
rosses.

Figure 10: (
olour online) Bode diagram of the open-loop transfer fun
tion of the trombone model

with the parameters in Table 2, fl = 120 Hz and pb = 6.5 kPa. There are two instability points

(
rosses), with a 0dB magnitude and a zero phase.

Here, the Bode diagram shows two points of 0 dB magnitude and 0

◦
phase at 132 Hz and 172

Hz. In terms of the eigenvalues-based LSA tool des
ribed in 2.3, these frequen
ies 
orrespond to

the imaginary part of the eigenvalues of JF having a positive real part when these eigenvalues are


al
ulated with pb = 6500 Pa. The frequen
y obtained with OLTF di�ers from the one obtained

with eigenvalues of the Ja
obian matrix, be
ause fthresh = 128 Hz is obtained at pb = pthresh = 1056
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Pa while the OLTF value is obtained with pb = 6.5 kPa. The real part of the se
ond destabilising

pair of eigenvalues be
omes positive above 6116 Pa, whi
h is 
ompatible with an os
illation on

this regime at pb = 6.5 kPa. The related frequen
y at threshold is 172.9Hz 
orresponding to an

os
illation on the third a
ousti
 resonan
e.

Both LSA methods show multiple instabilities of the stati
 solution, that is, multiple possible

regimes of os
illation. The predi
tions of threshold pressures and possible os
illation frequen
ies

are satisfa
tory. But they give no information either about the stability of these os
illation regimes,

or about whi
h regime the instrument will a
tually os
illate on. This is determined by initial


onditions and by the stability of the di�erent os
illating solutions, whi
h depends on nonlinear

elements out of rea
h of the method.

4 Lowest regime of os
illation

This 
hapter fo
uses on the results of LSA and time-domain simulation on the lowest regime,

related to the �rst a
ousti
 resonan
e of the air 
olumn inside the bore. This lowest playable note

is 
alled "pedal note" by musi
ians. For the trombone with its slide fully pulled in, and the saxhorn

with no valve depressed (neutral position), the pedal note is a B♭1 at 58 Hz in the musi
al s
ale.

4.1 The Trombone "pedal note"

To 
ompare the behaviour of the di�erent registers of the trombone, the ratio between the thresh-

old frequen
y fthresh and the resonan
e frequen
y of the 
orresponding a
ousti
al mode fac,n is


omputed. Figure 11a) and b) gives pthresh and fthresh like in Figure 4 but on a smaller fl range,

and Figure 11
) gives the fthresh/fac,n ratio.

At the frequen
ies 
orresponding to the pressure threshold minima, 
alled fopt,n (see 
ir
les in

Figure 9), this ratio appears to be signi�
antly higher for the �rst a
ousti
 resonan
e than for the

other ones: fopt,1/fac,1 = 55.62/38 = 1.46 while fopt,n/fac,n ∈ [1.04 : 1.1] for n ≥ 2 as shown in

Table 5.

It 
an be noted that, at least for the �ve lowest resonan
es, fthresh is in good agreement with the

note supposed to be played on the instrument for this resonan
e, a

ording to the tempered s
ale

when fl = fopt,1 (see Table 5). Therefore, the LSA gives a reliable estimation of the referen
e

note for these a
ousti
 resonan
es, in
luding the pedal note, with a relative error smaller than

5.5%. The main di�eren
e here is the underestimation of the pedal note frequen
ies, while other

frequen
ies are overestimated.
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Regime no (n) fopt,n (Hz) tempered s
ale freq. (Hz) relative error fac,n (Hz) fopt,n/fac,n

1 55.6 58.27 −4.6% 38 1.46

2 122.9 116.54 5.4% 112 1.1

3 180.0 174.81 2.9% 170 1.06

4 238.9 233.08 2.5% 228 1.05

5 301.6 291.35 3.5% 290 1.04

Table 5: fopt values for the �ve lowest regimes of the trombone, 
ompared with the frequen
y of the

expe
ted note. The a
ousti
 resonan
e frequen
y of the 
orresponding mode and the fopt,n/fac,n
ratio are also given. fopt is a suitable predi
tion of the played note. The fopt,n/fac,n ratio is

parti
ularly high for the �rst os
illation regime.

For illustration, a simulation is 
arried out with the usual parameters from Table 2 with fl =

fopt,1 = 49 Hz and pb = 150 Pa (pthresh being 146 Pa). The resulting signal os
illates at fosc = 61.86

Hz, far higher than fac,1: the frequen
y results of LSA and of simulation are 
onsistent for these

parameters as well.

This ability to predi
t the pedal note of the trombone with the linearisation of an outward valve

model is pe
uliar. It makes it 
lear that the produ
tion of the pedal note involves the same

phenomena as the other regimes. Moreover, LSA 
omputation with the resonator redu
ed to the

trombone's �rst a
ousti
 resonan
e results in fopt,1 = 61.06 Hz: thus, the upper resonan
es 
annot

be involved in this high fopt,1/fac,1 ratio.
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Figure 11: (
olour online) Results of LSA (with lip parameters from Table 2) are plotted on 11a

and 11b (narrower fl range than in Figure 4). Horizontal dotted lines in b) are the fac,n values.

The bise
tor line is also plotted (dot). 11
 is the fthresh/fac, n ratio. Cir
les indi
ate the fopt,n
resonan
e frequen
ies 
orresponding to the lowest pthresh.
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The LSA and the numeri
al simulation reveal a parti
ularity of the trombone �rst regime: the

os
illation frequen
y predi
ted by both methods is far above the a
ousti
 resonan
e frequen
y,

whi
h translates into a high fopt,n/fac,n ratio for n = 1, while it is mu
h smaller when n ≥ 2. This

mat
hes the experien
e of trombone players, who are able to play the pedal note in tune with the

other notes, despite the large inharmoni
ity of the 
orresponding regime. Therefore, a linearised

model is able to predi
t a regime previously attributed to unexplained non-linear 
ontributions of

the upper a
ousti
 resonan
es [Benade, 1976, p.405℄.

Bouasse proposed an experiment in whi
h a trombone is played with a saxophone

mouthpie
e [Bouasse, 1986, p.370℄. Gilbert and Aumont re
ently ran this experi-

ment [Gilbert and Aumond, 2008℄, and published it, together with audio and video re
ordings. The

result is an instrument playing a low E♭0, that is, an os
illating frequen
y just under fac,1 = 38Hz,

whi
h is 
ompatible with a playing frequen
y below the a
ousti
 resonan
e frequen
y, 
hara
teristi


of the inward valve model used [Wilson and Beavers, 1974℄.

In order to explore the in�uen
e of nature of the ex
iter - inward or outward - this experiment is

simulated here. The trombone with a saxophone mouthpie
e is modelled with a �t of the input

impedan
e of a trombone equipped with the equivalent volume of a saxophone mouthpie
e, instead

of a trombone mouthpie
e. The saxophone reed is modelled with an inward-striking valve having

the 
hara
teristi
s of a 
ane-reed as des
ribed in [Silva, 2009℄, with fl = 1 kHz, Q = 1.1; 1/µ = 4.9

m2kg−1;W = 10−3 m; h0 = 5.10−4 m. The results are presented in Figure 12.

The os
illating frequen
y of the simulated mouthpie
e pressure is 
lose to the �rst resonan
e

frequen
y fosc/fac,1 = 0.99 - a ratio 
ontrasting with the high ratio obtained with an outward valve.

The signal is nearly sinusoidal, be
ause pb = 1800 Pa is 
lose to ptresh = 176 Pa, and be
ause of the

la
k of a
ousti
 resonan
es mat
hing the harmoni
s of this frequen
y in the impedan
e spe
trum.
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Figure 12: (
olour online) Results of simulation of a trombone with a tenor saxophone mouthpie
e,

modelled as an inward-striking valve with reed resonan
e frequen
y fl = 1 kHz, W = 1 cm,

h0 = 5.10−4 m, Ql = 1.1, 1/µ = 4.9 m2kg−1
. The blowing pressure pb = 1800 Pa is slightly above

pthresh = 1760 Pa. Left plot (a) shows the blowing pressure (red dashed line) and the mouthpie
e

pressure (blue solid line). Right (b) plot is the spe
trum of the mouthpie
e pressure, showing an

os
illation frequen
y fthresh = 37.85 Hz slightly below the �rst a
ousti
 resonan
e fac,1 = 38 Hz.
Dashed lines represent the resonan
e frequen
ies of the bore for 
omparison.

The high frequen
y ratio does not o

ur in a simulation whi
h models the lips as an inward-striking
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valve: this supports our 
hoi
e of an outward valve model to reprodu
e the behaviour of the lips

for the trombone.

4.2 A Saxhorn "ghost note" ?

A 
omplementary exploration is 
ondu
ted on a Baritone-saxhorn in Bb
. This instrument has a


oni
al bore on almost its entire length, and it is played on the same range as the tenor trombone.

Its a
ousti
 resonan
e frequen
ies are quite similar to those of a trombone, as shown in Figure 13.

The main di�eren
e between both instruments is the �rst resonan
e peak, whi
h is nearly harmoni


with the other ones on the saxhorn and very inharmoni
 on the trombone. Thus, unlike with the

trombone, the pedal note Bb1 is 
lose to the lowest resonan
e frequen
y.
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Figure 13: (
olour online) Comparison between modal �ts of the impedan
es of a trombone (red,

dashed) and of a saxhorn (blue, solid). The main di�eren
e in terms of frequen
y 
on
erns the

�rst peak.

The pedal note is easily playable by a pra
ti
ing musi
ian. However, while pra
ti
ing, the authors

fortuitously found out another playable note, whose frequen
y lies between fac,1 and fac,2. Trials

have been 
arried out on di�erent saxhorn models and brands. The note played lies between Db
2

and Eb
2, that is, a frequen
y ratio fosc/fac,1 between 1.19 and 1.35. We 
all it the "ghost note" in

this paper. Experien
ed saxhorn players further 
on�rmed the existen
e, and fa
ility of emission,

of this ghost note on many di�erent saxhorns and tubas.

LSA results on the saxhorn model are provided in Figure 14. The model used is similar to the

trombone model, with Z equal to the input impedan
e of the saxhorn in Eq. (3). The behaviour is

similar to that of the trombone, with a parti
ularly high fthresh/fac,1 ratio. On
e again fo
using on

the fopt,n values (
ir
les in Figure 14), the ratio is fopt,1/fac,1 = 1.23. As in the 
ase of the trombone,

this ratio is smaller and quite 
onstant for other modes (fopt,n/fac,n < 1.05, n ≥ 2). Time-domain

simulation of the saxhorn model on the �rst a
ousti
 resonan
e (with pb = popt,1 + 1%, fl = fopt,1

and other parameters given in Table 2) 
on�rms that fosc/fac,1 = 1.23.
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Figure 14: (
olour online) LSA results for the saxhorn (with lip parameters given in Table 2) are

given under the same form as those for the trombone in Figure 11. Cir
les indi
ate popt,n (a) and

fopt,n (b).

The gap between the lowest note played and the �rst a
ousti
 resonan
e is smaller for the ghost

note of the saxhorn (fopt,1/fac,1 = 1.23) than for the pedal note of the trombone (fopt,1/fac,1 = 1.47).

However, both are signi�
antly higher than for other modes (fopt,n/fac,n ≤ 1.09 otherwise). Other

studies [Velut et al., 2014℄ also highlight a high fosc/fac,1 ratio for trombone and saxhorn despite

quite di�erent simulation 
onditions, whi
h indi
ates the robustness of this phenomenon against


hanges in parameters. Thus, this simple linearised model makes it possible to predi
t the pedal

note of the trombone and the ghost note of the saxhorn. However, a set of parameters simulating

the pedal note B♭1 of the saxhorn with this model still needs to be found, should it exist.

4.3 Shifting of the lowest resonan
e peak of the input impedan
es

The trombone and the saxhorn are two examples of instruments having a high fopt,1/fac,1 ratio.

The trombone has a higher ratio than the saxhorn, and the �rst bore resonan
e frequen
y is

lower. To assess this negative 
orrelation between fac,1 and the fopt,1/fac,1 ratio, the �rst resonan
e

frequen
y of the input impedan
e is shifted for both instruments. This is done by modifying the

{C1, s1} values in Eq. (3) while keeping the other resonan
es, as well as the amplitude and quality

fa
tor of the �rst resonan
e, un
hanged.

For ea
h value of fac,1 tested, the fopt,1/fac,1 value is 
al
ulated. Results for both saxhorn and

trombone are reported in Figure 15. For both instruments, the ratio in
reases when the �rst
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resonan
e frequen
y tends towards zero. Thus, as far as the studied model is 
on
erned, the lower

the resonan
e frequen
y, the larger the gap between the playing frequen
y and the �rst resonan
e

frequen
y.
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Figure 15: (
olour online) Ratio between the predi
ted os
illation frequen
y fopt,1 and the a
ousti


resonan
e frequen
y fac,1 for di�erent values of the latter. The solid 
urve plots the results for

the trombone, the dotted one for the saxhorn. Verti
al dash-dotted lines are the original �rst

resonan
e frequen
ies of a trombone (38 Hz) and a saxhorn (62 Hz).

5 Con
lusions

Most results obtained in this study highlight the usefulness of Linear Stability Analysis (LSA) to

understand various near-threshold behaviours of a 
omplete nonlinear model of brass instrument

applied to a trombone and a saxhorn.

Cases where simulation results are perfe
tly explained by LSA in
lude obviously exponentially

de
aying or in
reasing os
illation transients around the equilibrium solution. Moreover, in time

simulations, frequen
ies of periodi
 regimes measured in steady states are 
lose to those given

by LSA, for all a
ousti
 resonan
es of the instrument. This remains true as long as the pe-

riodi
 regime emanating from the equilibrium solution remains stable. Indeed, on
e this peri-

odi
 regime loses its stability, overblowing, quasi-periodi
ity or period-doubling o

urs. Multi-

ple instabilities of the equilibrium solution are shown by LSA, 
orresponding to several avail-

able os
illation regimes, but this method will not determine on whi
h of these regimes the

system is going to os
illate. Further studies of the model with numeri
al 
ontinuation meth-

ods [E.J.Doedel, 1981, Co
helin and Vergez, 2009℄, should dete
t the bifur
ations between os
il-

lation bran
hes and estimate the stability domain of ea
h periodi
 solution, thus determining on

whi
h regime the system would os
illate. Quasi-periodi
ity and period-doubling are nonlinear

phenomena not taken into a

ount in this method.

The most striking results in this paper 
on
ern the lowest a
ousti
 resonan
e of brass instruments.

Indeed, in the 
ase of the trombone, LSA predi
ts the produ
tion of the pedal note. LSA 
learly
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indi
ates that for low enough a
ousti
 resonan
e frequen
ies, the frequen
y of the emerging os
il-

lation is far beyond the resonan
e frequen
y of the instrument. This allows the trombone pedal

note to be played in tune, even though the 
orresponding resonan
e frequen
y is misaligned with

the nearly harmoni
 series of the upper impedan
e peaks. This result from LSA analysis is quite

unexpe
ted: the pedal note of the trombone seems to result from a 
oupling between the lips and

the nearest a
ousti
 mode below the playing frequen
y, just like for the other os
illation regimes.

The 
ontribution of higher a
ousti
 resonan
es, usually invoked to explain the pedal note, would

not be 
onsidered in a linearised model, and obviously 
annot be involved when the analysis is


arried out with a single a
ousti
 resonan
e. Considering the saxhorn, LSA also suggests the pro-

du
tion of a note - referred to as the "ghost note" in this paper - that has never been do
umented

but the playability of whi
h is 
on�rmed by advan
ed players.

However some questions are still unsolved. First of all, the reason why the ratio between the playing

frequen
y at threshold and the a
ousti
 resonan
e frequen
y rises when the latter de
reases requires

further attention. Moreover, neither LSA nor numeri
al simulations 
ould explain the produ
tion

of the saxhorn pedal note. This may be due to a limitation of the 1-DOF valve model for the lips or

more simply to unsuitable parameter values. Indeed, in spite of the bibliographi
al review 
arried

out for this study, 
hoosing parameter values for a brass model remains 
hallenging. Even though

the results obtained look reasonable, 
onsistent with musi
ians' experien
e, in vivo measurements

of lip parameters during musi
al performan
e would be very valuable.
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A Equilibrium point of the system

Prior to applying the linear stability analysis (LSA) to our model, the equilibrium solution must

be 
omputed before linearising the equations around this solution. This solution 
onsists of a


onstant lip 
hannel height h(t) = he, a 
onstant �ow between the lips ue and a 
onstant pressure

in the instrument p(t) = pe. Finding these values 
onsists in solving the equation system (5) with

these 
onstant values. The system be
omes:















0 = −ω2
l he − pe

µ
+ ω2

l h0 +
pb
µ

ue =
√

2
ρ
Whe

√
pb − pe

0 = ZcCnue + snpne for n ∈ [1 : N ].

(14)

Considering the relation between p(t) and its 
omponents pn(t), and adding the variable A =
√
pb − pe, it be
omes:















he = h0 +
A2

µω2

l

ue =
√

2
ρ
WheA

pe = Z(ω = 0)ue.

(15)

These three equations 
an now be 
ombined :

WZ(ω = 0)

µω2
l

√

2

ρ
A3 + A2 +Wh0Z(ω = 0)

√

2

ρ
A− pb = 0, (16)

whi
h leads to eq 8 given in Se
tion 2.3.

B Linearisation of Open-Loop Transfer Fun
tion

This appendix details the 
al
ulations leading to the linearised expression of the open-loop transfer

fun
tion of the model. The linearisation of the admittan
e Ya simpli�es to a 1st degree Taylor

expansion of Equation (4) near the equilibrium point:

ũ(p, h) = u(pe, he)−
[

∂u

∂p
(pe, he)

]

(δp(t)− δpe) +

[

∂u

∂h
(pe, he)

]

(h(t)− he). (17)

δp = pb − p(t) is the di�erential pressure through the lips. δpe and he are the equilibrium values

of δp and h, respe
tively, i.e., the values giving the equilibrium solution. Like in Se
tion 2.3, the

he value is obtained by 
omputing the roots of a 3rd order polynomial whose variable is X =
√
δp:

X3 +
X2

β
+ µ.ω2

l .h0.X − pb
β

= 0 with β =
Z(ω = 0).W

µ.ω2
l

.

√

2

ρ
. (18)

he is given by Equation (1) in stati
 
onditions (all time derivatives being null):
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he = h0 +
δpe

(µ.ω2
l )
. (19)

All 
al
ulations being done, the linearised expression of the �ow between the lips is:

ũ(p, h) = Whe

√

2pe
ρ

(

δp(t)

2pe
+

h(t)

he

− 1

2

)

. (20)

In the frequen
y domain, the equation of the lip movement (Equation (1)) gives the following

relation between the os
illating 
omponents of the di�erential pressure δP (ω) and the height of

the lip 
hannel H(ω):

H(ω) = D(ω)
δP (ω)

µ.ω2
l

, (21)

with D(ω) being the dynami
s of the lips:

D(ω) =
1

1− ω2

ω2

l

+ j ωQl

ωl

, (22)

whi
h leads to this �nal expression of the valve admittan
e:

Ya = W.he.

√

2pe
ρ

(

− D(ω)

µ.ω2
l .he

− 1

2.pe

)

. (23)

C Nomen
lature

The symbols and abbreviations used all along this paper are re
alled here, along with their meaning

and the unit used:

• h(t): Height of the lip 
hannel (m);

• W : Width of the lip 
hannel (m);

• h0: Height of the lip 
hannel at rest (m);

• ρ: Density of air at 20

◦
C (kg.m−3);

• µ: Equivalent surfa
i
 mass of the lips (kg.m−2);

• Ql: Quality fa
tor of the lips (no unit);

• p(t) or P (ω): Waveform and Fourier transform of the pressure at the input of the bore of

the instrument (Pa);

• pb: Blowing pressure (Pa);

• pthresh: Threshold value of pb, above whi
h the equilibrium solution is unstable (Pa);
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• fthresh: Value of fosc at pb = pthresh (Hz);

• u(t) or U(ω): Waveform and Fourier transform of the air �ow at the input of the instrument

(m3.s−1
);

• Z(ω): Input impedan
e of the resonator (Pa.m−3.s);

• ωl = 2.π.fl: resonan
e frequen
y of the lips (rad.s1);

• fosc: Playing frequen
y of the instrument (Hz);

• fac,n: A
ousti
 resonan
e frequen
y of the nth
mode (Hz);

• fthresh: Os
illation frequen
y at pthresh (Hz).

• popt,n: Lowest value of pthresh for the nth
a
ousti
 resonan
e (Pa);

• fopt,n: Value of fthresh (Hz) at pb = popt,n;
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