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Abstrat

A physial model of brass instrument is onsidered in this paper : a one degree-of-freedom

outward striking valve for the lips, non-linearly oupled to a modal representation of the air

olumn. It is studied through linear stability analysis of the equilibrium solution. This ap-

proah provides the threshold value of the blowing pressure at whih an instability ours,

and the value of the frequeny of this instability. The validity of the results of this method

is theoretially limited to the neighborhood of the equilibrium solution. This paper heks

the e�ieny of linear stability analysis to understand the behavior of the model omputed

through time-domain simulations. As expeted, a good agreement is observed between linear

stability analysis and numerial simulations of the omplete nonlinear model around the osil-

lation threshold. For blowing pressures far above the osillation threshold, the piture is more

ontrasted. In most ases tested, a periodi regime oherent with the linear stability analysis

results is observed, but over-blowing, quasi-periodiity and period-doubling also our. In-

terestingly, linear stability analysis predits the prodution of the pedal note by a trombone,

for whih only nonlinear hypotheses had been previously proposed. LSA also predits the

prodution of a saxhorn note that had never been doumented, but known by musiians.

I Introdution

Linear Stability Analysis (LSA) an be used to analyze the behaviour of dynamial systems around

equilibrium points (i.e. non-osillating solutions). LSA onsists in writing a linearized version of

the system around a given equilibrium point. Its stability is then assessed by studying the response

of the linearized system to harmoni perturbations.
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LSA has already been applied to physial models of musial instruments: woodwind in-

struments [Wilson and Beavers, 1974, Silva et al., 2008, Karkar et al., 2012℄, �ute-like instruments

[Terrien et al., 2014℄ and brass instruments [Cullen et al., 2000, Silva et al., 2007℄. By de�nition,

the validity of the results of LSA is theoretially limited to the neighborhood of the equilibrium

solution. However, reent results on �utes have highlighted that important features of periodi

regimes suh as their frequenies are explained by LSA [Terrien et al., 2014℄. This paper examines

how far LSA an be used to understand some aspets of the behavior of a physial model of brass

instruments.

Physial models of brass instuments have been proposed in multiple stud-

ies [Eliott and Bowsher, 1982, Flether, 1993, Adahi and Sato, 1996b, Cullen et al., 2000,

Campbell, 2004, Silva et al., 2007, Myers et al., 2012℄. Sine we are interested in studying a

simple model, a one degree-of-freedom system to model the lips is retained: the outward-striking

valve. For the same reason, the nonlinear propagation in the bore of the instrument responsible

of "brassy sounds" at high sound levels [Myers et al., 2012℄ is ignored. The oupling by the

blown air �ow between the lips and the air olumn inside the bore is modelled through a lassial

nonlinear algebrai equation [Hirshberg et al., 1995℄. This model is detailed in setion A.

Even suh a simple model has more parameters to tune than the simplest models of woodwind

instruments. The latter an indeed be written with respet to two dimensionless parameters

only [Hirshberg et al., 1995, Dalmont et al., 1995, Taillard et al., 2010, Bergeot et al., 2013℄.

However, for eah valve position, brass players are able to play on multiple aousti modes

(or registers) of the air olumn by modifying signi�antly the mehanial harateristis of

their lips. Therefore, the lip dynamis annot be ignored, whih inreases the number of

parameters to tune. A bibliographial review is given in setion B to give grounds for the

values hosen for eah parameter of the model. In setion C, details are given on how LSA

is applied to the model. In order to exhibit behaviors of the nonlinear model to ompare

with LSA results, many options are available. For instane, the Harmoni Balane Method

gives a Fourier series approximation of the steady state of periodi regimes, inluding unstable

ones [Gilbert et al., 1989, Menguy and Gilbert, 2000, Cohelin and Vergez, 2009℄. Sine the

pioneering work of [MIntyre et al., 1983, Shumaher, 1981℄, it is also possible to arry out

time-domain simulations at moderate omputational ost, providing aess to transients and

possibly non-periodi solutions. This latter approah is retained (see setion D). Setion III

onfronts the results of LSA and numerial simulation for di�erent sets of parameter values.

Di�erent registers are explored, but also less ommon regimes suh as quasi-periodiity and

period-doubling. In setion IV, we fous on the lowest register of brass instruments, alled

the pedal note, a partiularly interesting ase where LSA provides unexpeted information on

numerial simulation results.
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II Tools

A Brass instrument model

In most wind instruments [Flether, 1993℄, inluding brass instruments [Cullen et al., 2000,

Eliott and Bowsher, 1982, Yoshikawa, 1995℄, the osillation relies on the oupling between a non-

linear exiter and a linear resonator. More generally, the losed-loop system representation shown

in �g. 1 is widely used by the musial aoustis ommunity, sine the seminal work of von Helmholtz

[von Helmholtz, 1954, MIntyre et al., 1983℄.

Figure 1: Closed-loop model suitable for the desription of most self-sustained musial instruments.

Self-sustained osillations are generated by the oupling between a loalized nonlinear exiter and

a (linear) resonator. For brass instrument, the lip reed provides the exitation while the resonator

is the air inside the bore. Both elements are non-linearly oupled through the air �ow between the

lips.

For brass instruments, the exiter onsists of the lips of the musiian, represented by a linear,

osillator-like valve, linking the height between the lips h(t) and the pressure di�erene aross the

lips δp(t) = pb−p(t). pb is the blowing pressure (pressure in the mouth, assumed to be stati) and

p(t) the osillating pressure signal inside the mouthpiee (the input of the bore). The resonator is

the bore of a trombone or a saxhorn (see setion IV.B). These resonators are represented by their

input impedane, whih links, in the frequeny domain, the pressure at the input of the resonator

P (ω) and the aousti �ow at the same point U(ω):

Z(ω) =
P (ω)

U(ω)
. (1)

Those two linear elements are non-linearly oupled by the air�ow through the lip hannel. The

nonlinear exiter of �g. 1 onsists in this oupling and the lip valve. The air jet is assumed to be

laminar in the lip hannel, but turbulent in the mouthpiee, all its kineti energy being dissipated

without pressure reovery. Applying the Bernoulli law and the mass onservation law between the

mouth and the lip hannel gives the following expression of the �ow between lips, depending on

the pressure di�erene and the height of the lip hannel [Hirshberg et al., 1995℄:

u(t) =

√

2

ρ
Lh(t)

√

pb − p(t), (2)

with u(t) being the air�ow rate (m3s−1
), h(t) the height of the hannel between the lips (m),

ρ = 1.19kg.m−3
the density of the air at 20◦C and L the width of the lip hannel (m).

A one degree of freedom valve (refered to hereafter as "1-DOF valve") [Flether, 1993℄ is enough

to model the lips for ommon playing situations [Yoshikawa, 1995℄ with a tratable number of
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parameters. Two kinds of 1-DOF valves an be onsidered : "striking outward", whih tends to

open when δp grows, and "striking inward" whih presents the opposite behavior.

While inward-striking valves are globally reognized as a satisfying way to represent woodwind

reeds [Wilson and Beavers, 1974, Dalmont et al., 1995℄ there is no onsensus about the modeling

of the lip reed, as neither the outward nor the inward valve model reprodues all the behav-

iors observed with real musiians. Partiularly, a trombonist (or any brass player) is able to

get a playing frequeny fosc above and below the resonane frequeny fac,n of the nth
aousti

mode of the instrument [Campbell, 2004℄. Whereas a 1-DOF inward or outward model is lim-

ited to playing frequenies respetively below or above fac,n to meet the regeneration ondition

explained in [Eliott and Bowsher, 1982℄. Moreover, measurements of the mehanial response of

arti�ial [Cullen et al., 2000℄ and natural lips [Newton et al., 2008℄ revealed the oexistene of both

inward and outward resonanes: this allows fosc to be below or above fac,n at threshold. However,

situations where fosc is below fac,n (inward-striking behavior) are mostly spei� to some musial

e�ets: for regular playing situations, the playing frequeny is above fac. Moreover, real human

lips open when air is blown, whih is learly an outward behavior. The relevane of this hoie

will be reinfored throughout this artile, by omparing the results of the model analysis to known

behaviors of brasswinds.

The outward-striking valve gives a relation between the height of the hannel between the lips

and the pressure di�erene aross the lips :

d2h

dt2
+

ωl

Ql

dh

dt
+ ω2

l (h− h0) =
1

µ
(pb − p(t)), (3)

where ωl = 2πfl (rad/s) is the lips resonane angular frequeny; Ql the (dimensionless) quality

fator of the lips; h0 the value of h(t) at rest; µ an equivalent surfae mass of the lips (kg.m−2).

This model assumes the mouth pressure to be onstant. A more aurate model would onsider

the osillating pressure omponent in the mouth, along with a model of the tunable resonant

avity formed by the voal trat [Eliott and Bowsher, 1982℄. A signi�ant role of the voal trat

has been shown for saxophone playing [Clinh et al., 1982, Guillemain et al., 2010, Fritz, 2005℄.

But a signi�ant role for trombone, and more generally for brass instruments, has yet to be

exhibited [Fréour and Savone, 2013, Chen et al., 2012℄.

Nonlinear e�ets in the resonator should be taken into aount to aurately desribe the behav-

ior of brass instruments at medium/high playing levels [Hirshberg et al., 1996, Myers et al., 2012℄

partiularly the "brassy sound" related to the formation of shok waves. However, the main ob-

jetive of this paper is the study of osillation around threshold (i.e. at low levels), therefore

the aousti propagation along the bore an reasonably be onsidered linear. Hene, the input

impedane is onsidered enough to desribe the resonator.

For this artile, input impedanes of a Courtois T149 tenor trombone (and when mentioned, a

Couesnon "Exelsior" baritone-saxhorn in Bb
) have been used. Impedanes have been measured

with the impedane sensor desribed in [Maaluso and Dalmont, 2011℄. These are �tted by a
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sum of omplex modes (Lorentzian funtions). The harateristi impedane of the resonator is

Zc = ρc/S, with S being the input ross setion of the bore at the mouthpiee rim. The modal-

�tted impedane is written:

Z(ω) = Zc

N
∑

n=1

Cn

jω − sn
, (4)

sn and Cn being respetively the poles and the residues of the nth
omplex mode. Comparison

between the measured trombone impedane and an 18-mode �t an be found on �g. 2. The

maximum relative di�erene between �t and measure, for frequenies above 30Hz is lower than

2.6% for the magnitude, and 4.7% for the phase. The measurement in low frequeny are slightly

biased by the preision of the impedane sensor.
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Figure 2: (olor online) Magnitude (top) and phase (bottom) of the input impedane of a Courtois

tenor trombone. Plain urve depits the measured impedane, dashed urve is the �tted version

with 18 omplex modes.The di�erene between �t and measure is also plotted.

The dynamis of the system desribed by eq. 2, 3 and 4 an be put in a state-spae represen-

tation Ẋ = F (X), where F is a nonlinear vetor funtion, and X the state vetor, ontaining the

observables of the system. Taking p(t) =
∑N

n=1 2Re(pn(t)), where pn is the nth
modal omponent

of the pressure at the input of the bore:















d2h(t)
dt2

= −ω2
l h(t)− ωl

Ql

dh(t)
dt

− p(t)
µ

+ ω2
l h0 +

pb
µ

u(t) =
√

2
ρ
Lh(t)

√

pb − p(t)

dpn
dt

= ZcCnu(t) + snpn(t) for n ∈ [1 : N ].

(5)

This leads to the following state vetor, similar to the one proposed in [Silva et al., 2014℄:

X =

[

h(t);
dh

dt
; pn(t)

]

n ∈ [1 : N ]. (6)
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B Choie of lip parameters

Setting the values for the parameters of the lip model is not obvious, as measuring the mehani-

al impedane (displaement over fore ratio) in playing ondition seems out of reah. Adjusting

parameters to get results omparable with measured signals seems unprodutive. Even if a one-

DOF model depends on a small number of parameters, di�erent sets of parameters values may

lead to similar results. Moreover, ontrary to woodwind instrument valves whih remain fairly

steady regardless of the played note, the lip valve parameters of a trombonist vary while play-

ing. Partiularly, the lip resonane frequeny is adjusted to selet the intended register of the

instrument.

A preliminary bibliographial review on lips parameter values has been done. Results from the

literature are gathered in table 1 along with a brief "abstrat" of the method used in the reviewed

artiles.

Referene h0(m) L(m) fl(Hz) 1/µ((m2kg−1) Ql "Abstrat"

[Gilbert and Aumond, 2008℄ 5, 8.10−4 14.10−3
60�260 0.27 0.15�0.037 No information;

Variable Ql value

[Gazengel et al., 2007℄ human lip;

Soft N/A N/A 115.7 N/A 0.79 saxophone-like

Medium N/A N/A 479.87 N/A 0.46 position; 3 musular

Tight N/A N/A 1073 N/A 0.46 tensions

[Cullen et al., 2000℄ 1st (Outward) mode

Soft 6, 3.10−4 18.10−3
189 0,07 10,5 arti�ial lips

Medium 5, 3.10−4 12.10−3
203,5 0,11 6

Tight 4, 4.10−4 11.10−3
222 0,09 9

[Newton et al., 2008℄ N/A N/A 32 N/A 1,2�1,8 Human lips

High-speed amera

Rihards et al. (unpub.) 5.10−4 7.10−3
167 0,19 3,7 arti�ial lips

�t for good results

[Eliott and Bowsher, 1982℄ N/A N/A 200 0,2 0,5 ± 0,03 Ql measured on heek

[Rodet and Vergez, 1996℄ N/A N/A 428,4 0,67 2,88 Trumpet; adjusted

for simulation

[Adahi and Sato, 1996b℄ 10−3 7.10−3
60�700 S(2π)2fl/1.5 0.5�3 Adj. for simulation

Table 1: Reording of di�erent values of lip parameters from literature, along with a brief expla-

nation of the method. in some artiles, ertain values are not available (N/A). For papers using

2-DOF lip models, only the �rst, outward DOF is reorded.

This work ompletes a similar review performed by M. Newton in his PhD thesis [Newton, 2009,

p.119℄. Many authors do not give the parameter values they use, nor give explanations about their

method to get these values, unless the fat that these parameters allow periodi self-sustained
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osillation of the model. The measures on human or arti�ial lips were made in onditions as

similar as possible to the playing onditions.

Our initial intention was to stik as lose as possible to the values measured on natural

lips [Gazengel et al., 2007, Newton et al., 2008℄. Geometri parameters (width and height at rest

of the lip hannel) given in all studies are very steady, around h0 = 5.10−4m and L = 12.10−3m.

Parametri studies performed by the authors have shown that variations of these do not drastially

hange the qualitative behavior of the model. Similar observations have been made about µ, even

if the range of the values gathered is a little wider (µ ∈ [3.7 : 11.1] for the trombone).

Measurements from [Gazengel et al., 2007, Newton et al., 2008℄ tend to give low quality-fator

values between 0.5 and 2. However, preliminary analysis arried out with Ql ≈ 1 showed very

unrealisti pressure thresholds (order of magnitude : 104 to 105Pa). Thus, an intermediate value

for Ql was hosen, loser to the values measured on arti�ial lips (Ql ∈ [5 : 10]).

In all the simulations of this paper, the set of parameters used for simulation and linear stability

analysis is given in table 2:

h0(m) L(m) 1/µ(m2kg−1) Ql

5.10−4 12.10−3
0.11 7

Table 2: Lip parameters retained for the artile

C Stability of the equilibrium solution

Linearizing a losed-loop system to assess potential instabilities is a widely used method, as muh in

the dynamial systems ommunity [Bergé et al., 1995℄ as in musial aoustis for brasswind, wood-

wind and �ute-like instruments [Wilson and Beavers, 1974, Cullen et al., 2000, Silva et al., 2008,

Terrien et al., 2014℄. Basially, the equations desribing the system are linearized around a known

equilibrium solution. Then, the stability of this solution is evaluated.

Considering the system desribed in setion A, the stati equilibrium onsists in an equilibrium

lip opening he. This equilibrium position is slightly larger than the lip opening at rest h0, due

to the onstraint of the blowing pressure on the inner fae of the lips. Similarly, there is a small

stati overpressure pe at the input of the bore of the instrument. Mathematially, this equilibrium

is obtained by aneling all time derivatives in the system, as desribed in appendix A. The value

of pe is obtained by solving:

A3 +
A2

β
+ h0µω

2
l A− pb

β
= 0, (7)

with β = LZ(ω=0)

µω2

l

√

2
ρ
. The value of Z(ω = 0) is taken from the �tted version of the impedane.

This equation has 1 or 3 real roots. In the latter ase, the smallest real positive root should be

onsidered to ompute pe = pb −A2
[Silva, 2009℄, as Z(ω = 0) is small. The lip hannel height at

equilibrium he is then given by eq. 3 with ḧ = ḣ = 0.

The linearized funtion F̃ an be written as:
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F̃ (X) = F (Xe) + JF (Xe)(X −Xe), (8)

with JF (X) being the Jaobian matrix of the funtion F and Xe the state vetor at the equilibrium

solution. The solutions of Ẋ = F̃ (X) are under the form :

X(t)−Xe = Weλt, (9)

where W is a onstant vetor of same dimension as X.

Thus, the eigenvalues of the Jaobian matrix give information about the stability of the equilibrium

solution for a given set of parameters. If at least one of these eigenvalues λ has a positive real

part, the amplitude of the linearized solution tends toward in�nity, whih means the equilibrium is

unstable and the solution starts osillating. In the transient phase of the osillation, the exponential

growth of the amplitude is determined by the positive real part of λ, and the angular frequeny

is given by the imaginary part of the eigenvalue ω = Im(λ). However, the nonlinearities of the

system limit the �nal amplitude and also a�et the osillation frequeny of the steady state.

This method only allows the detetion of instabilities emanating from the equilibrium solution. If

a stable osillating regime oexists along with the stable equilibrium solution, it won't be de-

teted. This situation ours for example in ertain woodwind instruments, where the Hopf

bifuration (onneting the equilibrium solution to the osillating one) is inverse for ertain

ases [Farner et al., 2006℄.

D Time-domain simulation

Another approah for studying musial instruments is solving (numerially) the equations of the

hosen model, for a given set of parameters. Results of this resolution are time-domain simulated

signals of eah observable of the state vetor, whih also give information on the transient of the

signals.

Multiple numerial methods have been developed and used to simulate wind instruments with

models similar to the one presented in setion A. The primary di�erene is in the numerial

modeling of the aoustis of the resonator. The re�etion funtion of the bore has been widely

used [MIntyre et al., 1983, Shumaher, 1981, Adahi and Sato, 1996a, Vergez and Rodet, 1997,

Gilbert and Aumond, 2008℄. The modal deomposition of the bore has been hosen for this artile,

and omputations are arried out with the open-soure MoReeSC software tool, freely available

on its website. Priniples and results of this library are desribed in [Silva et al., 2014℄. This sim-

ulation tool uses a ontrol-theory-like modeling whih is similar to the one presented in setion A.

This eases the numerous omparisons between linear stability analysis results and the behavior

of simulated signals. It allows the simulation of the behavior of the model with a high number

of aousti modes for the resonator (18 in this paper), and o�ers a large �exibility to modify the

model parameters, as it will be done in setion 4.
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III Results

A Linear Stability Analysis

The linear stability analysis method detailed in setion C is applied to the model de�ned in

setion A, with the set of lip parameters de�ned in Table 2. The resonator is modeled with a

modal �t (N=18 in eq. 4).

For eah value of fl under study (here fl ∈ [20 : 500Hz]), the eigenvalues of the Jaobian matrix

JF (Xe) presented in eq. 8 have been omputed for inreasing values of pb, until a �rst instability

ours. Results are reported in Fig. 3. For eah value of fl, the top plot represents the lowest value

of pb giving an unstable equilibrium solution, further referred to as threshold pressure pthresh. The

bottom plot represents the imaginary part of the orresponding eigenvalue divided by 2π, whih

is the osillation frequeny at threshold, further alled fthresh. Eah horizontal dashed line on this

bottom plot represents the nth
aousti resonane frequeny of the instrument fac,n given by the

maxima of the input impedane amplitude.

It should be noted that, for pb values higher than pthresh, other pairs of onjugate eigenvalues may

have a positive real part. This means a system with multiple instabilities. If di�erent osillating

solutions are stable with these parameters, the system would be able to start osillating on di�erent

registers. In �g.3 and similar �gures, the �rst instability (the one orresponding to the lowest pb)

is reorded for eah fl value (urve). The seond instability is reorded for a smaller range of fl

(dashed urve).

On the [20 : 500Hz] frequeny range represented, both plots of Fig. 3 an be divided into 9 ranges

of fl, eah orresponding to one regime or register of the instrument: [30 : 63Hz] (�rst regime),

[72 : 123Hz] (seond), [124 : 179Hz], [180 : 234Hz], [235 : 288Hz], [289 : 352Hz], [353 : 404Hz],

[405 : 460Hz], [462 :> 500Hz]. On the bottom plot, the osillating frequeny fthresh stays on

plateaus just above eah value of fac,n. This is the usual behavior of an outward valve at threshold,

whih osillates at a frequeny just above the resonane frequeny of the nth
aousti mode of the

bore implied in the instability of the equilibrium solution (fthresh > fac,n)[Campbell, 2004℄. For

eah regime, fthresh monotonously follows the variation of fl. This mathes the experiene of the

brass player, who an slightly "bend" the sound (inrease or derease the pith) by adjusting fl

through the musular tension of the lips, and adapting the blowing pressure to the hange of pthresh.

The width of eah plateau, i.e. the attainable musial range on eah register, has analyti limits

depending on the lip quality fator Ql as detailed in [Silva et al., 2007℄.

In terms of pb, it an be observed in Fig. 3 (top) that the osillation threshold globally inreases

with the rank of the register. A greater pb value is required to reah the higher notes of the

instrument, in aordane with the musial experiene. Simultaneously to the fthresh plateaus,

the osillation thresholds have U-shaped parts, qualitatively similar with the ones presented in

[Silva et al., 2007℄. Those U-shapes have a minimum value popt for eah register (indiated by

irles) whih depends signi�antly on the losses of the resonator aording to [Silva et al., 2007℄.

In the following, we assume that popt and the assoiated lip resonane frequeny fopt are the
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optimal playing on�guration for a human performer. This hypothesis is related to the strategy of

musiians, who laim to minimize the e�ort to produe a sound on a given regime. The popt values

are between 500Pa and 10kPa of the same order of magnitude as the blowing pressures reorded

in our measurements. The pressure threshold inreases faster when fl is above fopt than below (see

zoom-box on �g. 3 bottom). These results are ompatible with brasswind playing experiene, as

it requires less e�ort for a musiian to "bend down" a note than "bending" it up.

The following will fous on some examples of [pb, fl] points to illustrate the di�erent behaviors

observed on the model. For eah ase, the agreement between the results of the linear stability

analysis and the sound produed by the time-domain simulation desribed in setion D will be

disussed.
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Figure 3: (olor online) Results of the linear stability analysis of the model detailed in setion A

with parameters from table 2. For a range of lip resonane frequeny fl, the top plot presents

the threshold mouth pressure pthresh, while the bottom plot shows the orresponding osillation

frequeny fthresh. Dotted lines are the values of fac,n. The magni�ed subplot (zoom on 4th regime)

highlights the asymmetrial fthresh behavior above and below popt. Cirles point the "optimal"

values popt and fopt. Thinner dashed lines represent the seond destabilization threshold (top) and

the orresponding frequeny (bottom).

10



B Exat math between simulation and linear stability analysis

The simulated pressure at the input of the instrument is ompared with the LSA results. In

partiular, the pressure threshold pthresh is assessed by performing simulations with pb in the

viinity of pthresh. The fthresh values are also ompared with fosc. This latter quantity is measured

thanks to the instantaneous frequeny detetion funtion "Mirpith" from the MIR toolbox. This

MATLAB toolbox ontains numerous funtions for musi information retrieval, inluding Mirpith

whih estimates the frequeny of a musial sound.

A simulation with the exat value of pthresh would theoretially lead to in�nite transient times

(time until the steady state is reahed). Therefore, values of pb slightly below and above pthresh are

tested. The hosen lip resonane frequeny is fl = 90Hz, everything else being given in Table 2.

The orresponding mouthpiee pressure signals are represented in the two �rst plots of Fig. 4. The

third plot shows a situation where pb is muh higher than pthresh.

When the mouth pressure is a bit below the threshold (pb = 1210Pa whereas pthresh = 1222Pa)

(Fig 4 left), the osillation dereases exponentially towards the stati, non-osillating solution. The

thik line represents exponential derease given by eq. 9. In this ase, λ is the eigenvalue of JF

with the highest (negative) real part. The alulated osillation's frequeny (dash-dotted line) is

onstant and equal to fthresh = 116Hz = Im(λ)/2π.

When the mouth pressure is slightly above the threshold (pb = 1234Pa) (Fig 4 enter), the signal

envelope inreases exponentially during the transient phase (also following eq. 9, plotted in thik

line) at beginning, before reahing a steady-state regime. The alulated osillation frequeny fosc

(dash-dots) begins at fthresh = 116Hz; it beomes quite higher in the permanent regime (126Hz

that is 8.6% or 143 musial ents above fthresh).
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Figure 4: (olor online) Time-domain simulations with parameters from table 2 and fl = 90Hz,
with mouth pressure pb lower (left) and higher (middle) than the linearized model threshold

(pthresh = 1222Pa). Mouth pressure (steady) and mouthpiee (osillating) pressures are plot-

ted (left vertial axis) along with the expeted exponential growth/diminution of amplitude (thik

urves: envelope of eq. 9). The expeted osillation frequeny at threshold is fthresh = 116Hz. The
third plot (right) orresponds to a blowing pressure muh higher than the threshold (pb = 3kPa;
zoom on �rst seond of signal). The dash-dotted urve depits the instantaneous playing frequeny.

As expeted, the behavior of time-domain simulations is aurately predited by the linear stability

analysis as long as pb remains in the viinity of the alulated threshold (left and enter plot).
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pthresh is aurately omputed, and the value of the eigenvalue with the largest real part predits

the frequeny and the amplitude of the osillation at the beginning. However, the amplitude

gets �nally limited by nonlinear phenomena. Thus, this linearized tool is unable to predit the

amplitude of the established regime's waveform.

The third plot shows the results with pb = 3kPa muh higher than pthresh. The two methods

still give oherent information, but the osillating frequeny fosc = 130.5Hz is 8% higher than

Im(λ)/(2π) = 120.8Hz. The di�erene is 134 musial ents, larger than a semitone. fosc is higher

in this situation than near the threshold, whih an be orrelated with the musial experiene: the

pith rises when the player inreases its blowing pressure [Campbell and Greated, 1994℄. But this

remark should be onsidered autiously beause in pratie, the ontrol of mouth pressure and lips

musular ativity are always orrelated for a brass player.

This example is representative of most ases tested, as the linear stability analysis predits orretly

whether there will be an osillation or not, with a good estimation of the osillation frequeny at

threshold. Moreover, a strong orrelation between the duration of the transient and the value of

the real part of the unstable eigenvalue has been observed. However this reliability is limited to

mouth pressures near the osillation threshold. On the other hand, the linear stability analysis

an predit neither the �nal amplitude of the permanent regime of osillation, nor the steady-state

waveform. This latest observation will be further highlighted in the following sub-setion.

C Unforeseen behaviors

The linear stability analysis provides a lot of pertinent information about the osillation threshold

and the transient phase. This is partiularly true when pb is near pthresh. However, some

simulations (detailed below) show nonlinear phenomena, obviously out of reah for this method.

Quasi-periodi osillations

Firstly, the previous omparison is reprodued with a di�erent lip resonane frequeny. Three

simulations are performed with the parameters of table 2 and fl = 110Hz. Now, pthresh is equal to

711Pa. Again, three di�erent pb values are tested: pb = 701Pa, pb = 720Pa and pb = 2kPa. Results

are plotted on Fig. 5. When pb is near the threshold, results are very similar to the previous ase

with fl = 90Hz (Fig. 5 left and middle). But when pb gets large enough, the osillation of the

mouthpiee pressure beomes quasi-periodi (�g. 5 right).
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Figure 5: (olor online) Simulation results for fl = 110Hz, the pressure threshold being pthresh =
711Pa. Like in �g. 4 three simulations are shown with pb = 701Pa (left), pb = 720Pa (middle) and

pb = 2kPa (right, muh higher than pthresh). Other parameters (lip harateristis) are given in

Table 2.

This illustrates the aforementioned limitation of linear stability analysis. The existene of

an osillating solution is attested in the viinity of the bifuration, and the pressure threshold

of the instrument is aurately predited, but the waveform of the permanent regime is out of reah.

Period doubling

When initialized with fl = 55Hz, pb = 400Pa (pthresh being 161Pa) and the other lip parameters

given in Table 2, the time-domain simulation result osillates at 32.5Hz, signi�antly under the

trombone's �rst aousti resonane (fac,1 = 38Hz). This is an unexpeted behavior. This osillation

annot be diretly sustained by any aousti resonane, as the 1-DOF outward valve modeling the

lips produes playing frequenies above the aousti resonane frequeny (fosc > fac,n) at least near

the pressure threshold, to omply with the regeneration ondition [Eliott and Bowsher, 1982℄.

Figure 6 ompares the spetrum of the simulated mouthpiee pressure with the aforementioned

parameters (dotted plot) and the fthresh values in a very similar situation, the parameters being the

same exept fl = 50Hz, i.e. 5Hz lower (plain plot). When fl = 50Hz, fosc = 65Hz is slightly higher

than fthresh = 56.3Hz; while for fl = 55Hz, the simulation's osillation frequeny is very lose to

the half of fthresh. We onlude that, by inreasing progressively fl, the periodi solution undergoes

a �ip bifuration [Bergé et al., 1995℄. A quite small variation of the lip resonane frequeny an

lead to a regime with a sub-harmoni frequeny and its harmonis. To the authors knowledge,

period doubling had never been observed on a model of brass instruments. However, trombone

players whose faial musles (embouhure) get exhausted by exessive pratie sometimes notie

their sound being an otave lower than what they expet.
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Figure 6: (olor online) Spetra of the simulated mouthpiee pressures of a trombone, with

(pb = 400Pa) for both situations, fl = 50Hz (plain) and fl = 55Hz (dotted) (other parameters from

table 2). The values of fthresh are pointed by a diamond (fl = 50Hz) and a ross (ffl = 55Hz).
The plain vertial line indiates the �rst aousti resonane frequeny of the trombone bore,

fac,1 = 38Hz.

Seond destabilization

Besides these two nonlinear phenomena, other di�erenes between our linear stability analysis

tool and time-domain simulation are possible. A third example is given with fl = 120Hz, the

parameters given in table 2 and a high blowing pressure (pb = 6.5kPa while the threshold is

pthresh = 1056Pa). While fthresh = 128.4Hz is just above the 2nd aousti resonane frequeny of

the bore (fac,2 = 112Hz), the simulation's osillation frequeny is fosc = 187.5Hz, near the 3rd

resonane frequeny (fac,3 = 170Hz). Figure 7 shows the spetrum of a simulation osillating on

the third register, while the predited osillation at threshold orresponds to the seond one.
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Figure 7: (olor online) Spetrum of simulation result for fl = 120Hz and pb = 6.5kPa with other

parameters taken from table 2. The self-sustained osillation ours at fosc = 187.5Hz, orrespond-
ing to the third register; while linear stability analysis predits an osillation at fthresh = 128.4Hz
(plain line) for pthresh = 1056Pa. Eah dash-dotted line represents the nth

aousti resonane

frequeny fac,n of the trombone bore.

Retaining the lowest pb whih destabilizes the equilibrium solution is not enough, here, to predit

the behavior of the system with higher blowing pressure. Yet, this osillation on the third regime

an be deteted by reording other pairs of eigenvalues of the Jaobian matrix having a positive real

part, for pb > pthresh. The dashed plot on �g 3 shows the pressure threshold orresponding to the

seond pair of suh eigenvalues (noted λ2), and the assoiated frequeny. For fl = 120Hz the seond

threshold is 6116Pa with an osillation frequeny equal to Im(λ2)/2π = 172Hz, orresponding

to the simulated third regime. This is onsistent with the behavior observed in the numerial

simulation.
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For a better understanding of the origin of the di�erent instabilities, another approah to perform

linear stability analysis may be preferred, as it gives visual information about the stability margins

of the di�erent registers. It onsists in studying a linearized version of the open-loop transfer

funtion (OLTF) of the system de�ned by eq. 2, 3 and 4 [Ferrand et al., 2010℄. This OLTF is

divided into two parts: the exiter's admittane Ya whih desribes the lip reed behavior, from

eq. 2 and 3, and the resonator, one again modeled with a modal �t of its input impedane Z (see

eq. 4).

The linearization of the exiter's admittane Ya simpli�es to a 1st degree Taylor expansion of eq. 2

near the equilibrium point; eq. 3 is then put into the result. Details of the alulation an be found

in Appendix B and leads to the following expression of Ya:

Ya = Lhe

√

2pe
ρ

(

−D(ω)

Khe

− 1

2pe

)

, (10)

where D represent the dynamis of the lip reed (see Appendix B).

The stability of the OLTF, noted HOL, is then studied with the Barkhausen riterion, whih

points out possibly unstable points when HOL = Ya.Z = 1. On a Bode diagram, unstable points

are those of HOL having a 0dB magnitude and 0

◦
phase. This method has already been used

for larinet models with inward valves, and for brass and �ute-like instruments [Benade, 1976,

Ferrand et al., 2010, Terrien et al., 2014℄.

Figure 8 shows the Bode diagram of the OLTF of the system fed with the parameters of Figure 7.

The unstable points are easily reognized. The omputation is fast enough to observe evolution

on the Bode plot in real time while modifying a parameter.
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Figure 8: (olor online) Bode diagram of the open-loop transfer funtion of the trombone model

with parameters of table 2, fl = 120Hz and pb = 6.5kPa. There are two instability points rossess),
with a 0dB magnitude and a zero phase.

Here, the Bode diagram presents two points of 0dB magnitude and 0

◦
phase, whih means two

instabilities of the equilibrium solution, at 132Hz and 172Hz. In the terms of the �rst linear
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stability analysis tool desribed in C, these frequenies orrespond to the imaginary part of the

eigenvalues of JF having a positive real part when these are alulated with pb = 6500Pa. The

value obtained with OLTF di�ers from the one obtained with the �rst linear stability method,

beause fthresh = 128Hz is obtained at pb = pthresh = 1056Pa while the OLTF value is obtained

with pb = 6.5kPa. The seond destabilization thresholds math well, beause the destabilization

threshold of the third regime is 6116Pa nearer from pb = 6.5kPa. This frequeny is lower than the

atual fosc = 189Hz value, but it orresponds to the same seond regime.

Both linear stability analysis methods show multiple instabilities of the stati solution, whih means

multiple possible regimes of osillation. But they give neither information about the stability of

these regimes, nor about whih regime the instrument will atually osillate on. This is determined

by the stability of the di�erent osillating solutions, whih depends on nonlinear elements out of

reah of the method.

IV Lowest regime of osillation

This setion fouses on the results of linear stability analysis and time-domain simulation on the

lowest register, related to the �rst aousti resonane of the air olumn inside the bore. This lowest

playable note is alled "pedal note" by musiians. For the trombone with its slide fully pulled in,

and the saxhorn with no valve depressed (neutral positions), the pedal note is a Bb
1 at 58Hz in the

musial sale.

A The Trombone's "pedal note"

To ompare more easily the osillation frequenies of the di�erent registers of the trombone, the

ratio between the threshold frequeny fthresh and the resonane frequeny of the orresponding

aoustial mode fac,n is omputed. Fig. 9 gives pthresh and fthresh similarly to �g. 3 on a smaller fl

range, along with the fthresh/fac,n ratio on the bottom plot.

When fousing on the values at the minimum of pressure threshold fopt (irles) as desribed in

setion III, this ratio appears to be signi�antly higher for the �rst register than for the other ones:

fthresh/fac,1 = 1.47 while fthresh/fac,n ∈ [1.04 : 1.09] for n ≥ 2. However, for all the �ve lowest

registers, fthresh is less than 5% from the frequeny of the referene note (the note supposed to be

played on the instrument for this register, following the tempered sale) when fl = fopt. Given

this, the linear stability analysis gives a reliable estimation of the referene note for these registers,

inluding the pedal note.

This high fthresh/fac,1 ratio is oherent with the experiene of trombone players, who are able to

play a "pedal" Bb
1 in tune with the other regimes of osillation. The trombone's �rst resonane

is at fac,1 = 38Hz whereas for n ≥ 2, fac,n+1 − fac,n ≈ 58Hz whih means a major inharmoniity

of the lowest resonane ompared to the other ones. However, musiians are able to play Bb
1 as if

there were no inharmoniity [Bouasse, 1986, Velut et al., 2014℄. This ability to predit the pedal

note of the trombone with the linearization of an outward-valve model is unexpeted. It makes
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lear that the prodution of the pedal note involves the same phenomena than the other regimes.
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Figure 9: (olor online) Results of linear stability analysis (with lip parameters from table 2) are

realled on top and middle plots (narrower fl range than in �g. 3), along with the fthresh/fac,n ratio
(bottom plot). Cirles point the fopt resonane frequenies orresponding to the lowest pthresh.

Bouasse arried out an experiment by playing a trombone with a saxophone mouth-

piee [Bouasse, 1986℄. Gautier and Gilbert reently reprodued this experiment, with an audio

and video reording provided with this paper. The result is an instrument playing a low Eb
0, whih

means an osillating frequeny just under fac,1 = 38Hz. This experiment is simulated below, and

the results presented in �g. 10. The trombone with a saxophone mouthpiee is modeled with a

�t of the input impedane of a trombone mounted with the equivalent volume of a saxophone

mouthpiee. The saxophone mouthpiee is modeled with an inward-striking valve having the har-

ateristis of a ane-reed, with fl = 1kHz, Q = 1.1; 1/µ = 4.9m2kg−1;L = 10−3m; h0 = 5.10−4m.

The osillating frequeny of the simulated mouthpiee pressure stiks to the �rst resonane fre-

queny (fosc/fac,1 = 0.99). The signal is nearly sinusoidal, beause of the lak of aousti resonanes

mathing the harmonis of this frequeny.
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Figure 10: (olor online) Results of simulation of a trombone with a tenor saxophone mouthpiee,

modeled by an inward-striking valve with reed resonane frequeny fl = 1kHz, L = 1cm, h0 =
5.10−4m, Ql = 1.1, 1/µ = 4.9m2kg−1

. The blowing pressure pb = 1800Pa is slightly above pthresh =
1760Pa. Left plot shows the blowing pressure (steady) and the mouthpiee pressure (osillating).

Right plot is the spetrum of the mouthpiee pressure, showing an osillation frequeny of fthresh =
37.85Hz just under the �rst aousti resonane fac,1 = 38Hz. Dashed lines represent the resonane

frequenies of the bore for omparison.

These results show that the aforementioned high fosc/fac,1 ratio is spei� to outward-striking valve.

Put together, these results support the 1-DOF outward-striking modeling of a brass player's lips,

as it allows to reprodue even unusual behaviors of the instruments like the pedal note.

B A Saxhorn's "ghost note" ?

A omplementary exploration was done using the same omputation sheme on a Baritone-saxhorn

in Bb
. This instrument belongs to the family of the tubas, its bore is nearly onial and it is

played on the same range as the tenor trombone. Its input impedane is quite similar to that of

a trombone, the main di�erene being on the �rst resonane peak whih is nearly harmoni with

the other ones. Thus, ontrary to the trombone, the Bb1 pedal note (lowest playable note) is lose

to the lowest resonane frequeny.

The pedal Bb
1 is easily playable by a non-beginner musiian. However, the authors fortuitously

found out another playable note during pratie, whose frequeny lies between fac,1 and fac,2.

Trials have been arried out on di�erent saxhorn models and brands. The note played an be a

Db
2 to a Eb

2, whih means a frequeny ratio fosc/fac,1 between 1.19 and 1.35. We all it the "ghost

note" in this paper. Experiened saxhorn players further on�rmed the existene, and faility of

emission, of this ghost note on many di�erent saxhorns and tubas, inluding diverse transposing

instruments.

Results of the linear stability analysis of the saxhorn model are provided in �g. 11. The model is the

same as the one for the trombone, with only a hange in the aousti impedane used (eq. 4). They

are similar to those obtained with the trombone, with a partiularly high fthresh/fac,n ratio on the

�rst register. Again fousing on the fopt values (irles on �g. 11), the ratio is fthresh/fac,1 = 1.23.

Like for the trombone, this ratio is smaller and quite onstant for other modes (fthresh/fac,n < 1.05,

n ≥ 2). Time-domain simulation on a saxhorn model on the �rst register, (with pb = popt + 1%,

fl = fopt and other parameters oming from table 2) on�rm these values, with fosc/fac,1 = 1.23.
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Figure 11: (olor online) Results of linear stability analysis (with lip parameters from table 2) of

the saxhorn are given under the same form as those of the trombone in �g. 9. Cirles point popt
(top) and fopt (bottom).

The gap between the lowest played note and the �rst aousti resonane is smaller for the ghost note

of the saxhorn (fthresh/fac,1 = 1.23) than for the pedal note of the trombone (fthresh/fac,1 = 1.47).

However, both are signi�antly higher than for other modes (fthresh/fac,n ≤ 1.09 otherwise). Time-

domain simulations have been arried out [Velut et al., 2014℄ with a di�erent set of parameters,

that similarly predit a high fosc/fac,1 ratio, higher for the trombone than for the saxhorn. A

simple linearized model thus allows to predit the appearane of the pedal note of the trombone

and the ghost note of the saxhorn, whih is surprising. However, a set of parameters simulating

the pedal Bb
1 of the saxhorn with this model is yet to be found, if it in fat exists.

C Shift of the lowest resonane of the input impedanes

The trombone and the saxhorn give two examples of high fthresh/fac,1 ratios on the lowest register

of the instrument. The trombone has a higher ratio than the saxhorn while its �rst register's

resonane frequeny is lower. To assess this negative orrelation between fac,1 and the fthresh/fac,1

ratio, the �rst resonane frequeny of the input impedane of the onsidered instruments is hanged

in the model. This is done by modifying the {C1, s1} values in eq. 4 while keeping the other modes

unhanged, as well as the �rst mode's amplitude and quality fator.

For eah value of fac,1 tested, the fthresh/fac,1 value is reorded at fopt. Results of both saxhorn and

trombone are reported on �g. 12. The ratio tends to grow (with a di�erent derivative) when the
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resonane frequeny tends toward zero. Therefore, the lower fac,1, the larger fthresh/fac,1. Thus, as

far as the outward model is onerned, the gap between the playing frequeny and the resonane

frequeny is all the larger as the resonane frequeny is low.
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Figure 12: (olor online) Ratio between the predited osillation frequeny fthresh and the aousti

resonane frequeny fac,1 for di�erent values of the latter. Plain urve plots the results for the

trombone, the dashed one is for saxhorn. All values are taken for fl = fopt. Vertial dash-dotted
lines are the original �rst resonane frequenies of a trombone (38Hz) and a saxhorn (62Hz). For
the further registers, fthresh/fac,n < 1.09.

V Conlusions

Most results obtained in this study highlight the usefulness of Linear Stability Analysis (LSA) to

understand various near-threshold behaviors of the omplete nonlinear model of a brass musial

instrument (trombone or saxhorn).

Cases where simulations results are perfetly explained by LSA inlude obviously exponentially

deaying or inreasing osillation transients around the equilibrium solution. Moreover, onerning

steady states, periodi regimes are observed at frequenies lose to the ones given by LSA, for all

registers of the instrument. This remains true as far as the periodi regime emanating from the

equilibrium solution remains stable. Indeed, one this periodi regime loses its stability, it gives rise

to harmonis swithing, quasi-periodiity ourring or period-doubling. Playing other harmonis

an be predited, as multiple instabilities of the equilibrium solution are shown by LSA, but it

gives no information on whih osillating solution prevails. This demands further studies of the

model with numerial ontinuation tools, suh as AUTO or MANlab [Cohelin and Vergez, 2009℄:

to detet the bifurations between osillation branhes and estimate the domain of stability of eah

periodi solution. Quasi-periodiity and period-doubling are nonlinear phenomenons obviously not

taken into aount in this method.

The most unexpeted results of this paper onern the lowest register of brass instruments, but

are onsistent with musiians' experiene. Indeed, in the ase of the trombone, linear stability

analysis predits the prodution of the pedal note. Thus, LSA learly indiates that for low
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enough aousti resonane frequenies, the frequeny of the emerging instability is far beyond

the resonane frequeny of the instrument. This allows the trombone's pedal note to be played

in tune, though the orresponding resonane frequeny is misaligned with the nearly harmoni

series of the upper peaks of the input impedane. This is an unexpeted outome of LSA, in a

way the prodution of the pedal note involves the same basi phenomena than the other regimes.

Considering the saxhorn, LSA also suggests the prodution of a note - designated as the "ghost

note" in this paper - that had never been doumented but the playability of whih is on�rmed by

advaned players.

However some questions are still unsolved. First of all, the reason why the ratio between the playing

frequeny at threshold and the aousti resonane frequeny rises when the latter dereases requires

further attention. Moreover, neither LSA nor numerial simulations ould explain the prodution

of the pedal note by a saxhorn. This may be due to a limitation of the 1-DOF valve model for

the lips or more simply to inadapted parameter values. Indeed, in spite of a bibliographial review

arried out in this paper, hoosing parameter values for a brass model is hallenging. Even if

results obtained looks reasonable, onsistent with players' experiene, in vivo measurements of lip

parameters during musial performane would be very valuable.

Aknowledgments

We wish to aknowledge the about ten skilled saxhorn players who on�rmed the existene of the

ghost note on di�erent instruments. We also wish to thank Fabrie Silva for the disussions about

our results and the oasional help for using his MoReeSC software.

This work was done in the framework of Labex MEX (ANR-10-LABX-0092) and of the projet

A*MIDEX (ANR-11-IDEX-0001-02), funded by the Frenh National Researh Ageny (ANR).

21



A Equilibrium point of the system

Prior to apply the linear stability analysis to our model, the equilibrium solution must be omputed

before linearizing the equations around this solution. This solution onsists in a onstant lip hannel

height h(t) = he, a onstant �ow between the lips ue and a onstant pressure in the instrument

p(t) = pe. Finding these values onsists in solving the equation system 5 with these onstant

values. The system beomes:















0 = −ω2
l he − pe

µ
+ ω2

l h0 +
pb
µ

ue =
√

2
ρ
Lhe

√
pb − pe

0 = ZcCnue + snpne for n ∈ [1 : N ].

(11)

Considering the relation between p(t) and its omponents pn(t), and adding the variable A =
√
pb − pe this beomes:















he = h0 +
A2

µω2

l

ue =
√

2
ρ
LheA

pe = Z(ω = 0)ue.

(12)

These three equations an now be mixed :

LZ(ω = 0)

µω2
l

√

2

ρ
A3 + A2 + Lh0Z(ω = 0)

√

2

ρ
A− pb = 0, (13)

whih leads to eq 7 given in setion C.

B Linearization of Open-Loop Transfer Funtion

This appendix details the alulations leading to the linearized expression of the open-loop transfer

funtion of the model. The linearization of the admittane Ya simpli�es to a 1st degree Taylor

expansion of eq. 2 near the equilibrium point:

ũ(p, h) = u(pe, he) +

[

∂u

∂p
(pe, he)

]

(δp(t)− δpe) +

[

∂u

∂h
(pe, he)

]

(h(t)− he).

δp = pb − p(t) is the di�erential pressure through the lips. δpe and he are the equilibrium values

of respetively δp and h, i.e. the values giving the equilibrium solution. Like in setion C, the he

value is obtained by omputing the roots of a 3rd order polynomial whih variable is X =
√
δp:

X3 +
X2

β
+K.h0.X − pb

β
= 0 (β =

Z0.L

K
.

√

2

ρ
).

he is given by eq. 3 in stati onditions (all time derivative being null):

he = h0 +
δpe

(µ.ω2
l )
.
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All alulations being done, the linearized expression of the �ow between the lips is:

ũ(p, h) = Lhe

√

2pe
ρ

(

δp(t)

2pe
+

h(t)

he

− 3

2

)

. (14)

When translated in the frequeny domain, the lip movement equation 3 gives the following relation

between the osillating omponents of the di�erential pressure δP (ω) and the height of the lip

hannel H(ω):

H(ω) = D(ω)
δP (ω)

K
, (15)

with D(ω) being the dynamis of the lips:

D(ω) =
1

1− ω2

ω2

l

+ j ω
ωl

qr
, (16)

whih leads to this �nal expression of the valve admittane:

Ya = L.he.

√

2pe
ρ

(

−D(ω)

K.he

− 1

2.pe

)

. (17)

C Nomenlature of symbols

The symbols and abbreviations used all along this paper are reminded here, along with their

meaning and the unit used:

• h(t): Height of the lip hannel (m);

• L: Width of the lip hannel (m);

• h0: Height of the lip hannel at rest (m);

• ρ: Density of air at 20

◦
C (kg.m−3);

• µ: Equivalent surfai mass of the lips (kg.m−2);

• Ql: Quality fator of the lips (no unit);

• p(t) or P (ω): Pressure at the input of the bore of the instrument (Pa);

• pb: Blowing pressure (Pa);

• pthresh: Threshold value of pb, above whih the equilibrium solution is unstable (Pa);

• fthresh: Value of fosc at pb = pthresh (Hz);

• u(t) or U(ω): Air �ow at the input of the instrument (m3.s−1
);
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• Z(ω): Input impedane of the resonator (kg.m−4.s−1);

• ωl = 2.π.fl: resonane frequeny of the lips (Rad.s1);

• fosc: Playing frequeny of the instrument (Hz);

• fac,n: Aousti resonane frequeny of the nth
mode (Hz);

• fthresh: Osillation frequeny at pthresh (Hz).

• popt: Lowest value of pthresh for a given register (Pa);

• fopt: Value of fthresh at pb = popt;
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