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An electromagnetic simulation of YBCO bulks was performed and the resulting trapped magnetic flux density was compared to Field Cooling experimental measurements for an applied magnetic flux density up to 3 T. The simulation relied on an axisymmetric problem implementing an A-formulation of the Maxwell's equations solved by means of the Finite Element Method so that the time evolution of the magnetic flux density was computed over the cross section of the bulk. To derive its electrical conductivity, a classic power law was adopted that includes the dependence of the critical current density upon temperature and external magnetic field modelled on the basis of a Modified Kim-Anderson relation. It was found that this model tends asymptotically towards the critical state for which the n-value becomes a free parameter that should be then estimated experimentally. The experimental results could be fairly reproduced at different operating temperatures with the best trapping at temperatures below 77 K benefiting from an increasing critical current density.

I. INTRODUCTION

T ARGETING practical applications of High-Temperature Superconducting (HTS) bulks [START_REF] Kovalev | High output power reluctance electric motors with bulk high-temperature superconductor elements[END_REF]- [START_REF] Miryala | Superconductivity: Applications Today and Tomorrow[END_REF], a great deal of effort has been carried out regarding the art of growing materials, their properties and their modelling [START_REF] Yan | Enhanced Growth Rate of a YBCO bulk in the Melt-Textured Process Under 1 atm Oxygen Pressure[END_REF]- [START_REF] Hong | The Numerical Modeling and Measurement of Demagnetization Effect in Bulk YBCO Superconductors Subjected to Transverse Field[END_REF]. With regards to the latter, analytical formulae, in the simplest 2D cases using the Bean's Critical State Model (BCSM), and numerical models, in the most complex geometries involving 3D modelling techniques and/or more refined critical current dependencies, have been developed to predict the magnitude of the penetration field and the feasibility of trapping large magnetic fluxes [START_REF] Brandt | Superconductor disks and cylinder in an axial magnetic field, field penetration and magnetization Curves[END_REF]- [START_REF] Douine | Determination of jc and n-value of hts pellets by measurement and simulation of magnetic field penetration[END_REF]. The present work is an incremental step in the field of HTS bulk modelling with the objective of reproducing experimental data and predicting the electromagnetic behaviour of disk-shaped samples. To this end, the Finite Element Method (FEM) was used and a Modified Kim-Anderson (MKA) relation was implemented to describe the dependence of the current density on the temperature and the background magnetic flux density.

The study is carried out under the main assumptions that the bulk and the background electromagnet are isotropic and homogeneous solids with cylindrical symmetry, reducing F. Trillaud is with the Institute of Engineering, National Autonomous University of Mexico, D.F., 04510 Mexico (e-mail: ftrillaudp@pumas.ii.unam.mx) K. Berger the complexity of a 3D problem to a simpler axisymmetric one. The Faraday's law of induction and the Ampère's law were lumped into a single electromagnetic equation via the magnetic vector potential A. In this A-formulation, the electrical conductivity of the sample was expressed through the classic power law describing the E -J characteristics of HTS samples. However, to be able to reconcile this particular formulation with an axisymmetrical model, the induced current is assumed to be solely arising from the component of the magnetic field along the axis of symmetry [START_REF] Campbell | An Introducton to Numerical Methods in Superconductors[END_REF]. The resulting mathematical expression was extremized into a weak form. Subsequently, the solution was computed using the Galerkin method [START_REF] Kameni | A 3-D Semi-implicit Method for Computing the Current Density in Bulk Superconductors[END_REF] built into the free solver GetDP of the open source software Gmsh [START_REF] Dular | GetDP: a General Environment for the Treatment of Discrete Problems[END_REF], [START_REF] Geuzaine | Gmsh: a three-dimensional finite element mesh generator with built-in pre-and post-processing facilities[END_REF]. The function space is decomposed on the basis of first-order edge elements [START_REF] Brambilla | Development of an edge-element model for AC loss computation of high-temperature superconductors[END_REF] and a Backward Differentiation Formula (BDF) method with an adaptive time step scheme allowed integrating the solution over space and time.

In this publication, the experimental setup used to magnetize YBCO samples under Field Cooling (FC) conditions is briefly presented followed by a detailed description of the electromagnetic model. Finally, numerical results are compared to experimental data. It is then inferred that the representation of the critical surface through the MKA relation can approximate with high degree of accuracy the FC magnetization of YBCO bulks for a background magnetic flux density of up to 3 T.

II. NUMERICAL ANALYSIS

A. Experiment setup and its modelling

A disk-shaped YBCO sample, prepared following a top seeded melt growth process, was placed at the centre of a LHe cooled NbTi background electromagnet that was connected to a current-regulated DC power supply [START_REF] Zhai | Processing and Properties of Bulk YBaCuO Superconductors Fabricated by Top Seeded Melt Growth from Precursor Pellets Containing a Graded CeO 2 Composition[END_REF]. The sample was encapsulated in a copper jacket which was anchored to a 2stage cryocooler to be cooled down to the desired operating temperature. In this set up, FC experiments were conducted at 12, 30 and 77 K on a single sample. The background magnetic field was first ramped up while the sample was in its normalresistive state. Once the background magnetic field reached a plateau at its nominal value, the sample was cooled to the desired operating temperature. Then, the background magnetic field was ramped down to zero at a rate of approximately 0.003 T/s so as to magnetize the sample. A Hall sensor was placed at the top centre surface of the bulk to record the time evolution of the magnetic flux density. Further details of the experiment and its procedure can be found in [START_REF] Douine | A New Direct Magnetic Method for Determining Jc in Bulk Superconductors From Magnetic Field Diffusion Measurements[END_REF]. At a rate of 0.003 T/s, the local dissipation is expected to be negligible. 
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Fig. 1. Model and mesh used to compute the background Ba and measured magnetic flux density Bm over 1/4 th. of the cross section of the sample. The dimensions of the background magnet and sample can be found in Table I .

Hence the temperature is assumed to be constant throughout the magnetization process [START_REF] Douine | A New Direct Magnetic Method for Determining Jc in Bulk Superconductors From Magnetic Field Diffusion Measurements[END_REF].

A coarser mesh of the geometrical model than the one used to compute the solution is shown in Fig. 1. It is implicitly assumed that the problem is perfectly axisymmetric with homogeneous and isotropic material properties. The model is divided in 4 regions representing 1/4 th. of the experimental set up: Ω m for the background electromagnet, Ω b for the sample, Ω s for the close surroundings of both electromagnet and bulk, and an additional Ω i region to simulate the diffusion and closing of the magnetic field in the infinite non-magnetic space surrounding the whole experiment. Table I summarizes the geometrical dimensions of the studied sample and the background electromagnet. The Ampère-turns of the electromagnet were computed to match the measured intensity of the applied magnetic flux density.

B. Electromagnetic model: A-formulation

Finite Element Analysis (FEA) is proposed here to study the magnetization of YBCO bulks introducing a detailed J c (T, B) model. Amongst the body of available formulations, the Aformulation was chosen for its straightforward implementation into the solver GetDP. The basis of the model is the divergence free property of the magnetic flux density, allowing one to introduce the magnetic vector potential A. Rewriting the Maxwell's equations in terms of A leads to the general expression given below

∇ × 1 µ 0 ∇ × A + σ ∂A ∂t -J a = 0, (1) 
where J a is the imposed engineering current density flowing through the background electromagnet and µ 0 is the permeability of vacuum. The expression of the electrical conductivity of the bulk σ is given by the power law expression

σ = J c E -1 n c ∂A ∂t + 1-n n + 1 ρ nsc . ( 2 
)
where J c , E c , n and ρ nsc are the critical current density, the critical electrical field, the n-value and the normal-state resistivity of the bulk, respectively. The introduction of = 10 -6 E c in expression (2) avoids any divisions by zero when ∂A/∂t = 0. The normal-state resistivity ρ nsc was obtained from film data found in [START_REF] Wuyts | Resistivity and Hall effect of metallic oxygen-deficient YBa 2 Cu 3 Ox films in the normal state[END_REF] and fitted to the following equation

ρ nsc (T ) = 10 -6 × (1.6 + 0.012 × T ) , (3) 
where T is the operating temperature. The presence of the normal-state resistivity allows one to simulate the smooth transition between the normal-state resistance above the critical temperature to zero resistance in the superconducting state during FC simulations, which also improves the numerical convergence [START_REF] Grilli | Finite-Element Method Modeling of Superconductors: From 2-D to 3-D[END_REF]. Following a sensitivity analysis, it was noted that the magnitude of the trapped magnetic flux density upon increasing the n-values was decreasing until no significant changes could be observed. Indeed, according to (2) and neglecting the numerical terms and the normal-state resistivity ρ nsc , as the n-value gets larger and larger, the electrical conductivity becomes independent of n, and

σ ∼ n→∞ J c (T, B) ∂A ∂t . (4) 
For the following studies, n-values were computed on the basis of the expression provided in [START_REF] Berger | Influence of Temperature and/or Field DDependence of the E-J Power Law on Trapped Magnetic Field in bulk YBaCuO[END_REF]: 30 at 77 K, 60 at 30 K, 180 at 12 K, at which values the trapped magnetic flux density is found insensitive. At a temperature of 77 K, for which measurements are available, the expected n-values for HTS bulks range from 18 to 45 according to [START_REF] Yamasaki | Current-voltage characteristics and flux creep in melt-textured YBa 2 Cu 3 O 7[END_REF]- [START_REF] Philippe | Influence of soft ferromagnetic sections on the magnetic flux density profile of a large grain, bulk YBaCuO superconductor[END_REF], being consistent with the proposed value.

It should be noted that the mathematical problem is correctly stated as long as the applied magnetic flux density induces a current that can follow the electric field without encountering any boundaries in its path [START_REF] Campbell | An Introducton to Numerical Methods in Superconductors[END_REF]. It is such when the bulk is an isotropic solid with cylindrical symmetry, subjected to an applied magnetic field along the vertical axis. Hence, the current flows freely as concentric circles around the axis of symmetry and ( 1) is sufficient to describe the electromagnetic behaviour of the system without the necessity of introducing the electric scalar potential V .

Finally, to simulate the infinite non-magnetic space surrounding the experimental set up, a shell transformation is applied to the outer rim Ω i as described in [START_REF] Henrotte | Finite Element Modelling with Transformation techniques[END_REF]. Dirichlet and Neumann boundary conditions are applied at the edges of the model (Dirichlet: Γ i and Γ d , Neumann: Γ n , see Fig. 1).

III. MODIFIED KIM-ANDERSON RELATION

The Kim-Anderson relation is a widely used model to express the dependence of the critical current density upon magnetic flux density and temperature [START_REF] Kim | Critical Persistent Current in Hard Superconductors[END_REF]- [START_REF] Anderson | Hard superconductivity: Theory of motion of abrikosov flux lines[END_REF]. To reproduce 

J c (T, B) = J c0 (T ) 1 + B B 0 (T ) α , (5) 
where J c0 is the temperature-dependent critical current density at zero magnetic field and α (= 0.7) is a dimensionless constant that yields the Bean's critical state function when equal to 0 and the Kim-Anderson relation when equal to 1 [START_REF] Tochihara | Temperature Dependence of Lower Critical Fields in a single-Crystal Bi 2 Sr 2 CaCu 2 O δ+d Bulk Superconductor[END_REF]. B is the norm of the applied magnetic flux density and B 0 is a macroscopic normalising parameter whose temperature dependence was fitted to

B 0 (T ) = B 00 × 1 -δ T T c0 β , (6) 
where B 00 , δ and β are fit parameters, and T c0 = 92 K is the critical temperature. The critical current density J c0 was extrapolated to 0 T following a polynomial equation on the basis of a linear model presented in [START_REF] Berger | Influence of Temperature and/or Field DDependence of the E-J Power Law on Trapped Magnetic Field in bulk YBaCuO[END_REF] J

c0 (T ) = J c00 × T -T c0 T ref -T c0 γ , ( 7 
)
where γ is a fit parameter. The best parameters to match the numerical and experimental results over the different operating temperatures (see Fig. 3) were found to be: [START_REF] Krabbles | High Temperature Superconductor Bulk Materials: Fundamental, Processing, Properties Control, Application Aspects[END_REF], [START_REF] Seidel | Applied Superconductivity: Handbook on Devices and Applications[END_REF] for a YBCO bulk having J c 350 A/cm 2 at B 0 T and 77 K against values currently obtained at the authors' university laboratory in the range of 100-200 A/cm 2 [10], [START_REF] Douine | Improvement of YBCO Superconductor Magnetic Shielding by Using Multiple Bulks[END_REF]. The former data corresponds to a magnetic flux density applied along the c-axis. Bearing in mind that the critical surface is a unique characteristic of a given superconducting sample, and that the direction of the applied magnetic field on the sample typically affects its characteristics, values of the critical current density and its general dependence on the background magnetic flux density are considered within acceptable range of sample-to-sample variabilities in quality. Additionally, it was possible to fit the experimental data of [START_REF] Krabbles | High Temperature Superconductor Bulk Materials: Fundamental, Processing, Properties Control, Application Aspects[END_REF] up to 2 T at a temperature below 77 K and up to 3 T at a temperature 5). These values even though lower than ones found in literature remain within the range of acceptable sample-to-sample variability arising from the manufacturing process.

B 00 = 2.67 T, δ = 1.54, β = 2.56, J c00 = J c0 (T ref ) =
of 77 K with the appropriate set of parameters of the MKA relation which gives one strong key point to warrant the relevancy of the chosen J c (T, B) relation for the mentioned range of operating values. Nevertheless, the proposed model is an idealization of bulk characteristics with a limited set of parameters that can only depict a smooth dependency upon the applied magnetic flux density. More refined models should be considered to explore regions beyond 3 T.

IV. COMPARISON BETWEEN EXPERIMENTAL AND NUMERICAL RESULTS

Fig. 3, 4 and 5 show the different experimental measurements obtained on the bulk top centre surface and their corresponding simulations. The measured magnetic flux density B m was computed using the MKA relation given by ( 5) and the induced magnetic flux density B i was derived by means of

B i = B a -B m , (8) 
where B a is the norm of the background magnetic flux density.

Once the background field has vanished, a fraction of the magnetic flux density will remain trapped. The largest trapped magnetic flux densities were obtained at 12 K and 30 K, amounting to nearly 77% and 68% of the nominal background magnetic flux density, respectively. However, at 77 K, only 10% of the nominal applied magnetic flux density was trapped.

In terms of the simulation, the proposed model fairly reproduced the behaviour of measured magnetic flux densities as well as the magnitude of the corresponding trapped magnetic flux densities throughout the different operating temperatures. At 77 K, the matching is nearly perfect whereas the computed curves at 12 and 30 K show a miscellaneous discrepancy during the decrease of the background magnetic field with a slightly rounder profile. This discrepancy ought to be related to the MKA relation describing J c (T, B) and the rate of change of the magnetic vector potential according to (4).

V. DISCUSSION

The magnetization curves are mostly shaped by the evolution of the local electrical resistance of the bulk; the latter being fully defined by the parameters of the MKA relation and the rate of change of the background magnetic field. These parameters mainly depend on the manufacturing process and the composition of the sample. As mentioned previously, the n-value had barely any influences on the results in the range of expected values which are typically several tens as reported in the literature. It becomes a free parameter that cannot be inferred from the numerical model and should be measured experimentally. As a result, the proposed E-J characteristic reaches asymptotically towards a critical state model. The parameters shaping the results are then contained in the dependence of the critical current density upon magnetic flux density and temperature for a fixed rate of change of magnetic field. Thus, increasing J c0 and B 0 allows trapping more flux with a lower slope as the background magnetic field vanishes. These parameters as they are risen up modify the critical surface such that larger values of J c0 (T ) are achieved and the curves J c (T, B) show a lesser dependence upon background magnetic flux density than the ones presented in Fig. 2. As more data are available, it would be possible to reconstruct with greater accuracy the critical surface up to 3 T. Beyond this value, a more refined relation may be more appropriate and alternative fitting curves with additional independent parameters might be tried out.

VI. CONCLUSION

The introduction of the MKA relation into the power law allowed reproducing fairly accurately the experimental data at temperatures of 12, 30 and 77 K in FC conditions up to 3 T. Reaching towards the critical state, the n-value becomes a free parameter whose values can only be acquired through experimental measurements. Then, the best trapping was achieved at temperatures lower than 77 K owing to an increasing critical current density. For larger applied magnetic flux densities, it is suggested to explore alternative J c (T, B) models with greater degrees of parametrization in order to be able to fit the critical surface beyond 3 T. One possibility is the reconstruction of the electrical resistivity as a function of the background magnetic flux density for a given operating temperature and from there one would derive the corresponding critical surface. This alternative approach would allow one to validate various assumptions including the power law and the J c (T, B) models taking into account sample-to-sample discrepancies resulting from preparation and history.

  109 A/mm 2 with T ref = 77 K and γ = 0.96. To get a sense of the viability of the chosen model, Fig 2 compares the proposed current density model with experimental data published in
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 22 Fig.2. Evolution of critical current density of a YBCO bulk at different operating temperatures as a function of an external magnetic flux density applied parallel to the c-axis compared to values obtained from the MKA relation[START_REF] Zhai | Processing and Properties of Bulk YBaCuO Superconductors Fabricated by Top Seeded Melt Growth from Precursor Pellets Containing a Graded CeO 2 Composition[END_REF]. These values even though lower than ones found in literature remain within the range of acceptable sample-to-sample variability arising from the manufacturing process.
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 34 Fig.3. Time evolution of the magnetic flux density at the top centre surface of the sample at 12 K and its comparison with simulations. The square " " and filled bullet "•" markers indicate the time evolution of the background magnetic flux density Ba and measured magnetic flux density Br, respectively. The solid "-" and dashed "--" lines correspond to numerical simulations of the measured magnetic flux density Bm and the magnetic flux density B i .
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 5 Fig. 5. Time evolution of the magnetic flux density at the top centre surface of the sample at 77 K and simulations.

TABLE I DIMENSIONS

 I OF BULK AND BACKGROUND ELECTROMAGNET.

	Parameters	Values (cm)
	Background electromagnet	
	Inner radius	5.5
	Outer radius	9
	Height	20
	Bulk sample	
	Radius	1.5
	Thickness	1.67
	the experimental data over a broad range of experimental tem-
	peratures and background magnetic flux densities, the relation
	was altered to give the following modified version [27], [28]

Data at 77 K MKA at 77 K Data at 68 K MKA at 68 K Data at 64 K MKA at 64 K Data at 59 K MKA at 59 K