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Nonparametric adaptive estimation for grouped data

C. Duval∗, J. Kappus†

Abstract

The aim of this paper is to estimate the density f of a random variable X when one has
access to independent observations of the sum of K ≥ 2 independent copies of X. We
provide a constructive estimator, based on a suitable definition of the logarithm of the
Fourier transform of the observations. We propose a new strategy for the data driven
choice of the cut-off parameter. It is proven optimal and a numerical study illustrates
the performances of the method. Moreover, we discuss the fact that the definition of
the estimator as well as the adaptive procedure apply in a wider context than the one
considered here.

Keywords. Convolution. Inverse problem. Nonparametric adaptive estimation.

AMS Classification. 62G07, 62G20, 62G05.

1 Introduction

Let X be some real valued random variable which has a square integrable Lebesgue density f .
Suppose that we aim at estimating f , but only have access to the aggregated data

Yj =

K∑
k=1

Xj,k, j = 1, . . . , n, (1.1)

where the Xj,k, k = 1, . . . ,K; j = 1, . . . , n are independent copies of X and K is a known
positive integer. An example where related models are encountered in practical applications
is in large screening studies where infectious disease are involved. As the cost of individual
measurement might be important, individuals are grouped before being observed. Recently,
Delaigle and Zhou (2015) studied the nonparametric estimation of the probability of contam-
ination given a covariate X that may represent, for instance, a pollutant, when only grouped
data Y (with our notations) are observed.
We have at our disposal n independent copies of the random variable Y , which has the
Lebesgue density f∗K , where ∗ denotes the convolution product. In the Fourier domain, this
implies that ϕY (u) = ϕX(u)K , where ϕX and ϕY denote the characteristic functions of X and
Y respectively. Consequently, f can be recovered, taking the K-th root of the characteristic
function of ϕY and applying the Fourier inversion formula. An estimator of f can hence be
constructed, replacing ϕY by its empirical counterpart. However, this approach suffers from
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the fact that the definition of K-th root is ambiguous, unless ϕX is real and positive, i.e. f
is symmetric. In this paper we provide a well posed definition of the K-th root, based on a
suitable definition of the logarithm for characteristic function that is not necessarily real. We
naturally end up with a procedure to estimate f .

Meister (2007) studied the case where f is symmetric and proposed a cross-validation band-
width selector. However, theoretical optimality properties for the adaptive procedure are only
shown under quite restrictive assumptions on the characteristic function. An estimator for
the non-symmetric case is also discussed in the afore mentioned paper and a modified version
of it is used by Delaigle and Zhou (2015). However, this estimator has the disadvantage that
it is not given in a closed form, making its the practical calculation difficult to handle.
In the present paper, a fully constructive estimation procedure is introduced which covers
both the non-symmetric and symmetric case. Moreover, we propose a new data driven selec-
tion strategy for the cut-off parameter and show that the resulting rates of convergence are
adaptive minimax under very general assumptions. Our approach has the clear advantage
of being computationally simple and extremely fast, in comparison to usual cross-validation
techniques.

The interest of the present article is threefold. First, we offer a unified adaptive and optimal
strategy to estimate the underlying distributional density when grouped data are available.
The model considered here belongs to the broader class of statistical inverse problems and
can also be compared to the problem of estimating the jump density from a random sum, see
e.g. Buchmann and Grübel (2003) or van Es et al. (2007).
Second, our estimator is defined as the empirical counterpart of the logarithm of a charac-
teristic function, for which an optimal upper bound is established. This estimator and the
techniques we introduce to derive the associated upper bound apply beyond the scope of
density estimation from grouped data.
Finally, as it is usually the case when an estimator is built on the characteristic function,
an optimal cut-off needs to be adaptively selected from the observations. The data driven
selection method we introduce leads to an optimal rate estimator. This procedure applies in
a wider context than the one considered here and performs numerically fast.

The paper is organized as follows. Section 2 contains the construction of the estimator. Upper
risk bounds are established and the corresponding minimax rates are derived. In Section 3
a data driven bandwidth selector is introduced and it is shown that the resulting rates are
adaptive minimax. A discussion is proposed in Section 4 and a numerical study is given in
Section 5. Finally, the proofs are gathered in Section 6.

2 Risk bounds and rates of convergence

Some notations

We start by introducing some notations which will be used throughout the rest of the text.
In the sequel, ∗ is understood to be the convolution product of integrable functions and
f∗K denotes the K-fold auto-convolution, f∗K = f ∗ · · · ∗ f . Given a random variable Z,
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ϕZ(u) = E[eiuZ ] denotes the characteristic function. For Yj defined as in formula (1), we
will drop the subscript and write ϕ instead of ϕYj . For f ∈ L1(R), Ff(u) =

∫
eiuxf(x) dx is

understood to be the Fourier transform. Moreover, we denote by ‖·‖ the L2-norm of functions,
‖f‖2 :=

∫
|f(x)|2 dx. Given some function f ∈ L1(R) ∩ L2(R), we denote by fm the uniquely

defined function with Fourier transform Ffm = (Ff)1[−m,m].

2.1 Construction of the estimator

In the sequel, we will always work under the assumption

(A0) ∀u ∈ R, ϕX(u) 6= 0.

This assumption is standard in deconvolution problems and, for the present model, proven
necessary in Meister (2007). Therein, a counterexample is provided when K is even and (A0)
is not satisfied.
We are given n independent copies of the random variable Y =

∑K
k=1X1,k, which has the

Lebesgue density f∗K . In the Fourier domain, this implies ϕ(u) = ϕX(u)K . Consequently, f
can be recovered, taking the K-th root of the characteristic function and using the fact that,
by the Fourier inversion formula,

f(x) =
1

2π

∫
R
e−iux

(
ϕ(u)

)1/K
du.

This formula makes immediate sense when ϕ has no imaginary part and is strictly positive.
Contrarily, if f is non-symmetric and hence ϕ has a non-zero imaginary part, the definition of
z 7→ z1/K is not unique. So one needs to specify which branch of the logarithm is considered in
order to get a proper definition of the K-th root. The algorithm discussed in Meister (2007) for
the non-symmetric case is not given in a closed form so the estimator is numerically difficult
to handle.
In order to get a closed-form estimator let us recall the concept of the distinguished logarithm.

Lemma 1. Let ϕ be a characteristic function which has no zeros. Then there exists a unique
continuous function ψ which satisfies

1. ψ(0) = 0

2. ∀u ∈ R : ϕ(u) = eψ(u).

The function ψ introduced in Lemma 1 is called the distinguished logarithm of ϕ and, hereafter,
denoted by Logϕ. Moreover, in the sequel, we let 1/K denote the distinguished K-th root,
that is, ϕ1/K := exp((Logϕ)/K).
It is important to keep in mind that the distinguished logarithm does usually not agree with
the main branch of the logarithm. Moreover, the definition of a distinguished logarithm and
distinguished root only makes sense with respect to ϕ seen as a function rather than pointwise.

Lemma 2. For some integer K, let ϕ(u) = ϕX(u)K . Then, both characteristic functions are
related as follows,

∀u ∈ R : ϕX(u) = exp((Logϕ(u))/K) =: ϕ(u)
1
K .
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The proof of Lemma 1 and Lemma 2 can be found, for example, in Chapter 7 in Sato (2005).
In order to obtain a constructive estimator for ϕX , we give the following result which makes
the definition of the distinguished logarithm explicit.

Lemma 3. Let ϕ be a characteristic function without zero points and assume that ϕ is dif-
ferentiable. Then, it follows that

Log (ϕ(u)) =

∫ u

0

ϕ′(z)

ϕ(z)
dz. (2.2)

The preceding lemmas suggest to exploit formula (3) in order to build a constructive es-
timator of the distinguished logarithm and hence of the characteristic function itself. The
characteristic function of Y and its derivative are replaced by their empirical counterparts,

ϕ̂(u) :=
1

n

n∑
j=1

eiuYj and ϕ̂′(u) =
1

n

n∑
j=1

iYje
iuYj .

Moreover, we define the quantities

ψ′(u) :=
ϕ′(u)

ϕ(u)
and ψ̂′(x) :=

ϕ̂′(u)

ϕ̂(u)
.

as well as

ψ(u) :=

∫ u

0
ψ′(x) dx and ψ̂(u) :=

∫ u

0
ψ̂′(x) dx.

It follows from Lemma 3 that ψ(u) = Log (ϕ(u)) and ψ̂(u) = Log (ϕ̂(u)). Lemma 2 suggests
to use

ϕ̂X(u) := exp(ψ̂(u)/K)

as an estimator of ϕX . Finally, we use a spectral cut-off and apply Fourier inversion to derive,
for arbitrary m > 0, the following estimator of f ,

f̂m(x) :=
1

2π

∫ m

−m
e−iuxϕ̂X(u) du.

It is worth pointing out that for real valued and strictly positive characteristic functions,
our estimator coincides with the estimator given in Meister (2007) since in this case, the
distinguished K-th root equals the usual K-th root. Also our estimator resembles one of
the estimator defined in Comte et al. (2015), which considers the problem of estimating the
jump density for mixed compound Poisson processes. However, in Comte et al. (2015) the
associated upper bound is non adaptive and sub optimal.

2.2 Non-asymptotic risk bounds

For ε, γ > 0, define

uε,γ := min{u ≥ 0 : |ϕ(u)| = (1 + ε)γ(n/ log n)−1/2}. (2.3)

The following bound is valid for the mean integrated squared error of f̂m.
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Theorem 1. Assume that X has a finite second moment. Let γ :=
√

1
2 + 1

K + δ, for some

δ > 0. Then, there exist positive constants C1 and C2 depending on the definition of ε and
the choice of δ, which are increasing with respect to E[X2] and ‖f‖, such that for any m ≥ 0,

E[‖f − f̂m‖2] ≤ ‖f − fm‖2 +
C1

nK2

m∫
−m

1

|ϕX(u)|2(K−1)
du+ C2mn

− 1
K +

2

π

∫
|u|∈[uε,γ ,m]

|ϕX(u)|2 du,

with the convention that if m ≤ uε,γ then [uε,γ ,m] = ∅.

The first two terms appearing in the upper risk bound illustrate the structural similarity
between this grouped data setting and a classical density deconvolution framework. Here,
f plays the role of the density of interest and f∗(K−1) resembles the density of the error
term. The third summand corresponds to the usual variance term for density estimation from
grouped data when the density is symmetric (see Meister (2007)). It directly follows from
the proof of Theorem 1, that in the symmetric case the second summand does not intervene.
Finally, the fourth summand depends on the quantity uε,γ , that appears naturally. Indeed,
in the definition of ϕ̂X , the quantity ϕ̂−1 intervene, which may get close to 0. We prove that
on the interval [−uε,γ , uε,γ ], the estimator ϕ̂ can be controlled uniformly.
Balancing the four terms, there will occur a logarithmic loss, in the non symmetric case, in
comparison to a standard deconvolution problem. This phenomenon is a consequence of the
fact that the estimation problem in the non symmetric case involves distinguished logarithm,
which requires uniform rather than point wise control of the empirical characteristic function.
Controlling suprema will typically lead to the loss of a logarithmic factor.

2.3 Rates of convergence

Let us investigate the rates of convergence over two classical nonparametric classes of densities.
In the sequel, for β > 1

2 , we denote by F(β,C,C ′, CX , Cf ) the class of densities for which the
following holds.

∀u ∈ R : (1 + C|u|)−β ≤ |ϕX(u)| ≤ (1 + C ′|u|)−β

and, in addition
E[X2] ≤ CX and ‖f‖ ≤ Cf . (2.4)

For ρ > 0, denote by F(β, ρ, c, C,C ′, CX , Cf ) the class of densities for which (2.3) holds and,
in addition,

∀u ∈ R : (1 + C|u|)β exp(−c|u|ρ) ≤ |ϕX(u)| ≤ (1 + C ′|u|)β exp(−c|u|ρ).

The following result is an immediate consequence of Theorem 1.

Proposition 1. For a > 0, set

ua := min{u ≥ 0 : |ϕ(u)| = an−
1
2 }.

Fix a > 0 and γ as in Theorem 1. For every n ∈ N, let m∗ ∈ [uε,γ , ua]. Then, we have
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(i) sup
f∈F(β,C,C′,CX ,Cf )

E[‖f − f̂m∗‖2] = O
(

(n/ log n)
− (2β−1)

2Kβ

)
.

(ii) sup
f∈F(β,ρ,c,C,C′,CX ,Cf )

Ef [‖f − f̂m∗‖2] = O
(
n−

1
K (log n)

1
ρ

)
.

It is straightforward to see that uε,γ < ua so that [uε,γ , ua] is non empty. The rates of
convergence derived for our constructive estimator coincide with the rates found in Meister
(2007), where there are proven to be minimax optimal. The rate results easily generalize to
different decay scenarios of the characteristic function. More specifically it is possible to apply
Theorem 1 to a class of densities F(h1, h2) such that, for some positive functions h1 and h2,
we have

∀u ∈ R : 0 < h1(u) ≤ |ϕX(u)| ≤ h2(u),

where h2(u)
h1(u) → ` ∈ (0,∞] as |u| → ∞. The resulting rate will depend on how h1 and h2

converge to 0 at infinity.

3 Adaptive estimation

It is interesting to notice that the theoretical cut-off parameter m∗, which may vary in a
certain interval and guarantees rate optimality of the estimator, has an empirically accessible
counterpart. The cut-off m∗ is defined in terms of the characteristic function: the estimator
of ϕ̂X is set to zero as soon as ϕ(u) is below some critical threshold which is essentially of
the order n−1/2. This is intuitive, since a reasonable estimate of the characteristic function in
the denominator is no longer possible when this object is of smaller order than the standard
deviation.
This inspires to define the empirical cut-off in terms of the empirical characteristic function.
Once ϕ̂ is (up to an additional logarithmic term) below some critical threshold, ϕ̂X is set to
0. Fix a constant η > 1, to be chosen, let us introduce the data driven version of m∗

m̂η := min
{

min{u : |ϕ̂(u)| ≤ (Kn)−
1
2 +

√
η/K(n/ log n)−

1
2 }, n

1
K

}
.

The corresponding estimator f̂m̂η adapts automatically to the unknown smoothness classes,
so the convergence rate is simultaneously minimax over a collection of nonparametric classes.

Theorem 2. (i) Let constants B,C,C
′
, CX and Cf be given. Define I := (1/2, B]×(0, C]×

(0, C
′
]× (0, CX ]× (0, Cf ] Then there exists some positive real C such that

sup
(β,C,C′,CX ,Cf )∈I

(supf∈F(β,C,C′,CX ,Cf ) Ef [‖f − f̂m̂η‖2]

(n/ log n)
− (2β−1)

2Kβ

)
≤ C.

(ii) Let constants B,R, c, C,C
′
, CX and Cf be given. Define I := (0, B] × (0, R] × (0, c] ×

(0, C]× (0, C
′
]× (0, CX ]× (0, Cf ] Then there exists some positive real C such that

sup
(β,ρ,c,C,C′,CX ,Cf )∈I

(supf∈F(β,ρ,c,C,C′,CX ,Cf ) Ef [‖f − f̂m̂η‖2]

n−
1
K (log n)

1
ρ

)
≤ C.
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In earlier research on the subject, the adaptive bandwidth selection has only been investi-
gated for the particular case of symmetric densities and for polynomially decaying character-
istic functions. Moreover, in comparison to the cross-validation strategy proposed in Meister
(2007), our adaptive estimator has the strong advantage of being computationally extremely
simple and fast, since it only requires the evaluation of the characteristic function.
Proof of Theorem 2 does not use the fact that we deal with grouped data. In fact, the
bandwidth selector can straightforwardly be used for standard density estimation.
The adaptive choice m̂η depends on the constant η that needs to be chosen. This is not
unusual when it comes to adaptation that an hyper parameter needs to be calibrated. It is
the case in the context of wavelet adaptive estimation or when the spectral cut-off is obtained
by minimization of a penalty.

4 Discussion

The grouped data model can also be compared to the estimation of the jump density of a
random sum, see e.g. Buchmann and Grübel (2003), van Es et al. (2007), Bøgsted and Pitts
(2010) or Duval (2013a,2013b). In these models, the jump density can, up to some additive
constant, be expressed in terms of the (distinguished) logarithm of the characteristic function
of the distributional density.

It is worth noticing that if K increases, the rates of convergence deteriorate. If we let K →∞
then, (see Meister (2007) for the lower bound results)

inf
f̂

sup
f∈F

E
(
‖f̂m − f‖2

∣∣) > 0,

where F is a class of densities, for instance one of those defined in Section 2.3. This result is
intuitive. Assume that the density f has expectation µ and finite variance σ2, we have

(Yj − µ)√
K

−→
K→∞

N (0, σ2).

It means that for large K, each observation Yj is close in law to a Gaussian random variable
depending on two parameters only. The whole density f is then lost, only its expectation
and variance may be recovered from the observations. This phenomenon is also observed in
Duval (2014) in the case of a compound Poisson process observed at a sampling rate tending
to infinity.

Finally, we want to emphasize that the adaptive estimator we define in this paper applies for
a wider range of problems than grouped data. In fact, it can be used each time the quantity
of interest can be recovered through a closed form inverse of the characteristic function of the
observations.
Suppose that a Lévy process Y is observed over [0, T ] at low frequency, denote by ∆ ≥ 1
the sampling rate. A vast literature is available on the estimation of the underlying parame-
ters, and in particular the estimation of the Lévy measure (see among others Neumann and
Reiß (2009), Comte and Genon-Catalot (2010) or Kappus (2014)). However, one may also

7



consider the case where the quantity of interest is the distributional density of Yt for some
t > 0 (without loss of generality set t = 1) rather than the jump density.
Suppose that Y1 has a square integrable Lebesgue density f . Let ϕ1 and ϕ∆ be the character-
istic functions of Y1 and Y∆, respectively. Then both characteristic functions are connected
as ϕ∆(u) = (ϕ1(u))∆ or equivalently as ϕ1 = exp((Logϕ∆)/∆). The estimation procedure
proposed in this paper carries over immediately, leading to the estimator

f̂m(x) =
1

2π

∫ m

−m
e−iuxϕ̂1(u) du, with ϕ̂1(u) = exp

( 1

∆

∫ u

0

ϕ̂′∆(v)

ϕ̂∆(v)
dv
)

and the upper bound

E[‖f − f̂m‖2] ≤ ‖f − fm‖2 +
C1

∆2n

∫ m

−m

|ϕ1(u)|2

|ϕ∆(u)|2
du+ C2

∫
[m,uε,γ ]

|ϕ1(u)|2 du+ C3n
− 1

∆ .

Balancing the terms when ϕ1 is polynomially decreasing leads to a rate in (T/ log T )
− 2β−1

2∆β for
exponentially decaying characteristic functions, the convergence rate is, up to a logarithmic
term, n−

1
∆ . In a sense, the context of infinitely divisible distributions can be interpreted as

a ”grouped data model” with a non-integer group size ∆. The choice of m̂η proposed in the
present publication will lead to a minimax adaptive estimator.

5 Numerical results

In this section we illustrate the behavior of our adaptive procedure on various examples. We
also compare its performances with the cross-validation estimator proposed in Meister (2007),
even though, no rigorous theoretical justification has been established that the cross-validation
strategy works outside the particular case where f is symmetric and the characteristic function
decays polynomially. Finally, we compare our procedure with an oracle estimator, more
precisely the estimator f̂m? that corresponds to the oracle bandwidth

m? = arg min
m>0
‖f − f̂m‖2.

The L2 risks are computed after 500 Monte-Carlo simulations of each estimator and averaging
the results. They are denoted r, rcv, and ror, respectively.
We consider the following group size K = 5, 10, 20 and 50 and the following distributions:

(i) Normal distribution with mean value 2 and variance 1.

(ii) Gumbel distribution with mean 3 and scaling parameter 1.

(iii) Gamma distribution with parameters 6 and 3.

(iv) Laplace function with mean 0.5 and scale parameter β = 3.

Moreover, we set η = 1.1 for the adaptive procedure. The results are summarized in the
tables below.
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N (2, 1) Gumbel(3,1)

n K ror r rcv ror r rcv

1000

5 0.033 0.088 0.095 0.017 0.037 0.045
10 0.045 0.124 0.144 0.031 0.066 0.082
20 0.057 0.156 0.185 0.043 0.092 0.111
50 0.069 0.185 0.236 0.053 0.117 0.154

5000

5 0.031 0.074 0.073 0.012 0.027 0.035
10 0.039 0.114 0.123 0.027 0.056 0.062
20 0.053 0.147 0.168 0.040 0.083 0.101
50 0.066 0.183 0.227 0.052 0.110 0.143

10000

5 0.007 0.018 0.021 0.011 0.025 0.038
10 0.017 0.045 0.055 0.025 0.053 0.059
20 0.028 0.077 0.099 0.039 0.081 0.094
50 0.039 0.105 0.221 0.051 0.114 0.140

Γ(6, 3) Laplace(0.5,3)

n K ror r rcv ror r rcv

1000

5 0.021 0.050 0.060 0.070 0.152 0.149
10 0.039 0.089 0.110 0.114 0.239 0.260
20 0.054 0.125 0.158 0.150 0.312 0.367
50 0.067 0.162 0.212 0.180 0.372 0.468

5000

5 0.016 0.037 0.050 0.055 0.118 0.121
10 0.033 0.076 0.090 0.100 0.214 0.231
20 0.049 0.116 0.134 0.140 0.294 0.324
50 0.065 0.159 0.202 0.173 0.374 0.438

10000

5 0.013 0.032 0.040 0.047 0.103 0.098
10 0.030 0.071 0.090 0.094 0.197 0.208
20 0.047 0.111 0.131 0.134 0.287 0.319
50 0.064 0.153 0.197 0.170 0.350 0.439

Our procedure performs well in all examples. The risks decrease as n increases. As expected,
increasing K deteriorates the risks. Moreover the adaptive strategy proposed in the present
article shows a slightly better outcome than the cross-validation techniques. It is also numer-
ically extremely efficient since it requires only one evaluation of the empirical characteristic
function.

6 Proofs

6.1 Preliminary results

Lemma 4. Let Z be an integrable random variable with characteristic function ϕ. Then, for
any h > 0,

∀u ∈ R : |ϕ(u)− ϕ(u+ h)| ≤ hE[|Z|].
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Proof. Using that for any x, y ∈ R, |eix − eiy| ≤ |x− y|, leads to the result

|ϕ(u)− ϕ(u+ h)| = |E[eiuZ − ei(u+h)Z ]| ≤ hE[|Z|].

For arbitrary c > 0, define the event

Ac :=
{∣∣∣ 1
n

n∑
j=1

(
|Yj | − E[|Y |]

)∣∣∣ ≤ c}.
By the Markov inequality, we derive that

P(Acc) ≤
1

c2n
E
[
Y 2
]
.

Lemma 5. Let h > 0, we have on the event Ac the following inequality

∀u ∈ R : |ϕ̂(u)− ϕ̂(u+ h)| ≤ h
(
E[|Y |] + c

)
.

Proof. The triangle inequality and using that x→ eiux is Lipschitz with constant 1, give

|ϕ̂(u)− ϕ̂(u+ h)
∣∣ ≤ h

n

n∑
j=1

|Yj |.

The definition of Ac leads to

h

n

n∑
j=1

|Yj | = h(E[|Y |] +

n∑
j=1

(|Yj | − E[|Y |])) ≤ h(E[|X|] + c).

Taking expectation completes the proof.

Lemma 6. Fix h > 0, for arbitrary u > 0, define the grid points tk := kh, k ∈ {1, . . . duhe}.
For arbitrary τ > 0, the following holds

P
(
∃k ∈ {1, . . . , duhe} : |ϕ̂(tk)− ϕ(tk)| > τ

( log n

n

) 1
2
)
≤ 2duhen

−τ2
.

Proof. Lemma 6 is a consequence of the Hoeffding inequality,

P
(
∃k ≤duhe : |ϕ̂(tk)− ϕ(tk)| ≥ τ

( log n

n

) 1
2
)

≤
du/he∑
k=1

P
(
|ϕ̂(tk)− ϕ(tk)| ≥ τ

( log n

n

) 1
2
)
≤
du/he∑
k=1

2 exp(−2τ2(log n)) = 2du/hen−τ2
.

Fix c, h and τ . For arbitrary u > 0, define the event

Bc,h,τ (u) := Ac ∩
{
∀k ≤ duhe : |ϕ̂(tk)− ϕ(tk)| ≤ τ

( log n

n

)1/2}
.
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Lemma 7. On the event Bc,h,τ (u), the following holds

sup
v∈[0,u]

|ϕ̂(v)− ϕ(v)| ≤ h(2E[|Y |] + c) + τ
( log n

n

)1/2
.

Proof. Consider the grid point tk defined in Lemma 6 and v ∈ [tk − h/2, tk + h/2] for some
k ≤ duhe. Then, applying Lemma 4 and Lemma 5, we have on the event Bc,h,τ (u)

|ϕ̂(v)− ϕ(v)| ≤|ϕ̂(v)− ϕ̂(tk)|+ |ϕ̂(tk)− ϕ(tk)|+ |ϕ(tk)− ϕ(v)|

≤h(2E[|Y |] + c) + τ
( log n

n

)1/2
.

This is the desired result.

The following Corollary 1 is a consequence of Lemma 7.

Corollary 1. Assume that h = o((log n/n)1/2). Then, for arbitrary τ < κ, there exists some
positive integer n0, that does not depend of u, such that for any n ≥ n0, on the event Bc,h,τ (u)
it holds that

∀v ∈ [0, u] : |ϕ̂n(v)− ϕ(v)| ≤ κ(log n/n)
1
2 .

Note that this integer n0 is monotonously increasing with respect to τ and E[|Y |] and
monotonously decreasing with respect to κ. Finally, for u > 0, define the event

Bκ(u)c :=
{
∃v ∈ [0, u] : |ϕ̂(v)− ϕ(v)| > κ(log n/n)1/2

}
.

Lemma 8. Let κ >
√

1
2 + 1

K . There exists some C > 0 which is monotonously increasing

with respect to E[Y 2] such that for any u > 0,

P(Bκ(u)c) ≤ Cun−
1
K .

Proof. Fix c and κ > τ , assume that h = o((n/ log n)−1/2) > n−1/2. By Corollary 1, there
exists, for any τ < κ, some positive integer n0, depending on E[|Y |] and τ such that for
arbitrary n ≥ n0 we have Bc,h,τ (u) ⊂ Bκ(u). It follows that P(Bκ(u)c) ≤ P(Bc,h,τ (u)c). The
definition of Bc,h,τ (u) and Lemma 6 give, ∀n ≥ n0,

P(Bc,h,τ (u)c) ≤ P(Acc) + 2du/hen−2τ2 ≤ 1

c2n
E[Y 2] + 2du/hen−τ2

.

With the choice τ =
√

1
2 + 1

K , the statement of the Lemma follows.
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6.2 Proof of Theorem 1

We have the decomposition

‖f̂m − f‖2 = ‖fm − f‖2 + ‖f̂m − fm‖2 = ‖fm − f‖2 +
1

2π

∫ m

−m
|ϕ̂X(u)− ϕX(u)|2 du.

The estimator ϕ̂X can be rewritten as follows

ϕ̂X(u) = e
1
K
ψ̂(u) = e

1
K

Re ψ̂(u)e
1
K
iIm ψ̂(u) = |ϕ̂(u)|

1
K e

1
K
iIm ψ̂(u),

where Re and Im denote the real and imaginary part of a complex number. For non negative
real numbers, the K-th root is unique so that |ϕ(u)|1/K = |ϕX(u)|. It follows that

|ϕ̂X(u)− ϕX(u)|2 =
∣∣|ϕ̂(u)|

1
K e

i
K

Im ψ̂(u) − |ϕ(u)|
1
K e

i
K

Imψ(u)
∣∣2

≤2
∣∣|ϕ̂(u)|

1
K − |ϕ(u)|

1
K

∣∣2 + 2|ϕ(u)|
2
K

∣∣e i
K

Im ψ̂(u) − e
i
K

Imψ(u)
∣∣2. (6.5)

First, we consider the case where m lies in [0, uε,κ], where uε,κ is defined in (2.2). Consider
the first term of (6.2). Using that x → x1/K is Hölder continuous for x > 0 and the triangle
inequality, we derive ∣∣|ϕ̂(u)|

1
K − |ϕ(u)|

1
K

∣∣2 ≤∣∣ϕ̂(u)− ϕ(u)
∣∣2/K .

Integrating the former inequality in u, taking expectation and applying the Jensen inequality
lead to

E
[ ∫ m

−m

∣∣|ϕ̂(u)|
1
K − |ϕ(u)|

1
K

∣∣2 du
]
≤
∫ m

−m

(
E[|ϕ̂(u)− ϕ(u)|2]

)1/K
du ≤ Cmn−

1
K

for some positive real valued C.
Next, consider the second term of (6.2). Using the fact that for arbitrary x, y ∈ R, |eix−eiy| ≤
|x− y| holds, we derive that

∣∣e iIm ψ̂(u)
K − e

iImψ(u)
K

∣∣2 ≤ 1

K2

∣∣Im ψ̂(u)− Imψ(u)
∣∣2 ≤ 1

K2

∣∣∣∣ ∫ u

0

ϕ̂′(v)

ϕ̂(v)
− ϕ′(v)

ϕ(v)
dv

∣∣∣∣2.
We observe that, for arbitrary v ∈ R,

ϕ̂′(v)

ϕ̂(v)
− ϕ′(v)

ϕ(v)
=
ϕ(v)ϕ̂′(v)− ϕ̂(v)ϕ′(v)

ϕ(v)ϕ̂(v)
=
ϕ(v)(ϕ̂′(v)− ϕ′(v))− ϕ′(v)(ϕ̂(v)− ϕ(v))

ϕ(v)ϕ̂(v)

=
(ϕ̂′(v)− ϕ′(v))/ϕ(v)− (ϕ′(v)/ϕ(v)2)(ϕ̂(v)− ϕ(v))

ϕ̂(v)/ϕ(v)

=

(
− (ϕ̂(v)−ϕ(v))

ϕ(v)

)′(
1− (ϕ̂(v)−ϕ(v))

ϕ(v)

) . (6.6)

12



By Corollary 1 and by the definition of the event Bκ(m) and of uε,κ, we find that on Bκ(m),

∀u ∈ [−m,m] : |ϕ̂(u)− ϕ(u)| ≤ κ
√

log nn−
1
2 ≤ 1/(1 + ε)|ϕ(u)|. (6.7)

Then, on the event Bκ(m), a Neumann series expansion, along with formula (6.2) and formula
(6.2) gives for v ∈ [−m,m],

ϕ̂′(v)

ϕ̂(v)
− ϕ′(v)

ϕ(v)
= −

∞∑
`=0

( ϕ̂(v)− ϕ(v)

ϕ(v)

)′( ϕ̂(v)− ϕ(v)

ϕ(v)

)`
.

The following representation holds( ϕ̂(v)− ϕ(v)

ϕ(v)

)′( ϕ̂(v)− ϕ(v)

ϕ(v)

)`
=

1

`+ 1

[( ϕ̂(v)− ϕ(v)

ϕ(v)

)`+1]′
.

Moreover, we have ϕ̂(0)− ϕ(0) = 0 and get

1Bκ(m)

∣∣∣ ∫ u

0

( ϕ̂′(v)

ϕ̂(v)
− ϕ′(v)

ϕ(v)

)
dv
∣∣∣ ≤ ∞∑

`=0

1

`+ 1

|ϕ̂(u)− ϕ(u)|`+1

|ϕ(u)|`+1

≤|ϕ̂(u)− ϕ(u)|
|ϕ(u)|

∞∑
`=0

(1 + ε)−`

`+ 1
= (1 + ε) ln(1 + 1/ε)

|ϕ̂(u)− ϕ(u)|
|ϕ(u)|

.

Gathering all the terms together, we have shown that for m ∈ [0, uε,κ],

E
[
1Bκ(m)

∫ m

−m
|ϕX(u)|2

∣∣e i
K

Im ψ̂(u) − e
i
K
ψ(u)

∣∣2 du
]

≤c(ε)
K2

∫ m

−m
|ϕX(u)|2

E
[
|ϕ̂(u)− ϕ(u)|2

]
|ϕ(u)|2

du ≤ c(ε)

K2

∫ m

−m

n−1

|ϕX(u)|2(K−1)
du,

where c(ε) := (1 + ε) ln(1 + 1/ε). On Bκ(m)c, we use the majorant |eiImψ/K − eiIm Ψ̂/K | ≤ 2
and Lemma 8

E
[
1Bκ(m)c

m∫
−m

|ϕX(u)|2
∣∣e i

K
Im ψ̂(u) − e

i
K
ψ(u)

∣∣2 du
]
≤4P(Bκ(m)c)

m∫
−m

|ϕX(u)|2 du

≤4‖ϕX‖2mn−
1
K .

Secondly, we consider the case m ≥ uε,κ. The series of inequalities

|ϕ̂X(u)− ϕX(u)| ≤2|ϕX(u)|+ ||ϕ̂X(u)| − |ϕX(u)||

=2|ϕX(u)|+ ||ϕ̂(u)|
1
K − |ϕ(u)|

1
K | ≤ 2|ϕX(u)|+ |ϕ̂(u)− ϕ(u)|

1
K ,

combined with the Jensen inequality, implies that∫
|u|∈[uε,κ,m]

E
[
|ϕ̂X(u)− ϕX(u)|2

]
du ≤4

∫
|u|∈[uε,κ,m]

|ϕX(u)|2 du+ 4

∫
|u|∈[uε,κ,m]

E
[
|ϕ̂(u)− ϕ(u)|2

] 1
K

du (6.8)

≤4

∫
|u|∈[uε,κ,m]

|ϕX(u)|2 du+ 8n−
1
Km.

This completes the proof of of Theorem 1. 2
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6.3 Proof of Proposition 1.

Proposition 1 is a direct consequence of Theorem 1. The control of the bias term ‖f − fm‖
relies on the following Lemma, that can be found for instance in Butucea and Tsybakov
(2008a,b).

Lemma 9. Consider c, ρ nonnegative real numbers, and β a real such that 2β > 1 if c = 0
or ρ = 0. Then, for all m > 0,∫ ∞

m
(x2 + 1)β exp(c|x|ρ)dx � m2β+1−ρe−cm

ρ

∫ ∞
m

(x2 + 1)−β exp(−c|x|ρ)dx � m−2β+1−ρe−cm
ρ
.

The control of m∗ uses the following bounds on uε,κ and ua.

(i) Fix constants β,C,C ′, CX and Cf , where β > 1
2 and such that (2.3) is satisfied, and a

density f ∈ F(β,C,C ′, CX , Cf ). Then, it immediately follows that

uε,κ ≥ C1

( n

log(n)

) 1
2βK

and ua ≤ C2n
1

2βK

for some positive constants C1 depending on ε, K and δ and C2 depending on a.

(ii) Fix constants β, ρ, c, C,C ′, CX and Cf , where ρ > 0 and such that (2.3) is satisfied, and
a density f ∈ F(β, ρ, c, C,C ′, CX , Cf ). Then, it immediately follows that

uε,κ ≥ C1

( 1

K
log
( n

log(n)

)) 1
ρ

and ua ≤ C2

( log(n)

K

) 1
ρ

for some positive constants C1 continuously depending on β, ε, K and δ and C2 de-
pending on a.

Injecting all these approximations in Theorem 1 leads to the desired rates. 2

6.4 Adaptive estimation: Proof of Theorem 2.

In the sequel, we write m̂ instead of m̂η. Recall that, for some η > 1,

m̂ = min
{

min{u > 0 : |ϕ̂(u)| = (nK)−
1
2 +

√
η

K
log nn−

1
2 }, n

1
K
}
.

Fix constants β, ρ, c, C,C ′, CX and Cf and a density f in either F(β,C,C ′, CX , Cf ) or in
F(β, ρ, c, C,C ′, CX , Cf ) such that (2.3) holds. Define

m0 := min{u > 0 : |ϕ(u)| = (2
√
η/K + κ)(log(n)/n)1/2}

and
m1 := min{u > 0 : |ϕ(u)| = (nK)−

1
2 }.
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Firstly, using the definition of m0, along with Lemma 8 and the triangle inequality, we find
that

P
(
m̂ < m0

)
≤ P

(
∃u ∈ [0,m0] : |ϕ̂(u)− ϕ(u)| ≥ κ

√
log nn−

1
2
)
≤ Cm0n

− 1
K , (6.9)

with some constant C depending on E[X2] < CX .
Secondly, by the Hoeffding inequality, the triangle inequality and by the continuity of the
empirical characteristic function,

P
(
m̂ > m1

)
≤P
(
|ϕ̂(m1)| > (nK)−

1
2 +

√
η log(n)/Kn−

1
2
)

≤P
(
|ϕ(m1)− ϕ̂(m1)| >

√
η log(n)/Kn−

1
2
)
≤ n−

η
K . (6.10)

Then, the proof of Theorem 1 implies that

E[‖f − f̂m̂‖21m∈[m0,m1]]

≤‖f − fm0‖2 +
C1

nK2

m1∫
−m1

1

|ϕX(u)|2(K−1)
du+ C2m1n

− 1
K +

2

π

∫
|u|∈[uε,κ,m1]

|ϕX(u)|2 du,

with a constant C1 depending on the definition of ε and with C2 depending on ‖f‖ < Cf and
on E[X2] < CX . Using the fact that f ∈ F(β,C,C ′, CX , Cf ) or in F(β, ρ, c, C,C ′, CX , Cf ) to
derive m0 and m1 and plugging in m0 and m1 gives, for some constant C1 depending on Cf
and CX , as well as the choice of ε and δ,

E[‖f−f̂m̂‖21m∈[m0,m1]] ≤ C1

( n

log n

)− 2β−1
2βK

or E[‖f − f̂m̂‖21m∈[m0,m1]] ≤ C1(log n)
1
ρn−

1
K (6.11)

respectively.
Consider now the exceptional set m /∈ [m0,m1]. Applying the triangle inequality and arguing
along the same lines as in the proof of Theorem 1, we derive that

E[‖f − f̂m̂‖21m̂<m0
] ≤ P(m̂ < m0)‖f‖2 +

∫ m0

−m0

E[|f̂X(u)− fX(u)|2] du (6.12)

≤P(m̂ < m0)‖f‖2 +
C1

nK2

∫ m0

−m0

1

|ϕX(u)|2
du+ C2n

− 1
Km0 +

2

π

∫
|u|∈[uε,κ,m0]

|ϕX(u)|2 du.

Formula (6.2) and the fact that m̂ ≤ n
1
K lead to

E[‖f − f̂m̂‖21m̂>m1
] ≤ ‖f − fm1‖2P(m̂ > m1) (6.13)

+ 4P(m̂ > m1)

∫ n1/K

−n1/K

|ϕX(u)|2 du+ 8P(m̂ > m1)
1
η

∫ n1/K

−n1/K

n−
1
K du.

Combining (6.4) and (6.4) together with (6.4) and (6.4) and plugging in m0 and m1, we have
shown that for a positive constant C2 depending on Cf , CX and the choice of ε and δ and η,

E[‖f−f̂m̂‖21m/∈[m0,m1]] ≤ C2

( n

log n

)− 2β−1
2βK

or E[‖f − f̂m̂‖21m/∈[m0,m1]] ≤ C2(log n)
1
ρn−

1
K (6.14)
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respectively. Putting (6.4) and (6.4) together, we have shown that for a constant C depending
on the choice of η and ε, on Cf and CX ,

E[‖f − f̂m̂‖2](n/ log n)
2β−1
2βK ≤ C or E[‖f − f̂m̂‖2](log n)

− 1
ρn

1
K ≤ C.

Taking the supremum in β, ρ, c, C,C ′, CX and Cf on Ī gives the statement of the theorem. 2
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