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Abstract: In this paper we present an alternative and classical force of gravitation without dark 

matter or dark energy hypotheses. This model has common points with MOND but may be 

considered as an alternative to this theory. Indeed the laws of classical physics are respected. This 

model is a consequence of a study of forces which lead to conic trajectories and we compare our 

results with the Bertrand’s theorem. At end an important part of this work is to purpose an 

experiment on the Earth, in order to valid or invalid our results. 
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1. Introduction 

 
It is well known that an important problem of the contemporary physics is to describe the celestial 

mechanics for large distances. For example, it appears that the classical laws of gravitation failed to 

describe the “flat” curves of rotation of the spirals galaxies without add, inside these galaxies, an 

important amount of a mysterious matter, called “dark matter” (1-3]. Another important problem of 

the celestial mechanics is to explain the expansion, at an increasing rate, of the universe [4]. Indeed, 

classical theories of gravitation are always attractive. To solve this contradiction, physicians have to 

suggest, that another mysterious energy, called this time “dark energy”, exists inside the Universe [5, 

6]. 

Problem is that there is no proof of the reality of the “dark matter” and the “dark energy” despite 

several important experiments on the Earth [7]. Moreover the most accurate study to try to detect them 

in the space seems also have failed [8].  

Consequently, an important contemporary way of research is to modify the classical laws of 

Gravitation. Several alternative theories are in competition as for example, the )(Rf  theories of 

gravity [9], the scalar-tensor gravity theories [10, 11] or the Modified Newtonian dynamics (MOND) 

theory [12]. But it appears today that no one of these theories does unanimity. In particular in the case 

of MOND the laws of classical physics are not respected. 

This point is the reason for what we are looking for such a law. In two previously papers, we presented 

a possible way to obtain an alternative and non relativistic force of gravitation [13, 14] with respect for 

classical physics. This work can be considered as an alternative to MOND and possesses common 

points with this theory. In particular we introduced an acceleration which is a constant of the Universe. 

Therefore as distinguished from MOND our original hypothesis is that trajectories of celestial bodies 

are always conics. This assumption led us to study with a mathematical point of view the family of 

forces which leads to conic trajectories and we present here a part of our results. 

Indeed it appears that at the 19
th

 century a theorem has been written about this problem, the Bertrand’s 

theorem [15]. This work proved that there are only two central forces for which all orbits radially 

bounded are closed, the force of Newton and the Hooke’s. These forces leads to conic trajectories with 

the difference that the Newton’s is directed towards one of the foci and the Hooke’s towards the 
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geometrical centre of the conic. The proof of this theorem has continued to draw attention and several 

different demonstrations has been recently published [16, 17]. 

Our own attempt to obtain a force of gravitation different from the Newton’s in the case of large 

distances led us to study this theorem and to compare our results with its predictions. It is the reason 

for what in this paper we will present in a first part our mathematical results about the conics by 

comparison with this theorem. In a second part we will present the force of gravitation we obtained. At 

end we will purpose an experiment in order to valid or invalid our model. 

 
2. Mathematical study of the forces which leads to conic trajectories 

 

2.1 Theory 

 

To obtain these forces we use the equation of the acceleration in polar coordinate. Therefore as 

distinguished from the Binet’s equation we consider not only the radial acceleration but also the 

tangential acceleration. This original method (at our knowledge) allows obtaining all the forces which 

lead to conic trajectories and not only the central forces. We present here this method which has been 

published elsewhere [13, 14]. 

 

As usual in celestial mechanics we will use the polar system of coordinate );;( eeF R


where F  (foci of 

the conic) is the origin of the repair, r  is the radial distance to the origin with the relation 
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We introduce a function )(uf definite by 

)(.)( ufAuY   

Where A is constant. To obtain )(r as a conic, we have to solve a differential equation as 
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Where e is the eccentricity and a the semi major axis. Thus we obtain 
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 Consequently our family of force (per unit mass) is with respect for the Newton’s law of dynamics 
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Where A  and C  are two constants. Their physical dimensions depend on the choice of )(rf . It is also 

interesting to determine the magnitude of the total speed 
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2.2 Nature of the force 

 

The force given by equation (2) can be decomposed in two forces: the first part given by 
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Is naturally always directed to F , foci of the conic. The second part of this force given by 
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Is tangent to the trajectory. Indeed, if we consider that the direction vector of tangent line to a curve is 

given, in polar coordinate, by 
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Thus we prove that BF
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and DV
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 are parallel. Consequently the force F


can be decomposed in two 

forces: a force AF


which is directed to the foci and a force BF


which is tangential to the trajectory. 

 

2.3. The force is directed to F  : the force of Newton 

 

If the force is directed to the foci F of the conic then the tangential part BF


of the force has to be a null 
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The solving of this differential equation is 
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In the case of a point particle which orbits around a center of mass the constant is simply given by 

GMA  

Where G is the universal constant of gravity and M the mass of the center of mass. 
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Consequently we prove here that it is only one possible force which is always directed to F . This point 

is in agreement with the Bertrand’s theorem but can be considered complementary. Note that our way 

to obtain this result seems original. 

 

2.4. The force is directed to O : the force of Hooke 

 

To determine the family of forces which are directed to O  we introduce a point, called I which is 

located between O and F . This distance FI is called . If the force is directed to I then the vector 

product 
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The equation becomes 
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By noticing that the distance OM , where M is the point-particle and O the center of the conic, is 

given by 
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We obtain 
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This force is consequently a force of Hooke and its constant factor is 

A
a

k
K   

We have proved here that it is only one central force which is located at O and which leads to a conic 

trajectory. As previously this mathematical demonstration is in agreement with the Bertrand’s theorem 

but the demonstration seems original. Moreover note that the force of Hooke can lead to parabolic or 

hyperbolic trajectories, and not only circular or elliptic trajectories. 

We present these results on the Figure 1. 1F


is the force of Newton, 2F


the Hooke’s. 
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Figure 1. Representation of the forces 
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And the force becomes (Figure 2). 
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We can distinguish two limiting cases: 

Firstly, if 02 C : In this case the force becomes Re
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the foci of the conic. By choosing 11 C we obtain the force of Newton. 
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This force is the Hooke’s. 

 

We can also determine a constant angular  momentum at I . In order to study it, we begin to determine 

the angular momentum at F , foci of the conic. We use the relation 
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Consequently, the angular momentum is constant for all the forces and the trajectory is plane. 

Moreover we verify that our force is well central. 

 

We can also giving the equation of time of the motion. As usual, we write this equation by using the 
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Thus the mean motion is given by 
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If the force is the Newton’s we obtain the equation of time of Kepler 
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And if the force is the Hooke’s we obtain simply 
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Consequently we see that the equation of time and the angular momentum can be described with 

simple expressions. Note that more generally these mathematical results seem original. Therefore it 

appears with respect for the Bertrand’s theorem that the trajectories can’t be closed. In this paper we 

won’t study this point which will be the subject of another paper. 

 

3. Alternative classical force of gravitation 

 

3.1. Our assumptions 

 

We will use now our mathematical results to try to build a possible force of gravitation. This one is 

building with respect for several assumptions. We list them here. 

 

 First of all we suppose that the classical physics can describe with a good approximation the 

motion of the stars and the actual dynamics of the universe. Indeed, if it is well known that the 

classical physics leads only to an approximation of the reality, it appears that this physics can in 

certain cases describe with a great precision the motion of celestial bodies, in particular when the 

speeds and the density of mass are low.  It appears that these conditions are met at the periphery of the 

galaxies, and inside the clusters of galaxies.  

 

 Secondly, as we wrote it previously our fundamental idea is that the first law of Kepler is 

respected whatever the gravitational system (solar systems, galaxies, clusters of galaxies,..): if a point-

particle interacts with a center of mass its trajectory is always a conic (circle, ellipse, parabola or 

hyperbola). 

 

 At end we suppose that the force of gravitation is central. Indeed, this kind of force, well 

known in classical physics is generally used to describe action-at-a-distance. This point makes 

different from our previously work. Indeed it appears that with this condition the choice of possible 

force is drastically reduced. In fact only one mathematical form is possible. 

 

By taking into consideration these three assumptions and our mathematical results we will explore the 

possibility that the force of Hooke is the force of gravitation in the case of large distances. Indeed it 

appears that the only force which is directed toward the foci of the conic is the Newton’s and we 

suppose that the force we are looking for is central. Moreover, our work has shown that we can link 

these two forces with a gradual evolution.  
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To explore this possibility we study two limiting cases of motion: firstly, the circular motion, in order 

to determine the curve of rotation of this force.  Secondly, the parabolic motion, in order to determine 

the dynamics of the universe we expect.  

 

3.2. Curve of rotation of the galaxies: determination of K  

 

If our idea is correct, we should obtain a flat curve of rotation by a correct choice of the constant factor

K . In order to determine it we study as usual the circular motion. Indeed, this motion describes with a 

good approximation the motion of the stars around the center of galaxies. In this particular motion, the 

eccentricity of the conic is given by 0e and ra  . Consequently, the force given by relation (2) 

becomes simply 

RekAF
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The curve of rotation is obtained by written the equality of the acceleration and the force 
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Where V is the speed of the point-particle. We obtain 
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And consequently 
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In order to obtain a flat curve of rotation, and with respect for the physical dimension of k (
2m ) we 

see that this factor has to be dependant of the semi-major axis, as 

ar
k
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1
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Where 0r is constant ( m ). Moreover, we can determine this constant, because we have to respect the 

Tully Fisher law [18].  Indeed, this empirical relation suggests a correspondence between the visible 

mass of galaxies and the velocity as 
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Where M is the total mass of the galaxy and V the constant speed of the stars. We saw that Ahas to 

be proportional to the mass thus 
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This condition, with respect for physical dimensions, leads to write the relation 

Aar 00   

Where 0a is an acceleration. This acceleration has to be constant in the entire universe, and can be 

linked with the Milgrom’s acceleration used in MOND [12]. With this relation V is constant for all the 

stars at the periphery of one galaxy and is in agreement with the Tully-Fisher law. We see that by 

using a constant acceleration, which has been introduced in another theory, we can describe the curve 

of rotation of galaxies without dark matter hypothesis. Note that unlike several other alternative 

theories our model is in agreement with classical physics. 

By using relation (5) the force can be written 
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 eeSin
ar

A
e

a

r
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a
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A
F R


.1)1(

0

2

0









  

We can now use this expression to study the parabolic motion. 

 

3.3. Consequence on the parabolic motion: dynamics of the Universe 

 

We see here the predictions of our model about the dynamics of the universe. To do it we study the 

limiting case of parabolic motion.  The eccentricity is given by 

1e  

And, in the simplest case, the angular  is determined by 

0  

Consequently our force becomes simply 

Re
a

r

ar

A
F










 1

0

 

We can see that the sign of this force can be positive or negative, and is depending on the ratio
a

r
. 

Indeed, if ar  the force is repulsive. However, it also appears that this force can be attractive if ar  . 

With this result we try to build a simple model about the dynamics of the Universe. We consider, for 

example, the interaction of two clusters of galaxies between themselves. We approximate their motion 

with a parabolic motion, and the force of gravitation is the force we present here.  

If the clusters move away from one another it is possible that this force is repulsive. Consequently, 

their relative speed will increase, at least for a time. It appears that if our idea is correct this kind of 

interactions is actually majority inside the Universe. However when the distance between the clusters 

progresses this force becomes a day attractive. Consequently, we can easily describe the actual 

expansion of the Universe at an increasing rate, and simultaneously build a model of the expansion of 

the Universe compatible with the classical idea of “Big Bang / Big Crunch”. This simple model 

doesn’t need naturally a “dark energy” hypothesis, because the Universe is considerate as a kind of 

harmonic oscillator.  

 

3.4. A general force of gravitation? 

 

We saw that our model allows explaining the “flat” curve of rotation of the galaxies without dark 

matter. Moreover, it allows explaining the expansion of the Universe without dark energy. 

Consequently it seems that our hypothesis could describe these two different problems unlike majority 

of other alternative theories. However, it is certain that the force of Hooke can’t be the dominant force 

in the case of small distance, as solar systems for example. Consequently, the nature of force has to 

change gradually when the acceleration decreases. 

 

To describe this evolution, we use our previously work about the central forces. We saw that the 

forces given by the relation 

 eSin
CrC

eC
Ae

CrCar

reaCrCCar
AF R


.

)()(

))1(()(
3

21

2

3
21

222
212







  

Are central and directed toward a point I definite by  

12

2

aCC

eaC
FI


  
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We can determine the constants for our limiting cases: if 0rr  the force is the Newton’s and 

consequently 02 C . If 0rr  the force is the Hooke’s consequently  arC 02  and 01 C . We can 

list our results in the table 1. 

 

  
1C  2C  

Small distances 
0ra   1 0  

Large distances 
0ra   0  ar0  

General case  
)(

0r

a
g  








 )(1

0

0
r

a
gar  

 

Tab 1. Coefficients of the central force 

 

In this table the function )(
0r

a
g is defined by the following relation 

1)(0
0


r

a
g  

Indeed, by using this relation we obtain a graduation between our two limiting cases. Moreover the 

distance FI becomes 

aggar

garae
FI






)1(

)1(

0

0
 

We see that 

01 gLimitFI  

And 

aeLimitFI g 0  

Consequently the center of force I is well located between O and F (Figure 2.).  

 

4. A possible experiment inside the solar system: a test on the free fall motion 

 

Our model indicates that in our solar system, a part of the force of gravitation should be due to the 

force of Hooke. Naturally, this part should be a tiny amount of the force of gravitation, because the 

Newton’s law is well verified. Moreover, this part should increases with the distance to the sun, and be 

more important at the periphery of the system than at its center. At end, this part won’t modify the 

trajectories of celestial bodies, because these trajectories are always conic. 

 

We can use this reasoning to purpose an experiment inside our solar system or perhaps at the surface 

of the Earth. Indeed if trajectories are not modified, it isn’t the case of the equation of time. 

Consequently it appears that a classical experiment, the study of the free fall motion, could help to 

valid or invalid our model. We will now try to prove it by using our equations about the conics.  

 

 

4.1. Equation of the free fall motion 

 

We saw in part 2. that the radial acceleration is given by 
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






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rAfaR

1'

2

12  

And, by using the relations specifics to the conics 

eCos

ea
r






1

)1( 2

 and 







d

dr

d

dr

dt

d

dt

dr
r    

We obtain, after simplification  

))2)1()(('))1()((2(
2

1 2322222 arrerarfarrearf
ar

A
aR   

And, in the case of free fall motion ( 1e ) the radial acceleration becomes 

))2)(('))((2(
2

1 2 rarrfarrf
a

A
r   (5) 

If we consider that the Newton’s force is the correct force of gravitation, valid in all the cases, then the 

radial acceleration has to be given by 

2r

A
r   

Consequently we can write a differential equation 

))2)(('))((2(
2

1 2

2
rarrfarrf

a

A

r

A
  

And after simplification 

))2)(('))((2(
2
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2
rarrfarrf

ar
  

The solving of this equation is 















ra

rCa

r
rf

2

21
)( 1
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Where 1C is constant. With this relation and by using (3) the total speed becomes 

ar

rCaA
V

)2( 1
  

However this speed has to be equal to zero if 

ar 2  

(Case of the free fall motion without initial speed). Thus we have to write that 11 C and 

2

1
)(

r
rf   

With this expression of )(rf the force is the Newton’s. Consequently, we can’t obtain a force different 

from this force which leads to the same acceleration, in the case of the free fall motion. This point 

indicates that if a force of gravitation different from the Newton’s is valuable for large distances we 

should detect an anomaly around this law. As we wrote it previously, this anomaly should be a tiny 

proportion of it but it is possible to think that with a contemporary precision, we could detect it.  

Note that this test is only a modern version of the experiments of Galilee. Moreover note that it should 

detect all variations around the Newton’s law and not only our model. At end it appears that this kind 

of anomaly has been suspected in the past [19]. 

 

4.2. Our prediction 

 

If our model is correct we should obtain in the case of free fall motion a radial acceleration given by 
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In the solar system 02 C  by using the relation 

gC 1 and )1(02 garC   

We do a series for 1g and we obtain 








 


3

0

2

2
)1(

r

ra

a

r
Ag

r

A
r  

The first term is naturally the Newton’s. The additive term we should obtain is 








 


3

0 2
)1(

r

ra

a

r
AgaD  

Note that this term is equal to zero at the beginning of the free fall motion. Indeed at this point we 

have the relation ar 2 . Note also that if ar 2 this term becomes negative. At end if our model is 

correct we should detect a small modification around the Newton’s law given by the previously 

relation.  

 

5. Discussion 

 

5.1. Physical interpretation 

 

In this paper, we tried to show that the force of Hooke can describe several astronomical observations. 

However we can try to discuss this assumption with a physical point of view.  

 

Firstly, we can say that the force of Hooke exist already in the gravitation. It is the force which 

interacts with a point-particle inside a sphere where the density of mass is uniform. This is the 

consequence of the theorem of Gauss and this result is well known since centuries. For example, in a 

sphere the acceleration is given by 

Re
r

GM
r


 .

2

int  

Where intM is the total mass contained inside the sphere of radius r . If the point particle is dropped 

out from a distance a of the center and if the mass density is uniform we obtain 

Rer
a

C
r


 .

3
  

Where C is constant. We can compare this expression with the acceleration we obtained in a 

comparable motion with our force 

Rer
ar

A
r


 .

2
0

  

We see that the expressions are proximate. With this analogy we can suggest a physical interpretation 

of our force:  progressively, when the distance to the center of force increases, the point particle which 

orbits around the center of mass “considers” that this mass is progressively «diluted” inside a closed 

volume. This volume is depending on the semi major axis of its trajectory and on the constant 0r . At 

the end of this evolution the density of mass inside this closed volume is uniform and the force 

becomes entirely the Hooke’s. 
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Note that this kind of interpretation was already used in another action-at-a-distance, for example to 

build the model of the atom of Thomson at the 19
th
 century.  

 

5.2. A way to build a relativistic theory? 

 

The theory we are trying to build is classical, and consequently can’t describe exactly the gravitation. 

But if this theory is correct it has to be a limiting case of a relativistic theory. This point is a theorist 

test for this model. Indeed without experiment we can’t prove that this model is correct. But we can 

notice that the solution is simple and seems in agreement with the astronomical observations. The test 

we suggested in this paper is naturally difficult to implement but it is perhaps possible, with 

contemporary precision, to do it. At end, building a relativistic theory should be naturally very difficult 

but, if the force is always central, as we suggested it in this paper, perhaps a simple solution exists. 

 

5.3. Is this idea so surprising? 

 

We want discuss this last point. Effectively it can be surprising that a so simple force could be the 

force of gravitation in the case of large distances. Naturally the last word will be for the experiments, 

for example if dark matter is discovered or perhaps if our own experiment is done a day. But if we 

compare this idea with other perhaps it isn’t worth. I think especially to the idea of “dark energy” 

which seems really problematic. All things considered this idea of “the force of Hooke” has perhaps 

the virtue of simplicity.  

 

6. Conclusion 

 

In this paper we present our results about an alternative and classical force of gravitation. This force 

allows describing the “flat” curve of rotation of the spiral galaxies and the expansion at an increasing 

rate of the Universe. This model is building by using an acceleration which is constant inside the 

Universe, and which is comparable to the acceleration used in MOND. Moreover we present an 

experiment on the Earth to valid or invalid our model. At end we present a mathematical study of the 

forces which leads to conic trajectories. 
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