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a CMM-Centre de Morphologie Mathématique, MINES ParisTech; France
b Tshwane University of Technology; South Africa

emmanuel.chevallier@mines-paristech.fr

June 2014

Abstract

This paper analyses the kernel density estimation on spaces of

Gaussian distributions endowed with different metrics. Explicit ex-

pressions of kernels are provided for the case of the 2-Wasserstein met-

ric on multivariate Gaussian distributions and for the Fisher metric on

multivariate centred distributions. Under the Fisher metric, the space

of multivariate centred Gaussian distributions is isometric to the space

of symmetric positive definite matrices under the affine-invariant met-

ric and the space of univariate Gaussian distributions is isometric to

the hyperbolic space. Thus kernel are also valid on these spaces. The

density estimation is successfully applied to a classification problem of

electro-encephalographic signals.

1 Introduction

Signal and image processing are dealing nowadays with data laying in more

and more various spaces. Each type of data posses its own geometric and

algebraic structures. Data laying in spaces of Gaussian laws or symmetric

positive definite matrices SPD(n) are particularly present in signal and im-

age processing, hence the importance of the study of the geometry of these

spaces.

The most common geometries of Gaussian laws are the Fisher informa-

tion metric and the Wasserstein metric. The Fisher metric on multivariate

centered Gaussians happens to be similar to the affine invariant metric on
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SPD(n), that is to say the metric invariant under the action of invertible

matrices Gl(n), i.e.,

G · Σ 7→ GΣGt.

Furthermore the Fisher metric on univariate Gaussians is a hyperbolic metric

of dimension two. Thus understanding the Fisher metric has consequences

beyond Gaussian laws. The Wasserstein metric is another name for the

earth mover’s distance. Let S be a set of probability distributions on E.

A fundamental difference between the Fisher metric and the Wasserstein

metric on S, is that the Fisher metric do not relay on a geometry of E while

the Wasserstein metric does. Indeed, the Wasserstein metric depends on

the geometry of E through a transportation cost. The dependence on the

geometry of E constitutes one of the main specificities and interests of the

Wasserstein metric.

Median and means are fundamental quantities in signal and image pro-

cessing. Several studies already addressed their definition and computation

for the Fisher and the Wasserstein metrics, see for instance [20, 32, 1, 3, 5].

Although being a secondary problem, density estimation is an important

tool of signal and image processing which is still little studied on spaces

of Gaussian laws. It is in particular useful, for instance, for segmenting

point clouds or for Bayesian classification. The study of distributions on

SPD(n) is subject to recent studies. In [23], it is proposed for instance a

generalization of the Gaussian distribution on SPD(n). To our knowledge,

the existing literature dedicated to density estimation is mainly restricted to

[13], [22] and [4]. These previous works have focused on techniques derived

from the orthogonal series density estimation for the Fisher metric in the

case of centered multivariate and univariate Gaussian laws. This paper con-

siders several non parametric density estimators. Due to their drawbacks in

the studied spaces, histograms and orthogonal series density estimators are

not deeply analyzed. The paper is focused on the kernel density estimator,

which often appears to be the easiest to use on Riemannian manifolds.

The paper is organized as follow. Section 2 introduces basics and no-

tations on measure theory and Riemannian geometry. Main techniques of

density estimation on Riemannian manifolds are reviewed in section 3. The

quantities necessary to the density estimation are computed for different

spaces of Gaussian distributions in sections 5-7.3. The computation of ker-

nels for the Fisher and Wasserstein metric are provided. The expression

of the different factors constituting the kernels in the case of the Fisher

metric are already known in the literature, see [29, 31]. To our knowledge,

the expression of kernels for the Wasserstein metric is new. Being an im-
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portant problem for practical applications, the density estimation of partial

quantities such as mean eigenvalues and rotation is discussed in section 9.

Section 10 provides some experimental results.

2 Basics and notations on measure theory and Rie-

mannian geometry

2.1 Measure theory and probability

Let Ω = ∪{ω} be a set of outcome with a σ-algebra AΩ and a measure

µΩ. The σ-algebra is the subset of P(Ω) where it is possible to evaluate µΩ.

Let V be a space with its own σ-algebra AV . A random variable X is a

measurable function from Ω to V . A measurable function is a function such

that:

A ∈ AV ⇒ X−1(A) ∈ AΩ.

The measurable hypothesis implies that the variable X can be seen as a

transport of the measure of probability µ from the space Ω to the space V .

Indeed, the function µX on AV defined by:

µX(A) = µΩ(X−1(A)),

is a probability measure on V .

Let E be a set and AE a σ-algebra of E. Let µ1 and µ2 be two measures

on E. If the following holds,

∀A ∈ AE , µ1(A) =

∫
A
fdµ2,

f = dµ1

dµ2
is called the density of µ1 with respect to µ2. Let µV be a reference

measure on V . If for some specific random variable X, the measure µX has a

density f with respect to the reference measure of V , f is called the density

of the random variable X. In a finite dimensional vector space there is a

unique measure, up to a scaling factor, invariant under translations. The

translation invariant measure that normalizes the unit hyper-cube is called

the Lebesgue measure. In the case where V is a vector space the reference

measure µV is often the Lebesgue measure. Fig. 1 illustrates a change of

reference measure.

Let E and F be sets equipped with σ-algebras, and f : E → F an

application . Any measure µ defined on E can be transformed into a measure

f∗(µ) on F by:

f∗(µ)(A) = µ(f−1(A)). (1)
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Figure 1: Let X be a random variable valued in [1, 2]. The blue curve

is the density of µX with respect to the Lebesgue measure of R restricted

to [1, 2]. The red curve is the density of µX with respect to the measure

µ([a, b]) = log(b)− log(a).

The smallest σ-algebra of E × F that contains all the products

U×V, (U, V ) ∈ AE×AF is called the product σ-algebra of E×F . A product

measure µ on E × F is a measure such that there exist two measures µE
and µF respectively on E and F with:

∀(A,B) ∈ AE ×AF , µ(A×B) = µE(A)µF (B).

2.2 Riemaniann geometry

Let M be a topological space, homeomorphic to an open subset of Rn. An

homeomorphism is a continuous map whose converse is also continuous. Let

φ be an homeomorphism from an open subset Uφ ⊂ Rn to M. φ is referred

to as a parametrization of M. A Riemannian metric is a smooth field of

scalar product on Uφ. In other words, a Riemannian metric associates a

positive definite matrix G(x) to each point x ∈ Uφ depending smoothly on

the point, see Fig. 2.

A smooth path is a map γ : [a, b]→M such that φ−1 ◦γ is continuously

smooth. Let γ be such a path. The Riemannian metric induces a notion of

length on smooth paths as follows:

L(γ) =

∫ b

a

√
〈(φ−1 ◦ γ)′(t), (φ−1 ◦ γ)′(t)〉(φ−1◦γ)(t)dt, (2)

where 〈·, ·〉(φ−1◦γ)(t) is the scalar product attached to the point (φ−1 ◦ γ)(t).

The notion of shortest path between two points induces a distance on M.
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Figure 2: Riemannian space.

The distance d(p, q) associated with the Riemannian metric is given by

d(p, q) = infγ{L(γ)}, (3)

where the infimum is taken over all the smooth paths from p to q. A path

realizing this minimum is called a geodesic path. Geodesic paths can be seen

as straight segments on M. Geodesics are paths which are locally shortest

paths.

Given p ∈ M with φ(x) = p, the set of vectors u ∈ Rn attached to x is

noted TpM and is called the tangent space at p. Unlike the case of manifolds

where the tangent space is defined as an equivalence class isomorphic to Rn,

we simply have here TpM = Rn.

It can be shown that given a < 0, 0 < b, vector u ∈ Rn, there is

only one geodesic γ, [a, b] → M such that γ(0) = p with tangent vector

(φ−1 ◦ γ)′(γ−1(p)) = u such that ||(φ−1 ◦ γ)′(t)||(φ−1◦γ)(t) = ||u||x for all

t ∈]a, b[. It can be then shown that there exists a unique geodesic such that

γ(0) = p, (φ−1 ◦ γ)′(γ−1(p)) = u and that its domain can not be extended.

This geodesic is noted geodp(u). The exponential map, see Fig. 3, is then

defined by

expp :

{
TpM → M
u 7→ geodp

(
1
||u||xu

)
(||u||x)

Note that this exponential has generally no link with the classical expo-

nential application. However, they happen to coincide in specific cases.

The radius of injectivity rinjp of expp is the largest r such that expp
restricted to the centered ball of radius r is injective. Inside this ball, logp(.)

denotes the inverse of expp(.).

Let S be a subset of M homeomorphic to an open subset of Rm with

m ≤ n. The Riemannian metric on M naturally induces a Riemannian
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Figure 3: Exponential map.

metric on S. The metric on S is called the induced metric. In the expression

of the geodesic distance dS(p, q) = infγ{L(γ)}, the infimum is then taken

over all the paths γ that stay in S.

A Riemannian metric also induces a measure. The matrix of the metric

G(x) is symmetric and can be written G(x) = AAt where A is a n × n

inversible matrix and represents a local linear change of coordinates that

induces the new scalar product G(x). The modification of a unitary volume

associated with the linear change of coordinates is given by

det(A) =
√
det(G(x)). (4)

The density of the Riemannian measure with respect to the Lebesgue mea-

sure of Uφ is given by x ∈ Uφ 7→
√
det(G(x)).

3 Non-parametric density estimation on Rieman-

nian spaces

Let Ω be a space, endowed with a σ-algebra and a probability measure

p. Let X be a random variable Ω → M with M homeomorphic to U an

open subset of Rn. The homeomorphism is noted φ. M is equipped with

a Riemannian metric G. The Riemannian measure is called vol and the

measure onM induced by X is noted µX . We assume that µ has a density,

noted f , with respect to vol, and that the support of X is a compact set

noted Supp. Let (x1, .., xk) ∈Mk be a set of draws of X.

The Dirac measure in point a is defined as:

δa(U) :

{
1 if a ∈ U
0 if a ∈ {U
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Let µk = 1
k

∑
i δxi denotes the empirical measure of the set of draws.

This section presents three non-parametric techniques of estimation of f

from the set of draws (x1, .., xk). The estimated density in x in M is noted

f̂k(x) = f̂(x, x1, ..., xk). Observe that f̂k(x) can be seen as a random vari-

able. The relevance of density estimation technique depends on several

aspects. When the space allows it, the estimation technique should not

privilege specific directions or locations. This results in an isotropy and a

homogeneity condition. In the kernel method for instance, a kernel function

Kxi is placed at each observation xi. Firstly, in order to treat directions

equally, the function Kxi should be invariant by the isotropy group of xi.

Secondly, for an other observation xj , functions Kxi and Kxj should be sim-

ilar up to the isometries that send xi on xj . These considerations strongly

depend on the geometry of the space: if the space is not homogeneous and

the isotropy group is empty, these indifference principles have no meaning.

The convergence of the different estimation techniques is widely studied.

Results were first obtained in the Euclidean case, and are gradually ex-

tended to the probability densities on manifold, see [11, 19, 13, 4]. The last

relevant aspect, is computational. Each estimation technique has its own

computational framework, which presents pro and cons given the different

applications. For instance, the estimation by orthogonal series presents an

initial pre-processing, but provides a fast evaluation of the estimated density

in compact manifolds.

3.1 Estimation from the Euclidean structure of the parametriza-

tion

Assume that the term
√
det(G(x)) known for all x ∈ U . According to

section 2.2,
dvol

dLeb
(x) =

√
det(G(x)).

If we dispose of an estimator f̂Eucl of the density with respect to the

Lebesgue measure of U , noted LebU , it is possible to obtain an estimator of

the density with respect to the Riemannian measure vol:

f̂ = f̂Eucl
dLebU
dvol

=
1√

det(G(x))
f̂Eucl. (5)

The estimation f̂ is a probability density with respect to the Riemannian

measure vol. However the estimation does not respect homogeneity and

isotropy considerations. If f̂Eucl is constructed from an Euclidean kernel K,

the “Riemannian shape” of K will differ from xi to xj in an uncontrolled

way.
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3.2 Histograms

Let (Akj )0≤j≤Jk be a partition of U . Let αj be the number of draws that

lays in Akj , i.e., αj = Card{xi ∈ Akj }. The histogram of the draws (xi) is

the function

f̂k =
1

k

∑
j

1

vol(Akj )
αj1Akj

, (6)

where 1E is the indicator function of E. f̂k is an estimator of the density f .

Compared with other methods, the main advantage of histograms is

often the low algorithmic complexity and the simplicity of use. In absence

of prior information on the density, a good tiling for density estimation is a

tiling which makes the estimation as invariant as possible under isometric

transformations. Thus bins should have similar shapes, and should be as

spherical as possible. Furthermore, it has to be possible to rescale the tiling

in order to adapt the size of the bins to the number of data available for

the estimation. In R2, tiling the space with squares is reasonable solution,

often used in practice. In Riemannian spaces, it is often difficult to find

appropriate tilings of the space. Furthermore, when such tiling exists, they

are not always rescalable. The hyperbolic space has many possible regular

tilings, see Fig. 3.2. However there are no homothetic transforms of the

hyperbolic space for every scaling factor λ ∈ R. This means that changing

the size of the bins often implies changing the tiling itself.

Except Euclidean spaces, none of the studied spaces in this paper have

regular and scalable tilings. Thus histograms have not been investigated.

Figure 4: Hyperbolic tilings

3.3 Orthogonal series density estimator

Instead of directly studying the density f , the estimation is made from

the estimation of the scalar product between f and a set of orthonormal
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functions {ej}. Recall that for g and h in L2(M):

〈g, h〉 =

∫
M
ghdvol,

where x denotes the complex conjugate of x. We have that:

〈f, ei〉 =

∫
fejdvol = E (ej(X)) .

Thus 〈f,ej〉 can be approximated by an estimation of the expectation,

i.e.,

E (ej(X)) ≈ 1

k

k∑
j=1

ej (xi)

Or in other words: ∫
ejfdvol ≈

∫
Supp

ejdµk.

Now, given an integer N , the orthogonal series estimator is defined as:

f̂ =
1

k

N∑
j=−N

[
k∑
i=1

ej (xi)

]
ej . (7)

The formula becomes an integral when the number of functions ej is un-

countable. First the base has to be ordered such that the norm of the rest

of the decomposition, i.e.,
∑
|j|>N 〈f, ej〉 ej , decreases as fast as possible for

regular functions. Second, in order to process locations and directions in-

differently, the basis functions must present regularity properties regarding

the metric. Eigenfunctions of the Laplacian operator fill all the criteria.

Indeed the Fourier transform on Rn, or the Fourier–Helgason transform on

symmetric spaces, are highly related to the convolution by isotropic kernel.

The orthogonal series density estimator is then equivalent to the kernel den-

sity estimator. When the ej functions are Fourier functions, the estimation

technique is also called the characteristic function method. In R, the Fourier

basis is uncountable, which gives place to a Fourier transform. However on

[a, b] ∈ R, the Fourier basis is countable, and gives place to the Fourier

series. In the context of probability density estimation, it preferable for

computational reasons to work with series rather than with integrals. The

main issue is that in most Riemannian spaces, there are no explicit expres-

sions of the eigenfunctions of the Laplacian operator. In several spaces, the

eigenfunctions are known, but not on compact sub-domains. The space of

univariate Gaussian distributions under the Fisher metric is isometric to the
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2-dimensional hyperbolic space H. On the hyperbolic space, eigenfunction

of the Laplacian are known when they are defined on the entire space:

f : H → R,∆f = λf

but not for functions defined on compact domains f : D ∈ H → R. The

estimation of a density involves an integral, thus the kernel density estimator

is preferred.

In each Riemannian space studied in this paper, the eigenfunctions of the

Laplacian are either not known, or only known on non-compact domains.

3.4 Kernel density estimator

Let K : R+ → R+ be a map which verifies the following properties:

i)
∫
Rd K(||x||)dx = 1,

ii)
∫
Rd xK(||x||)dx = 0,

iii) K(x > 1) = 0, sup(K(x)) = K(0).

Let p ∈ M and x ∈ U with φ(x) = p. In the general case, given a

point p ∈ M, expp defines an injective application only on a neighborhood

of 0 ∈ TpM. However in every studied situations of the present work, the

parametrization induced by expp is injective on the whole space. Recall that

when TpM is endowed with the scalar product G(x), Euclidean distances to

0 corresponds to Riemannian distance to p. The Lebesgue measure of TpM
is noted Lebp. The function θp defined by:

θp : q 7→ θp(q) =
dvol

dexp∗(Lebp)
(q), (8)

is the density of the Riemannian measure ofM with respect to the Lebesgue

measure Lebp after the identification of M and TpM induced by expp, see

Fig.5.

Figure 5: Volume change θxi induced by the exponential map

10



Given K and a positive radius r, the estimator of f proposed by [19] is

defined by:

f̂k =
1

k

∑
i

1

rn
1

θxi(x)
K

(
d(x, xi)

r

)
. (9)

The corrective factor θxi(x)−1 is necessary since the kernel K originally

integrates to one with respect to the Lebesque measure, while we want it to

integrate to one with respect to the Riemannian measure. It can be noted

that this estimator is the usual kernel estimator is the case of Euclidean

space.

Let rinj = supp∈M(rinjp ). Let δ = supK the supremum of the sectional

curvature in M. For a definition of the sectional curvature, see. [7]. Then,

[19] provides the following result.

Theorem 3.1 ([19]) Let xi be an arbitrary point ofM. Let µ be a measure

on M whose density with respect to the measure vol is

1

rn
1

θxi(.)
K

(
d(., xi)

r

)
.

For r < min{ rinj2 , π
4
√
δ
} when δ > 0 or r < rinj

2 when δ ≤ 0, xi is an intrinsic

mean of µ.

Theorem. 3.1 ensures the kernel put on xi is “centered” on xi.

Despite convergence rates provided by [19] are obtained for compact

manifolds without boundaries, they remain valid for non-compact manifolds

when the support of X is compact. Indeed the double manifold, see [17],

enables to see a compact manifold with boundaries as a submanifold of a

compact manifold without boundaries. Assume f two-times differentiable

with bounded second covariant derivative. See [18] for a definition of covari-

ante derivative.

Theorem 3.2 ([19]) For r satisfying conditions of theorem. 3.1, there ex-

ists a constant Cf such that:∫
Supp

E[(f(x)− f̂k(x))2]dµ ≤ Cf (
1

krn
+ r4),

then for r equivalent to k−
1
d+4 :∫

Supp
E[(f(x)− f̂k(x))2]dµ = O(k−

4
n+4 ).
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For the expression of the constants see details in [19].

It can be easily verified that for an isometry α we have:

f̂k(x, x1, ..., xk) = f̂k(α(x), α(x1), ..., α(xk)).

Each location and direction are processed as similarly as possible. The

only computational aspect that has to be taken into account is the cost of

evaluation of the density at a point x in M. The computational cost of

f̂k(x) is in O(k).

Due to the important drawbacks of histograms and orthogonal series,

only the kernel density estimator is investigated in the studied cases. It must

be noted that the kernel method requires the existence of explicit expression

of distances and of the function θp, which renders it unusable in several

situations. One of the main contributions of this paper is the computation

of the function θp on the space of multivariate Gaussian distributions under

the Wasserstein metric, and on multivariate centered Gaussians under the

Fisher metric.

The k-nearest neighbor is an interesting variant of the standard kernel

density estimation. It consists in making the parameter r depend on xi, by

setting r as the distance to the k-th nearest neighbor of xi. This estimator

has been studied on Riemannian manifolds in [12].

4 Classical metrics on Gaussian laws

4.1 The Fisher metric

We consider here a set M of probability measures on a measure space

(X,σX , µ) homeomorphic to an open subset of Rn. Let θ = (θ1, ..., θn) ∈
U ⊂ Rn be an homeomorphic parametrization of M. The distributions are

assumed to have a density f(., θ). The Fisher matrix G(θ) associated to the

parametrization θ is defined as follows, see [2]:

g(θ)i,j = E

[
∂ln(f(x, θ))

∂θi

∂ln(f(x, θ))

∂θj

]
=

∫
x

∂ln(f(x, θ))

∂θi

∂ln(f(x, θ))

∂θj
f(x, θ)dx.

(10)

The matrix G(θ) is symmetric positive definite. The matrices {G(θ), θ ∈
U} induce a smooth field of positive definite matrices on U , that is to say

a Riemannian metric. It can be shown that the distances and the geodesic

paths induced onM by this Riemannian metric do not depend on the choice
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of the parametrization. It is interesting to note that the Fisher metric do

not rely on a metric on X.

Let P and Q be two probability measures. The relative entropy is defined

as follows:

D(P,Q) =

∫
x
ln

(
dP

dQ
(x)

)
dP.

FunctionD(., .) is not symmetric and is therefore not a distance. The relative

entropy is also called the Kullback–Leibler divergence. The Kullback–Leibler

divergence measures an informational difference between P and Q.

Let D(θ, θ0) be the relative entropy between the laws parametrized by θ

and θ0. It can be shown that:

∂D(θ0, θ)

∂θi
(θ0) = 0,

and
∂2D(θ0, θ)

∂θi∂θj
(θ0) = g(θ0)i,j .

Thus, the Fisher matrix is also the Hessian of the Kullback–Leibler diver-

gence.

4.2 The Wasserstein metric/ Earth mover’s distance

The Wasserstein metric on probability distributions is the metric of optimal

transport as founded by [16], see [30] for a modern and complete mathe-

matical overview of the problem. If the probability distributions are seen

as earth heaps, the Wasserstein distance between two distributions is the

minimum cost that is needed to transform the first heap into the second

one. The cost of transport of earth depends of the amount of earth and the

traveled distance. Due to this interpretation, the Wasserstein metric is also

called the earth mover’s distance.

More formally, let X and Y be two random variables valued in a space

S endowed with a σ-algebra AS . Let µX and µY be the measures induced

on S by X and Y . Let Γ(µX , µY ) be the set of measures on S×S such that

µX and µY are the first and the second marginals, i.e., for γ ∈ Γ(µX , µY ),

one has

γ(A,S) = µX(A), γ(S,B) = µX(B),

for all A,B ∈ AS . Thus Γ(µX , µY ) represents the set of possible transports

of the measure µX on the measure µY . The p-Wasserstein distance between

X and Y is then defined by:

d(X,Y ) =

[
infγ∈Γ(µX ,µY )

∫
S×S

d(a, b)pdγ

]1/p

. (11)
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For most families probability distributions, the Wasserstein distance has

no explicit expression. Fortunately, the expression of the 2-Wasserstein dis-

tance between Gaussian laws has a simple form. Given two Gaussian dis-

tributions N1, N2 of mean m1, m2 and covariances Σ1, Σ2 the distance

becomes:

d(N1,N2)2 = |m1 −m2|2 + tr(Σ1) + tr(Σ2)− 2tr(

√
Σ

1/2
2 Σ1Σ

1/2
2 ).

[28] has showed that the 2-Wasserstein distance on Gaussian laws is a

Riemannian metric distance. We restrict the present study to the case of

the 2-Wasserstein distance.

5 The space of multivariate Gaussian laws

In this section we study the space of multivariate Gaussian laws under the

two classical Riemannian metrics discussed in the previous section. A Gaus-

sian law is determined by its mean vector m and its covariance matrix Σ

and is noted Nm,Σ. It is well known that the expression of its density fm,Σ
is written as:

fm,Σ(x) =
1

(2π)N/2det(Σ)1/2
e
−1
2

(x−m)tΣ−1(x−m).

The space of n-dimensional Gaussian laws, noted G(n), can identified

with the product between the vector space Rn and the space of positive

definite matrices SPD(n). The space SPD(n) is an open cone included in

the vector space of symmetrical matrices Sym(n). Let:

φ :

{
Rn × SPD(n) → G(n)

(m,Σ) 7→ Nm,Σ

and µφ be the product of Lebesgue measures:

µφ = LebRn × LebSPD(n)

where LebSPD(n) stand for the Lebesgue measures on coefficients of the

SPD(n) matrices.

The diagonalization of elements of SPD(n) give place to the following

parametrization:

ψ :

{
Rn × Rn × SO(n) → Rn × SPD(n)

(m,λ,R) 7→ (m,RDλR
t)

14



where Dλ =

λ1

. . .

λn

. Let

µψ = LebRn × LebRn ×HaarSO(n)

where HaarSO(n) stands for the Haar measure on rotations. The volume

change fψ→φ induced by ψ:

µφ(ψ(A)) =

∫
A
fψ→φdµψ

has the following expression:

fψ→φ(m,λ,R) =
∏

i<j≤n
|λi − λj |, (12)

This result can be found in Example 8.7, page 158, of [31].

5.1 The Fisher metric

Unlike multivariate centered and univariate Gaussian laws, the space of

multivariate Gaussian laws under the Fisher metric is not a symmetric space.

As in the large majority of the Riemannian manifolds, there is no explicit

expression of distances. We only have access to the expression of the metric.

An attempt was made by authors of [15] to symmetrize the space.

Since the expression of distances between arbitrary distributions is not

known, the exponential map can not be computed. Thus, it is not possible

to compute the volume change of Eq. 8 involved in the expression of kernels.

It is however possible to compute the density of the volume measure induced

by the Fisher metric with respect to µφ, which enables the use of Eq. 5.

Let u and v be vectors of Rn
⊕
Sym(n). Let index m and Σ denote the

components associated to Rn and Sym(n) respectively.

The scalar product of the Fisher metric at (m,Σ) can be rewritten,

see [25], as

< u, v >Fisherm,Σ = utmΣ−1vm +
1

2
tr(Σ−1uΣΣ−1vΣ). (13)

The means and the covariances are orthogonal. Thus the expression of

the volume measure associated to the Fisher metric is a product between a

measure on the mean and a measure on the covariance.

dvolFisher
dµφ

= fm.fΣ
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The measure on the mean is fm =
√
det(Σ−1). Up to a normalizing

factor, the measure on the covariance part can be found here,[29]:

fΣ = 2−n
2
det(Σ)−(n+1)/2 (14)

Thus,

dvolFisher
dµφ

= 2−n
2
det(Σ)−(n+2)/2 = 2−n

2

√∏
i

1

λn+2
i

. (15)

In the parametrization induced by ψ,

dvolFisher =
dvolFisher

dµφ

dµφ
dµψ

dµψ

= 2−n
2

√∏
i

1

λn+2
i

∏
i<j≤n

|λi − λj | dLebRn dLebRn+ dHaarSO(n).

(16)

There is no way of estimating densities based on a fully Riemannian

approach. The only option here is to perform a density estimation in an

Euclidean context, and to adapt the result to the Riemannian measure. If

X is seen as a random variable in G(n) the estimation gives:

f̂Fisher = f̂Eucl
dµφ
dvol

= 2
n(n−1)

2

√∏
i

λn+2
i f̂Eucl, (17)

where f̂Eucl is an estimation of the density of X with respect to the measure

induced by the scalar product 〈A,B〉 = tr(ABt). However the estimation

does not respect homogeneity and isotropy considerations.

5.2 The Wasserstein metric

The 2-Wasserstein metric is a product metric between the space of means

and the space of covariance matrices:

dW2(Nm1,Σ1 ,Nm2,Σ2)2 = dm(m1,m2)2 + dΣ(Σ1,Σ2)2,

with

dm(m1,m2) = |m1 −m2|,

dΣ(Σ1,Σ2)2 = tr(Σ1) + tr(Σ2)− 2tr(

√
Σ

1/2
1 Σ2Σ

1/2
1 ).

It was proved in [28] that this distance is induced by a Riemannian metric.
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Unlike the case of the Fisher metric on multivariate Gaussian distribu-

tions, it is possible to obtain an explicit expression the volume change of

Eq. 8 and thus to have an explicite expression of kernels.

Let volW be the measure associated with such Riemannian metric.

5.2.1 The Riemannian volume density with respect to µφ

Let u and v be vectors of Rn
⊕
Sym(n). Let index m and Σ denote the

components associated to Rn and Sym(n) respectively. The scalar product

at (m,Σ) according to [28] is given by

< u, v >Wm,Σ= utmvm + tr(ũΣΣṽΣ),

with

uΣ = ΣũΣ + ũΣΣ,

vΣ = ΣṽΣ + ṽΣΣ. (18)

Let GWNm,Σ be the matrix of the scalar product in the canonical basis of

Rn
⊕
Sym(n). The density of the Wasserstein volume measure with respect

to the Lebesgue measure of Rn × SPD(n) is given by

dvolW
dµφ

=
√
det(GWNm,Σ).

The invariance of the Wasserstein metric under the action of rotations im-

plies the invariance of the measure, i.e.,√
det(GWNm,RDRt

) =
√
det(GWNm,D).

Thus the volume change only need to be computed for the case diagonal

matrices. Let D ∈ SPD(n) be a diagonal matrix of eigenvalues λi. Equa-

tions. (18) can now be solved. Since,

2λiE
′
i,i = DE′i,i + E′i,iD,

(λi + λj)E
′
i,j = DE′i,j + E′i,jD,

equations (18) are equivalent to

uΣ = P (ũΣ),

vΣ = P (ṽΣ),
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where P is a linear operator of Sym(n) whose matrix form is

P :

E′i,i E′i,j
2λ1

. . .

2λn
(λi + λj)


The different terms of the metric are given by:

∀(i, j ≤ k):

〈emi , E′j,k〉WNm,D = 0,

∀(i, j):
〈emi , emj 〉WNm,D = 1,

∀(i, j):
〈E′i,i, E′j,j〉WNm,D = δi,j

1

4λi
,

where again δi,j = 1 if i = j and δi,j = 0 if i 6= j,

∀(i, j 6= k):

〈E′i,i, E′j,k〉WNm,D = 0,

∀i < j, k < l:

〈E′i,j , E′k,l〉WNm,D = δi,kδj,l
1

2(λi + λj)
.

Thus, we obtain
emi E′i,i E′i,j

GWNm,D =



1
. . .

1
1

4λ1

. . .
1

4λn
1

2(λi+λj)


We can then compute the volume density,

dvolW
dµφ

=
√
det(GWNm,Σ) =

1

2
1
2
n2+ 3

2
n

√∏
i

1

λi

∏
i<j

1

(λi + λj)
, (19)
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and in the parametrization induced by φ,

dvolW =
dvolW
dµφ

dµφ
dµψ

dµψ

=
1

2
1
2
n2+ 3

2
n

∏
i

1√
λi

∏
i<j

|λi − λj |√
(λi + λj)

dLebRn dLebRn+ dHaarSO(n).

(20)

5.2.2 The Riemannian volume density in the exponential parametriza-

tion

We are interested here in the computation of the following quantity:

θΣ1 : Σ2 7→ θΣ1(Σ2) =
dvolW

dexp∗(LebΣ1)
(Σ2),

that is to say the density of the Riemannian measure of G(n) with respect

to the Lebesgue measure of the parametrization of G(n) induced by expΣ1 .

As we have stated, Wasserstein metric is a product between the Euclidean

metric on Rn and a Riemannian metric on SPD(n). The Euclidean part can

be omitted in this section, since it does not affect the volume change.

It has been shown in [28] that the L2-Wasserstein distance on centered

Gaussian measure is induced by a Riemannian metric on SPD(n). Further-

more, the application

Π :

{
Gln → SPD(n)

G 7→ GGt

is a Riemannian submersion when GLn is endowed with the scalar product

〈A,B〉 = tr(ABt) and SPD(n) is embedded with the Riemannian metric.

For A ∈ Gl(n) the kernel of dΠ is called the vertical space, and its orthogonal

the horizontal space. For Σ = RDRt ∈ SPD(n), let Σ1/2 = RD(
√
λi)
Rt, such

that Π(Σ1/2) = Σ. The horizontal space at Σ1/2, see [28], is given by:

HΣ1/2 = {XΣ1/2, X ∈ Sym}.

HΣ1/2 can be identified with TΣM via dΠ. Let ΠA(Z) = Π(A + Z). For

simplicity reasons, the exponential map will be expressed in HΣ1/2 . For

Z ∈ HΣ1/2 classical results on Riemannian submersions give that the image

by Π of the geodesic Σ1/2 + tZ is the geodesic expΣ(tZ). Hence, one has

expΣ(Z) = ΠΣ1/2(Z).
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Figure 6: The application Π is a Riemannian submersion for the flat met-

ric on Gl(n) and the Wasserstien metric on SPD(n). The volume change

between the blue and the red area appears in the expression of kernels.

Fig. 6 sums up the situation. Let Π̃A be the restriction of ΠA to HA.

The density of interest is a product of two factors, i.e.,

dvolW
dexp∗(LebH

Σ1/2
)

=
dvolW

dLebSPD(n)

dLebSPD(n)

dexp∗(LebH
Σ1/2

)
,

where dvolW
dLebSPD(n)

was computed in Eq. (19). The computation of
dLebSPD(n)

dexp∗(LebH
Σ1/2

)

can be made through the Jacobian of the exponential application. The com-

putation of the differential of Π̃A gives:

dΠ̃A(XA,X ∈ Sym(n))(Y A, Y ∈ Sym(n)) = (A+XA)(Y A)t + Y A(A+XA)t

= AAtY +XAAtY + Y AAt + Y AAtX

= AAtY + Y AAt +XAAtY + Y AAtX.

The invariance of the Wasserstein metric under the action of rotations

enables to restrict the computation of θΣ1 to θD with D a diagonal matrix.
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So,

dΠ̃D1/2(XD1/2)(Y D1/2) = DY + Y D +XDY + (XDY )t

= (I +X)DY + Y ((I +X)D)t.

The following result enables the computation of the volume change of

the application Y 7→ dΠ̃D1/2(XD1/2)(Y D1/2).

Theorem 5.1 Let A be a square matrix of order n and

SA :

{
Sym(n) → Sym(n)

Y 7→ Y A+AtY

Then

det(SA) =
∏
i6j

(λi + λj) = 2ndet(A)
∏
i<j

(λi + λj),

where the λi are the complex eigenvalues of A. Furthermore, det(SA) de-

pends only on the coefficients of the characteristic polynomial of A

χA(λ) = det(λI −A) =

n∏
i=1

(λ− λi) = λn +

n∏
k=1

(−1)kσn−kλ
k.

1. If n = 2, det(SA) = 4(detA)(traceA);

2. If n = 3, det(SA) = 23detA(σ1σ2 − σ3);

3. If n = 4, det(SA) = 24detA(σ1σ2 − σ3 − σ4σ
2
1 − σ2

3);

4. If n ≥ 4, det(SA) can be obtained with the help of standard libraries of

mathematical programming languages using the decomposition on the

elementary symmetric polynomials.

Proof 1. Suppose A is diagonalisable and (Xi)1≤i≤n is a basis of eigen-

vectors of A. Then

SA(XiX
t
j +XjX

t
i ) = (λi + λj)(XiX

t
j +XjX

t
i ),

and (XiX
t
j +XjX

t
i )16i6j6n is a basis of Sym(n). Consequently

det(SA) =
∏
i6j

(λi + λj) = 2ndet(A)
∏
i<j

(λi + λj)
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2. det(SA) is a symmetric polynomial of the λi. The fundamental the-

orem of symmetric polynomial states that any symmetric polynomial

can by expressed as a polynomial function of the elementary symmet-

ric polynomials. Since the coefficients of the characteristic polynomial

of A are the elementary symmetric polynomials in λi, det(SA) is a

polynomial function of the coefficient of the characteristic polynomial

of A.

3. In the general case, any matrix A can be seen as a limit of diagonaliz-

able matrices An. By continuity we have det(SA) = lim det(SAn) and

the coefficients of the polynomial χA are the limits of the coefficients

of the polynomials χAn . Therefore the formula can be extended to any

matrix.

The basis B = (E′i≤jD
1/2) of HD1/2 is orthogonal for the scalar product

〈A,B〉 = tr(ABt), with
〈
E′iiD

1/2, E′iiD
1/2
〉

= λi and
〈
E′i<jD

1/2, E′i<jD
1/2
〉

=
λi+λj

2 . Thus in an orthonormal basis of HD1/2 , we have

det(B) =

√√√√∏λi
∏
i<j

λi + λj
2

.

Let consider the map

f :

{
HD1/2 → Sym(n)

Y D1/2 7→ Y

Expressed in orthonormal basis, det(f) = det(B)−1. Since dΠ̃D1/2(XD1/2) =

S(I+X)D ◦ f , the determinant of dΠ̃D1/2 expressed in orthonormal basis is

given by

det(dΠ̃D1/2) = det(S(I+X)D)det(f) =
det(S(I+X)D)

det(B)
.

Hence the expression of the volume change is given by,

dLebSPD(n)

dexp∗(LebH
Σ1/2

)
= det(dΠ̃D1/2) =

det(S(I+X)D)

det(B)
. (21)

Given two matrices Σ0,Σ1 ∈ SPD(n), [28] provides the expression of the

vector Z ∈ H
Σ

1/2
0

:

Z = (Σ
1/2
1 (Σ

1/2
1 Σ0Σ

1/2
1 )−1/2Σ

1/2
1 − I)Σ

1/2
0 ,
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such that Π
Σ

1/2
0

(Z) = Σ1. Thus,

θD(Σ) =
dvolW

dLebSPD(n)

dLebSPD(n)

dexp∗(LebH
D1/2

)

=
1

2n(n+1)

det(SA)√∏
λΣ
i

∏
i<j(λ

Σ
i + λΣ

j )
√∏

λDi
∏
i<j(λ

D
i + λDj )

,

where (λDi ) and (λΣ
i ) are the eigenvalues of D and Σ respectively, and where

A = Σ1/2(Σ1/2DΣ1/2)−1/2Σ1/2D1/2.

We recall that A corresponds to the matrix (I +X)D of Eq. (21).

Finally, using the invariance of the Wasserstein metric under the action

of rotations, we have for Σ0 = RDRt:

θΣ0(Σ1) =
1

2n(n+1)

det(SA)√∏
λΣ1
i

∏
i<j(λ

Σ1
i + λΣ1

j )
√∏

λΣ0
i

∏
i<j(λ

Σ0
i + λΣ0

j )
,

(22)

where (λΣ0
i ) and (λΣ1

i ) are the eigenvalues of Σ0 and RtΣ1R respectively,

A = (RtΣ1R)1/2((RtΣ1R)1/2D(RtΣ1R)1/2)−1/2(RtΣ1R)1/2D1/2,

and det(SA) is given in Theorem 5.1. Given a set of Gaussian distributions

xi = (mi,Σi) and a scaling parameter r > 0, the kernel density estimator

becomes:

f̂ rk ((m,Σ)) =
1

k

∑
i

1

rn
1

θΣi(Σ)
K

(
dW2((m,Σ), xi)

r

)
. (23)

6 The space of multivariate centred Gaussian laws

We consider specifically the study of multivariate Gaussian laws, after adding

the property m = 0. The set of multivariate centered Gaussian laws is noted

Gm=0(n). In Gm=0(n), a Gaussian laws is determined by its covariance ma-

trix Σ only. It elements are noted NΣ. The expression of its density fΣ

is:

fm,Σ(x) =
1

(2π)N/2det(Σ)1/2
e
−1
2

(x)tΣ−1(x).

Technical considerations provided in section 5 remains valid after removal

of the mean. In particular, let us redefine φ,ψ,µφ and µψ:

φ :

{
SPD(n) → G(n)

Σ 7→ NΣ
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µφ = LebSPD(n)

ψ :

{
Rn × SO(n) → SPD(n)

(λ,R) 7→ RDλR
t

LebRn × µψ = HaarSO(n).

The different expressions associated to the Wasserstein metric computed

in section 5.2 do not change for the case of centered Gaussian laws. Fur-

thermore, space G(n) does not gain any property after imposing m = 0 in

the Wasserstein metric. Thus this section focuses on the Fisher metric.

The Fisher metric on Gm=0(n) happens to be the metric induced by the

Fisher metric on G(n). On the contrary of G(n), Gm=0(n) is symmetric and

is then easier to study. Let GL(n) be the set of invertible matrices of size n.

For any G in GL(n), the application Σ 7→ GΣGt is an isometry of Gm=0(n).

The action of GL(n) on Gm=0(n) induced by this application is transitive.

Indeed, for any Σ ∈ SPD(n), let Σ1/2 ∈ GL(n). The orbit of the identity I is

SPD(n): Σ = Σ1/2IΣ1/2. The stabilizator of I are the orthogonal matrices.

Thus Gm=0(n) can be identified to GL(n)/O(n).

There is an explicit expression of the distance between two laws [21]:

dFisher(NΣ1 ,NΣ2) = ||log(Σ
−1/2
1 Σ2Σ

−1/2
1 )||,

where ||.|| is the norm associated with the scalar product tr(ABt).

6.1 The Riemannian volume density with respect to µφ

For the centered case Eq. 13 simply becomes:

< u, v >Fisherm,Σ =
1

2
tr(Σ−1uΣΣ−1vΣ). (24)

The expression of the volume measure is well known, see [29] and is

similar to Eq. 14:

dvolFisher
dµφ

= 2−n
2

√∏
i

1

λn+1
i

= 2−n
2
det(Σ)−(n+1)/2. (25)

In the parametrization induced by φ, the volume measure becomes,

dvolFisher =
dvolFisher

dµφ

dµφ
dµψ

dµψ

= 2−n
2
∏

i<j≤n
|λi − λj |

√∏
i

1

λn+1
i

dLebRn+ dHaarSO(n).

(26)
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6.2 The Riemannian volume density in the exponential parametriza-

tion

We are interested here in the computation of the following quantity:

θΣ0 : Σ1 7→ θΣ0(Σ1) =
dvolFisher
dexp∗Σ0

(µφ)
(Σ1), (27)

that is to say the density of the Riemannian measure of Gm=0(n) with respect

to the Lebesgue measure of the parametrization induced by expΣ. In other

words, θ is the Riemannian volume element in the exponential parametriza-

tion. Recall that TΣM = Sym(n), where Sym(n) stands for the symmetric

matrices. The computation of Eq. 27 involves two factors known in the liter-

ature. In the parametrization of TΣM = Sym(n) induced by ψ, the volume

element of the Fisher metric is known, see [29]:

dvolFisher = 2−n(n+1)/2
∏
i<j

sinh

(
|λi − λj |

2

)
dµψ.

The scaling factor corresponds to the Fisher metric, which differs from the

conventions of [29]. Note that the scaling factor have little influence on

density estimation. The volume change induced by the parametrization is

given in Eq. 12:

fψ→φ(m,λ,R) =
∏

i<j≤n
|λi − λj |,

Thus,

θΣ0(Σ1) = 2−n(n+1)/2
∏ sinh

(
|λi−λj |

2

)
|λi − λj |

, (28)

where the λi are the eigenvalues of logΣ0(Σ1) = log(Σ
1/2
0 Σ1Σ

1/2
0 ). The ex-

plicit expression of the change of volume θp(q) induced by the exponential

map enables us to use the kernel density estimation. Given a set of covari-

ance matrices Σi and a scaling parameter r > 0, the estimator becomes:

f̂ rk (Σ) =
1

k

∑
i

1

rn
1

θΣi(Σ)
K

(
dFisher(Σ,Σi)

r

)
. (29)

Thus we have the following expression for the Pelletier kernel density esti-

mator

f̂ rk =
1

k

∑
i

2−n(n+1)/2

rn

∏
p<q

|λp − λq|
sinh(

|λp−λq |
2 )

K

(
||log(Σ

−1/2
i ΣΣ

−1/2
i )||

r

)
, (30)

where the λ. are the eigenvalues of log(Σ
−1/2
i ΣΣ

−1/2
i ).
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7 Euclidean subspaces

7.1 The space of Gaussian laws with fixed rotation

Given a rotation matrix R, we study here the specificity of the space of

Gaussian laws of the form N(m,RDRt) where D is diagonal matrix, under the

Wasserstein metric. We choose here to represent the Gaussian lawN(m,RDRt)

by its mean m ∈ Rn and a set of standard deviation σ ∈ Rn, with σ2
i an

eigenvalue of D. In the (m,σ) parametrization, the expression of the metric

computed using Eq. 13 takes the following form:
emi eσi

GWNm,σ =



1
. . .

1

1
. . .

1


Thus in the (m,σ) parametrization, the metric is Euclidean. The density

estimation can then be achieved using standard techniques.

7.2 The space of Gaussian laws with fixed mean and rotation

Given a mean m and a rotation R, we study here the specificity of the space

of Gaussian laws of the form Gm,R(n) = {N(m,RDRt),with D diagonal}, un-

der the Fisher metric. The matrix of the metric takes the following form:
eλi

GFisherNm,RDλRt
=


1
λ2

1

.
1
λ2
n


After the change of coordinates γi = log(λi), the metric becomes:

eγi

GFisherNm,RDλRt
=

1

.

1


Thus in the γ = log(λ) parametrization, the metric is Euclidean. The

density estimation can then be achieved using standard techniques.
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7.3 The space of Gaussian laws with fixed covariance

Given a covariance matrix Σ, we study now the specificity of the space of

Gaussian laws of the form N(m,Σ), under the Fisher metric. Note that the

mean under the Wasserstein metric follows the canonical Euclidean scalar

product. From Eq. (13) in G(n):

< u, v >Fisherm,Σ = utmΣ−1vm +
1

2
tr(Σ−1uΣΣ−1vΣ),

and we have that, at a fixed Σ, it is given by

< um, vm >Fisherm = utmΣ−1vm.

The metric on the mean is Euclidean, of scalar product Σ−1. The density

estimation can then be achieved using standard techniques.

8 The space of univariate Gaussian laws

This section addresses the case of G(n = 1). Space G(n = 1) is identified with

the half plane R × R+. That means that each normal law N is described

by its mean m ∈ R and its (positive) standard deviation σ ∈ R+. Note

that, as in section 5.2, there is a slight change of convention with respect to

the previous sections since the equivalent of the covariance matrix Σ would

be the square of the standard deviation σ2. The study is focused on the

Fisher metric since the case of the Wasserstein metric has been analyzed in

section 7.1.

8.1 Fisher metric and the Poincaré upper half plane

The Poincaré upper half plane of curvature R is a half plane {x ∈ R, y ∈ R+}
endowed with the following Riemannian metric:

G(x,y) = a2

(
1/y2 0

0 1/y2

)
, (31)

with R = − 1
a2 . The Poincaré upper half plane is a model of hyperbolic

geometry, see [6]. The distance between (x1, y1) and (x2, y2) is given by:

d((x1, y1), (x2, y2)) = a cosh−1

(
1 +

(x2 − x1)2 + (y2 − y1)2

2y1y2

)
. (32)

The Poincaré upper half plane is isotropic: each location and directions are

equivalent. After having considered the change of convention between Σ
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and σ, the matrix of the Fisher metric on G(n = 1) can be deduced from

Eq. (13), i.e.,

GFisher(m,σ) =

(
1/σ2 0

0 2/σ2

)
(33)

Consider now the application s : (m,σ) 7→ (x, y) = (m,
√

2σ). Solving

the equation:

(ds)t.GFisher(x,y) .ds = GFisher(m,σ) (34)

where ds is the Jacobian matrix of s, the expression of the metric is obtained

in the new parametrization:

GFisher(x,y) = 2

(
1/y2 0

0 1/y2

)
(35)

Thus, under the Fisher metric, the space G(n = 1) is isometric to a Poincaré

upper half plane of curvature −1
2 . Let H denotes just the Poincaré upper

half plane of curvature −1
2 .

8.2 The Riemannian volume element in the (m,σ) parametriza-

tion

In the (x, y) parametrization, the Riemannian volume measure vol has the

following expression:

dvol

dLeb(x,y)
=
√
det(GFisher(x,y) ) =

2

y2
. (36)

8.3 The Riemannian volume element in the exponential parametriza-

tion

We proceed similarly to section 6.2. In polar coordinates (r ∈ R+, α ∈
[0, 2π[), the expression of the Riemannian volume element is known, see [10]:

dvol = 2 sinh(r)drdα

By switching to an Euclidean parametrization of the tangent plane, we ob-

tain:

dvol

dexp∗(Lebp)
(q(r,α)) = 2

sinh(r)

r
. (37)

We obtain then

θp(q) = 2
sinh(d(p, q))

d(p, q)
, (38)
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where θ is the function used in Eq. (8). The explicit expression of the

change of volume θp(q) induced by the exponential map enables us to use the

kernel density estimation. Given a set of univariate Gaussian distributions

Ni = (mi, σi) and a scaling parameter r > 0, the estimator becomes:

f̂ rk (N ) =
1

k

∑
i

1

r2

dFisher(N ,Ni)
2 sinh(dFisher(N ,Ni))

K

(
dFisher(N ,Ni)

r

)
, (39)

where here dFisher(N ,Ni) =
√

2 cosh−1
(

1 + (m−mi)2+2(σ−σi)2

2σσi

)
.

9 Partial quantities: mean, eigenvalues and rota-

tion

This section addresses the study of the standard partial quantities that are

the mean, the eigenvalues and the rotation. On the one hand, depending on

the application, the interesting information is sometimes carried by only one

or two partial quantities. On the other hand, the curse of dimensionality

pushes us to reduce the dimension of the studied objects.

We start the discussion with an example. Let X be a random variable

valued in R2 of density f . Consider the distribution of the radius of the

polar coordinates (r, θ). Firstly, the Lebesgue measure of R2 can be written

as a product dLeb = rdθdr. Thus the Lebesgue measure of R2 induces a

measure on radiuses rdr. The density computed with respect to rdr can

be interpreted as an average of f over a slice of constant radius. Secondly,

the metric on R2 induces a natural metric on the space of radius seen as

the quotient space R ∼ R2/θ. The natural quotient metric is the Euclidean

metric on R, the associated measure being the Lebesgue measure dr. Thus

this example shows that there is not a unique way of addressing the density

estimation of partial quantities.

Since the parametrization ψ is not injective, the partial quantities of a

Gaussian distribution are not clearly defined. Indeed given Σ ∈ SPD(n)

there exists several (λ,R) ∈ Rn+ × SO(n) such that Σ = RDλR
t. If this

is not a problem in most of theoretical works, it is when one comes to

applications. Indeed it is important to always use the same representation

of each object. Let G̃(n) be the set of Gaussian laws Nm,Σ such that Σ has

distinct eigenvalues. Note that the difference between G̃(n) and G(n) has a

null measure for standard measures. Let define

E = {λ ∈ Rn+ | ∀0 ≤ i < j ≤ n, λi < λj},
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and

H = {Dλ | λ ∈ {+1,−1}n, det(Dλ) = 1}.

Note that H is a group. The quotient SO(n)/H = {RH,R ∈ SO(n)} can

be identified to the fundamental domain D ⊂ SO(n) where for R ∈ D, the

maximal element with the smallest index element of each column 1 ≤ j < n

is positive. In other words

D = {R ∈ SO(n) | ∀j < n,Rmin{argmaxi{Ri,j}},j > 0}.

Then, parametrization

ψ̃ :

{
Rn × E ×D → G̃(n)

(m,λ,R) 7→ Nm,(RDλRt)

is an homeomorphism.

Remind the context of section 3. Let Ω be a space, endowed of with

a σ-algebra and a probability measure p. Space G(n) is equipped with a

Riemannian metric G, the associated Riemannian measure is called vol. Let

X be a random variable, X,Ω 7→ G(n). The measure on G(n) induced by

X is noted µX . We assume that µX has a density, noted f , with respect

to vol. G̃(n) can be identified to the product Rn × E × D, recall that

vol(G(n) \ G̃(n)) = 0. Let Xmean, Xλ and XR be the random variables

naturally induced by the identification between G̃(n) and Rn×E×D. Note

that XR is not always properly defined. This problem can be neglected given

that vol(G(n) \ G̃(n)) = 0 and that the law of X has a density with respect

to vol. Let µXmean , µXλ , µXR be the associated measures.

9.1 Average over slices

We start by showing that in many classical cases, measures on multivari-

ate Gaussian laws can be decomposed as a product between a measure on

the mean space, a measure on the eigenvalue space, and a measure on the

rotation space. Observe that rotations naturally act on G(n), i.e.,

R0.Nm,λ,R1 = Nm,λ,R0R1 .

Theorem 9.1 Let µ be a measure on G̃(n), invariant under the action of

rotations. Measure µ is equivalent to a product measure,

µ = µmean × µλ × µR,

where µmean is a measure on Rn, µλ is a measure on E and µR is a measure

on SO(n).
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Proof This is a direct consequence of Theorem 8.2, page 155, of [31].

Eq. 16 and Eq. 20 are consistent with this result. In most situations,

measures µ on G(n) present the desired invariances, and µ(G(n)\ ˜G(n)) = 0.

Writing µ as a product measure enables to define densities for the mean,

the eigenvalues and the rotations separately. This is in particular the case

for the measures induced by the Fisher metric, the Wasserstein metric, and

the Lebesgue measure of Rn × SPD(n). The measure vol is thus described

by a product vol = µmean × µλ × µR
The measure µXmean(A) is the probability that xmean ∈ A when x follows

µX . Thus,

µXmean(A) = µX(A× E ×D).

Let fmean be the density of µXmean with respect to µmean. Since

µX(A× E ×D) =

∫
A

∫
E

∫
D
fdµRdµλdµmean,

we have,

fmean(m) =

∫
E

∫
D
f(m,λ,R)dµRdµλ.

Let α = (µλ(E)µR(D))−1. Quantity αfmean can be interpreted as an

average value of the original density f over a slice E × D. The same hold

for µXλ and µXR . Up to a scaling factor, we recall here the expression of

the different measures:

µφ,mean = Leb,

dµφ,λ =
∏

i<j≤n
|λi − λj |dLeb(λ),

µφ,R = HaarSO(n),

µFishermean = Leb,

µFisherR = HaarSO(n),

µWmean = Leb,

dµWλ =
∏
i

1√
λi

∏
i<j

|λi − λj |√
(λi + λj)

dLeb,

µWR = HaarSO(n),

where HaarSO(n) is restricted to D. The expression of µFisherλ varies between

G(n) and Gm=0(n). When G(n) is the underlying space, we have:

dµFisherλ =
∏

i<j≤n
|λi − λj |

√∏
i

1

λn+2
i

dLeb, (40)
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and when Gm=0(n) is the underlying space the expression becomes:

dµFisherλ =
∏

i<j≤n
|λi − λj |

√∏
i

1

λn+1
i

dLeb (41)

Fig. 7 shows several cases of density change for n = 2.

(a) (b) (c)

Figure 7: For n = 2, (a),(b) and (c) are visualizations of dµφ,λ, dµWass
λ and

dµFisherλ (for Gm=0(n)) respectively.

The question of the underlying metric associated to these measures has

not yet been clarified. Thus the estimation can be achieved using the ap-

proach described section 3.1. Despite the absence of clear argument, the

Lebesgue measure and the Haar measure push to the use of an underlying

translation invariant metric.

9.2 Quotient metric on partial quantities

The space associated to each partial quantity can be seen as a quotient of

G(n) by the rest of the partial quantities. The quotient G(n)/(Rn+×SO(n))

denotes the identification elements with all those which differ only in the

eigenvalues or the rotation. Thus G(n)/(Rn+ × SO(n)) can be interpreted

as the space of means. In several cases, the Riemannian metric on G(n)

induces a canonical metric on such quotient space. This metric induces a

measure on the partial quantity, which enable the estimation of density of

the associated random variable X(.).

9.2.1 Mean

For the Wasserstein metric and the Euclidean metric of Rn × Sym(n), the

quotient space Rn ∼ G(n)/(Rn+×SO(n)) inherits naturally of the canonical

Euclidean metric. Indeed, each couple (λ,R) induces the same metric on
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m. The density estimation can thus be achieved using standard techniques.

Note that the induced Lebesgue measure is similar to µmean.

Recall the expression of the scalar product of the Fisher metric (13):

< u, v >Fisherm,Σ = utmΣ−1vm +
1

2
tr(Σ−1uΣΣ−1vΣ).

Each covariance matrix Σ induces a metric on the space of means. However,

the metric varies when Σ varies. Thus the Fisher metric do not induces a

canonical metric on Rn ∼ G(n)/(Rn+ × SO(n)).

9.2.2 Eigenvalues

For λ ∈ Rn, let Dλ be the associated diagonal matrix. Fixing a mean m and

a rotation R induces a metric on eigenvalues:

dm,R(λ1, λ2) = d(Nm,Dλ1
,R,Nm,Dλ2

,R). (42)

The group of rotations naturally acts on Gaussian laws byRa.LeftNm,λ,Rb =

Nm,λ,RaRb . Furthermore for the Euclidean metric of Rn×Sym(n), the Fisher

and the Wasserstein metric, we have that for all R ∈ SO(n):

d(Nm1,λ1,R1 ,Nm2,λ2,R2) = d(R.LeftNm,λ,R1 , R.LeftNm,λ,R1). (43)

Thus since dm,R is independent of m and R, the three metrics induce a

canonical metric on the quotient Rn+ ∼ G(n)/(Rn × SO(n)).

On the one hand according to section 7.1, the Wasserstein metric on

eigenvalues at fixed rotation is the canonical Euclidean metric after the

change of coordinates σ =
√
λ. On the other hand, according to section 7.2

the Fisher metric on eigenvalues at fixed mean and rotation is the canonical

Euclidean metric after the change of coordinates γ = log(λ). Finally, it

is easy to see that the quotient metric induced by the Euclidean metric of

Rn × Sym(n), is the Euclidean metric on R+. Note that the associated

measures differs from µλ.

9.2.3 Rotation

Given a Gaussian law Nm,λ,R, the Euclidean metric of Rn × Sym(n), the

Fisher and the Wasserstein metric induce a left-invariant metric on Q:

dNm,λ,R(R1 ∈ Q,R2 ∈ Q) = d(R1.LeftNm,λ,R, R2.LeftNm,λ,R). (44)

However it can be verified that the left-invariante metric is dependent of the

choice of Nm,λ,R. Thus neither the Euclidean metric of Rn × Sym(n), nor

the Fisher nor the Wasserstein metric induce a canonical quotient metric on

SO(n) ∼ G(n)/(Rn × Rn+).
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Figure 8: Convergence of the kernel density estimations of the law defined

in Eq. 45 using an Euclidean and a Riemannian Kernel.

10 Experimental section

Every standard density estimation technique involves a scaling parameter.

This scaling factor controls the influence of the observation xi on the esti-

mated density at x, depending on the distance between x and xi. In the

experiments, the scaling factor has been chosen following the framework

proposed in [8]: a cross validation of the likelihood of the estimator.

This section start with an illustration, see Fig. 8(a), of the importance of

the underlying metric on the density estimation method. Points are drawn

in the Poincaré upper half plane according to the following density:

f(z) =
√
dFisher(z, (0, 1))2 − 11dFisher(z,(0,1))<1. (45)

From the draws, firstly, the density is estimated using an Euclidean

kernel method, followed by an adaptation to the Riemannian measure, as

described in section 3.1. Secondly, the density is estimated using a Rieman-

nian kernel, see section 3.4. The base kernel is a quartic kernel K(||x||) =
3
π (1−||x||2)21||x||<1. Fig. 8(a) shows the convergence of the two estimations

to the true density.

10.1 Histograms of multiple grey-scale image acquisition

The studied example is a time lapse sequence of grey-scale images from a

retina. At each pixel, we dispose of 20 successive fast acquisitions. By

assuming a Gaussian distribution on the time series, we obtain a Gaussian

valued image represented in Fig. 9.

Each pixel of the image contains an univariate Gaussian law. We recall

that for univariate Gaussian laws, the Wasserstein metric is the Euclidean

metric of the (m,σ) plane and that the Fisher metric is the Poincaré metric.
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Histograms of the Gaussian-valued image are computed with respect the

Fisher and the Wasserstein metric, using the appropriate kernel density

estimation.

10.2 Density estimation in structure tensor images

The structure tensor image from a grayscale image is a field of symmetric

positive definite matrices. Despite the fact that these matrices are not di-

rectly covariance matrices of Gaussian laws, they can be studied under the

Fisher and the Wasserstein metric of Gm=0(n), typically n = 2 for 2D images

and n = 3 for 3D ones. Fig. 10(b)-(g) shows the densities of the two eigen-

values λ1 ≤ λ2 of the structure tensor field computed from Fig. 10(a). For

each metric, the densities of eigenvalues are computed following considera-

tions of section 9. For the induced measures µEuclλ , µFisherλ and µWasserstein
λ

, the densities are firstly estimated using an Euclidean kernel density es-

timation, followed by an adaptation to the reference measures, given in

section 9.1. According to section 9.2.2, each quotient metric is Euclidean

in the right parametrization. In the adapted parametrizations, the densities

are obtained using an Euclidean kernel density estimation.

Given a set of samples, the watershed transform of the complement of its

associated density provides a non parametric clustering [26], similar to that

of mean-shift algorithm. When the set of samples are the values taken by an

image, the clustering of the samples can be interpreted as a segmentation of

the image. Fig. 11 presents an example of texture segmentation according

to the watershed transform of the density of the structure tensor field using

measures.

10.3 EEG signals classification

This section presents results of density estimation for classification of Elec-

troencephalogram (EEG) signals. The EEG is recorded during a asyn-

chronous steady state visually evoked potential (SSVEP) brain computer

interface (BCI) experiment. The SSVEP is stimulated by 3 sets of LEDs

flickering at different frequencies: 13Hz, 17Hz or 21Hz. A trial consists of

the subject gazing at one of four targets made of either of the 3 sets of

LEDs or a non-flickering screen while the EEG is recorded on 8 electrodes

at a sampling rate of 256Hz. For experimental purposes, only 4 electrodes

are kept: Oz, POz, PO3, and PO4. The classification problem is also simpli-

fied to 2 classes: 21Hz-SSVEP versus no-SSVEP, and 13Hz-SSVEP versus

17Hz-SSVEP. For each subject and each class, 16 trials are recorded, with
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a trial length of t = 4s. From the signal recorded at each trial, a covariance

matrix C ∈ R4×4 is estimated using the Schäfer’s shrinkage method [24].

Given an un-labeled covariance matrix, the classification experiment con-

sists in determining the visual target attended by the subject. Two methods

are tested, on two types of data. The first methode is the one proposed in

[14]. A barycenter is computed for each group of labeled points. An un-

labeled point is affected to the class with the closest barycenter. The second

method consists in estimating a probability density for each group of points

associated to a given frequency. The un-labeled point is affected to the

class which presents the highest density. The two methods are evaluated

on the covariance matrices and on their eigenvalues. Each class has the

same size and our experiments involve only two classes. The figures pre-

sented in tables 1 are the classification accuracy rate. The classifications

are performed using different metric. ”Euclidean” denotes the Euclidean

metric on the coefficient of the matrices. ”A.i.” stands for affine-nvariant

metric. The affine-invariant metric on SPD(n) is isometric to the Fisher

metric on centered multivariate Gaussian distributions. ”Log-Euclidean” is

the Euclidean metric on coefficients after taking the matrix logarithm of the

covariance matrices. We recall that the log-Euclidean metric is the canonical

Euclidean metric of the tangent space of SPD(n) at the identity, under the

affine-invariant metric. ”Wasserstein” stands for the 2-Wasserstein distance

on SPD(n) induced by centered Gaussian distributions. The metrics used

on eigenvalues are the quotient metrics described in section 9.2.2.

The results shows the importance of the choice of the underlying metric.

Results obtained for the Affine invariant metric are superior to the ones

obtained with the Euclidean and Wasserstein metric. The superiority of the

results are apparently not due to the curvature of the space. Indeed, the

Euclidean metric in the tangent space at the identity matrix after taking

the logarithm provides similar results.

11 Conclusions and perspectives

Several density estimator on Riemannian manifolds have been considered.

Due to their drawbacks on spaces of Gaussian distributions, histograms and

orthogonal series have not been deeply studied. It is always possible to

perform a classical estimations in the Euclidean context of the parameters,

multiplied by a density ratio to obtain a density with respect to the de-

sired measure. This type of density estimation is possible in each studied

space and metric, but do not take into account the geometry of the space:

if two metrics induce the same volume measure then the estimated density
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Classification on eigenvalues:

0Hz vs 21Hz Euclidean A.i. (log) Wasserstein (square root)

barycenter 0.6 0.71 0.64

density 0.61 0.73 0.63

13Hz vs 17Hz Euclidean A.i. (log) Wasserstein (square root)

barycenter 0.52 0.58 0.51

density 0.54 0.58 0.54

Classification on matrices:

0Hz vs 21Hz Euclidean log-Euclidean A. i. Wasserstein

barycenter 0.61 0.71 0.71 0.67

density 0.63 0.76 0.76 0.7

13Hz vs 17Hz Euclidean log-Euclidean A. i. Wasserstein

barycenter 0.53 0.58 0.56 0.56

density 0.53 0.63 0.63 0.56

Table 1: Classification accuracy rate of EEG signals.

does not depend on the choice of one the metrics. Thus, the kernel den-

sity estimation seems to be the most adapted in most cases. It presents a

reasonable computational complexity, and expressions of kernels are ready

to use in each studied situations, except the space of multivariate Gaussian

laws under the Fisher metric.

To our knowledge, the most original contribution of this work are the ex-

pression of kernels for the case of the Wasserstein metric, and the study of

partial quantities. The latter being particularly useful in practical cases.

The quantities useful for density estimation computed in the paper are

summed up in tables 2-5. Section 10 presents results of the use of den-

sity estimation under Riemannian metrics for EEG signals classifications.

multivariate multivariate centered univariate

adaptation

from the

Lebesgue

measure

Eq. 15, Eq. 16 Eq. 25, Eq. 26 Eq. 36

kernels - Eq. 30 Eq. 39

Table 2: Density estimation on Gaussian laws under the Fisher metric.
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mean eigenvalues rotations (Q)

quotient metric - Euclidean on γ = log(λ) -

product measure Lebesgue Eq. 40 or Eq. 41 HaarSO(n)

Table 3: Structures on partial quantities under the Fisher metric

multivariate multivariate centered univariate

adaptation

from the

Lebesgue

measure

Eq. 19, Eq. 20 Eq. 19, Eq. 20 Euclidean

on σ =
√
λ

kernels Eq. 23 Eq. 23 Euclidean

on σ =
√
λ

Table 4: Density estimation on Gaussian laws under the Wasserstein metric

Future work will focus mainly on the application of our results to dif-

ferent problems in image and signal processing. Densities are useful objects

in segmentation and classification. The mean shift algorithm is a standard

approach that search local maxima and provides a segmentation of a den-

sity associated with a point cloud. This algorithm, proposed by [9] has been

widely studied in Rn. It is mainly used in point cloud segmentation, but also

in tracking and smoothing. The algorithm has been studied on Riemannian

manifolds in [27]. However in order to gain generality authors chose to work

with “pseudo” kernels in the sense that they do not take into account the

volume change induced by the exponential map. Indeed, this term is gen-

erally unknown. The study can thus be resumed for spaces Gaussian laws,

except multivariate Gaussians under the Fisher metric. Probability densi-

ties are also important tools in Bayesian classification. The classification

decision consists in maximizing the probability of a class given an observa-

tion. The Affine invariant metric on SPD(n) has proven useful in the case of

EEG signal. We will now search for situations where the Wasserstein metric

provides better results than Euclidean metrics.
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(a) (b)

(c) (d)

Figure 9: Time lapse sequence of images from the retina: (a) mean image,

(b) standard deviation image. Histogram using the Fisher metric in (c) and

the Wasserstein metric in (d)
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(a)

(b) (c) (d)

(e) (f) (g)

Figure 10: Densities estimated from the structure tensor field computed from

image (a). Top row, densities computed from the induces measures µ.λ: (b)

Euclidean metric of Rn×Sym(n), (c) Fisher metric, (d) Wasserstein metric.

Bottom row, densities computed using the quotient metrics: (e) Euclidean

metric of Rn × Sym(n), (f) Fisher metric (note the change of scale), (f)

Wasserstein metric.

43



Figure 11: Texture image segmentation: (a) and (b) are respectively a tex-

ture image and its associated structure tensor field. The density of the

eigenvalues of the structure tensors is estimated with respect to the two

measures discussed in section 9 induced by the Wasserstein metric: (c) seg-

mentation with respect to the Lebesgue measure on eigenvalues, and (d)

segmentation with respect to µWass
λ .
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