
HAL Id: hal-01245704
https://hal.science/hal-01245704

Submitted on 17 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

MultiCons: Multiple Consensus Clustering Method
Using Frequent Closed Pattern Mining
Atheer Al-Najdi, Nicolas Pasquier, Frédéric Precioso

To cite this version:
Atheer Al-Najdi, Nicolas Pasquier, Frédéric Precioso. MultiCons: Multiple Consensus Clustering
Method Using Frequent Closed Pattern Mining. [Research Report] Laboratoire d’Informatique, Sig-
naux et Systèmes de Sophia-Antipolis I3S - UMR7271 - UNS CNRS. 2015. �hal-01245704�

https://hal.science/hal-01245704
https://hal.archives-ouvertes.fr

LABORATOIRE

INFORMATIQUE, SIGNAUX ET SYSTÈMES DE SOPHIA ANTIPOLIS
UMR 7271

MultiCons: Multiple Consensus Clustering Method

Using Frequent Closed Pattern Mining

Atheer Al-najdi, Nicolas Pasquier, Frédéric Precioso

EQUIPE MinD

Rapport de Recherche

Septembre-2015

Laboratoire d'Informatique, Signaux et Systèmes de Sophia-Antipolis (I3S) - UMR7271 - UNS CNRS
2000, route des Lucioles � Les Algorithmes - bât. Euclide B � 06900 Sophia Antipolis � France

http ://www.i3s.unice.fr

MultiCons: Multiple Consensus Clustering Method

Using Frequent Closed Pattern Mining

Atheer Al-najdi, Nicolas Pasquier, Frédéric Precioso 1

EQUIPE MinD

September-2015 - 16 pages

Abstract :

Clustering, which aim is to identify groups of similar instances in a dataset, is one of the

important tasks in data mining. Many clustering algorithms were developed in the last 50

years. However, selecting an algorithm to cluster a dataset is a di�cult task, especially if there

is no previous knowledge on the structure of the data space. Consensus clustering methods can

be used to combine multiple base clusterings into a new solution that provides better quality

partitioning. In this work, we present a new consensus clustering method based on detecting

underlying clustering patterns shared by base clusterings using frequent closed itemset mining.

Instead of generating one consensus, this new approach generates multiple possible solutions,

based on varying the number of base clusterings, and links these solutions in a tree-shaped

hierarchical view that eases the selection of the most relevant clustering. This hierarchical

view also provides an analysis tool of the dataset, for example, to discover strong clusters or

outlier instances.

Key-words : Unsupervised learning ; Clustering ; Consensus clustering ; Ensemble cluste-

ring ; Frequent closed itemsets ; Frequent concept patterns.

1. Laboratoire I3S � Université Nice Sophia Antipolis � {alnajdi, pasquier, precioso}@i3s.unice.fr

MultiCons : Méthode de Clustering par Consensus

Basée sur les Itemsets Fermés Fréquents

Résumé :

Le clustering, dont l'objectif est l'identi�cation de groupes d'instances similaires dans un

ensemble de données, est l'une des tâches les importantes de la fouille de données. De nombreux

algorithmes de clustering ont été développés durant les 50 dernières années. Toutefois, choisir

un algorithme pour regrouper des données par similarité est une tâche di�cile, surtout si

aucune connaissance préalable sur la structure de l'espace des données n'est disponible. Les

méthodes de clustering par consensus peuvent être utilisées a�n de combiner les résultats de

plusieurs clusterings dans une nouvelle solution a�n d'obtenir un partitonnement des instances

de meilleure qualité. Dans ce travail, nous présentons une nouvelle méthode de clustering

par consensus fondée sur la détection des motifs de regroupement sous-jacents communs aux

clusterings initiaux en utilisant les itemsets fermés fréquents. De plus, au lieu de générer un

unique consensus comme dans les approaches par consensus classiques, cette nouvelle approche

permet de générer plusieurs solutions, en se basant sur la variation du nombre d'aggrégation

des clusterings initiaux, et de les relier dans une vue hiérarchique a�n de faciliter la sélection

des regroupements les pus pertinents. Ce point de vue hiérarchique fournit également un outil

d'analyse de l'espace des données, par exemple, a�n de découvrir des sous-groupes d'instances

fortements correlées ou des instances aberrantes.

Mots-clefs : Classi�cation non-supervisée ; Clustering ; Clustering par consensus ; En-

sembles clustering ; Itemsets fermés fréquents ; Motifs conceptuels fréquents.

MultiCons: Multiple Consensus Clustering
Method Using Frequent Closed Patterns Mining

Atheer Al-najdi, Nicolas Pasquier, and Frédéric Precioso

Univ. Nice Sophia Antipolis, CNRS, I3S, UMR 7271, 06900 Sophia Antipolis, France
{alnajdi, pasquier, precioso}@i3s.unice.fr

Abstract. Clustering, which aim is to identify groups of similar in-
stances in a dataset, is one of the important tasks in data mining. Many
clustering algorithms were developed in the last 50 years. However, select-
ing an algorithm to cluster a dataset is a difficult task, especially if there
is no previous knowledge on the structure of the data space. Consensus
clustering methods can be used to combine multiple base clusterings into
a new solution that provides better quality partitioning. In this work, we
present a new consensus clustering method based on detecting underly-
ing clustering patterns shared by base clusterings using frequent closed
itemset mining. Instead of generating one consensus, this new approach
generates multiple possible solutions, based on varying the number of
base clusterings, and links these solutions in a tree-shaped hierarchical
view that eases the selection of the most relevant clustering. This hier-
archical view also provides an analysis tool of the dataset, for example,
to discover strong clusters or outlier instances.

Keywords: Unsupervised learning; Clustering; Consensus clustering; Ensemble
clustering; Frequent closed patterns; Bi-clustering.

1 Introduction

Clustering is the process of partitioning a dataset into groups, so that the in-
stances in the same group are more similar to each other than to instances in any
other group. This partitioning may lead to discover meaningful patterns in the
dataset. Many clustering algorithms were developed in the last 50 years, and,
most often, each algorithm produces different partitioning when applied to the
same dataset, because they are designed to target a specific model for clustering
the instances. Another factor that affects the results is the parameter settings:
Most clustering algorithms require that the user specify the number of clusters
targeted (usually known as parameter K), and other parameters are more spe-
cific to the clustering algorithm considered. For example, density-based methods
do not require K, but instead require other parameters to define what is a dense
region in the data space. Thus the question is: How to choose a clustering for a
dataset from these many possibilities?

The most common solution is to use validation measure(s) to compare the
results and select the one that gets the higher score [5,8]. There are two general

categories of validation measures: Internal validation that compares the cluster-
ing against a specific clustering model, and external validation that compares
the clustering against true labels (class labels given on an evaluation set using
domain knowledge). In both categories, we have many validation measures, and
there is no one that impartially evaluates the results of any clustering algorithm
[20]. In real life, the user can have similar scores for different validation mea-
sures and/or for different clustering results, while the results are different in
many aspects, like in the number of clusters or in the instances grouping into
clusters.

Rather than depending on validation measures, another approach is to com-
bine the multiple clustering solutions generated by several clustering algorithms
and/or settings, in order to produce a final clustering which is better than each
individual algorithm can produce. This technique is called consensus clustering,
aggregation of clusterings or ensemble clustering, and the clustering algorithms
to be combined are called base clustering algorithms. Many consensus clustering
methods have been proposed, and we discus some of them in the next section.
In several articles on clustering ensemble, authors have tried to define a set of
properties that endorses the use of clustering ensemble methods [7,20]:

• Robustness: The consensus must have better average performance than the
single base clustering algorithms.
• Consistency: The result of the combination should be somehow, very similar

to all combined single base clustering algorithm results.
• Novelty: Cluster ensembles must allow finding solutions unattainable by sin-

gle base clustering algorithms.
• Stability: Results with lower sensitivity to noise and outliers.

However, validating these properties in practice is very difficult because of the
unsupervised nature of the clustering ensemble process [7,18].

In this paper, we propose a new consensus clustering method named Multi-
Cons. Instead of providing the user with a single solution, we generate multiple
consensuses by varying the selection of base clusterings, then linking these mul-
tiple solutions in a hierarchical view. The user can then not only select the best
solution, but also discover strong clusters in the dataset that do not change when
varying the base clusterings. Hence, our proposed method is a combination of
ensemble of consensus solutions with a visual data analysis tool.

The paper is organized as follows: Section 2 discusses some of the previous
work in consensus clustering. Section 3 explains the proposed approach, and
we demonstrate how the approach works by a synthetic example in section 4.
Some experimental results are shown in section 5, and we provide conclusions in
section 6.

2 Related Work

Consensus clustering refers to the problem of finding a single consensus clustering
from a number of different inputs or base clusterings that have been obtained

for a given dataset [11,23]. The advantage of this technique is to have a new
clustering result that is at least as good as the best clustering achieved by the
base methods. Thus, it will be easier to obtain a good clustering rather than
trying with different algorithms and compare them against a validation score
which may favor one kind of clustering techniques over the others.

Many consensus clustering methods were developed over the past years. In
Asur et al. [2], six predefined clustering algorithms suitable for protein-protein
datasets clustering were considered as base clusterings. A cluster membership
matrix1 is then built, and a consensus clustering method is applied over this
matrix (agglomerative hierarchical clustering or recursive bisection) to obtain
the final consensus. All the 6 base clusterings have K clusters, so if K is high
the resulting membership matrix is a sparse binary matrix and the consensus
clustering of this matrix is not be efficient. Thus, PCA (Principle Components
Analysis) is applied before the consensus clustering to reduce the dimensionality
of the membership matrix into less, but more expressive, dimensions. Instead
of PCA, Another approach considers weighting the clusters according to their
reliability. These different consensus techniques were compared, and the authors
conclude that the PCA based technique produced very efficient clustering and
identified multiple functionalities of proteins.

Three consensus clustering methods were proposed by Strehl & Ghosh [17].
The first step for all their proposed consensus functions is to transform the given
clusterings into a suitable hypergraph representation, where each cluster (column
in the membership matrix) from any base clustering is considered as a hyperedge
that connects several vertices (all the instances in this cluster) in a hypergraph.
Based on this mapping Strehl & Ghosh propose: i) Cluster-based Similarity Par-
titioning Algorithm (CSPA) which is based on an overall similarity matrix S built
from the membership matrix H by using S = 1

rHH
†, where r is the number of

base clusterings. The aforementioned hypergraph is built from this similarity
matrix so that each hyperdge represents the sum of similarities between a given
pair of vertices (i.e. each time the two considered vertices are clustered together
by any base clustering their similarity is increment by 1), then a graph-based
clustering method (METIS) provides the consensus clustering; ii) HyperGraph-
Partitioning Algorithm (HGPA) all hyperedges as well as all vertices are equally
weighted, then a hypergraph partitioning algorithms (HMETIS) defines the con-
sensus by cutting a minimal number of edges; iii) Meta-CLustering Algorithm
(MCLA) follow the same ideas, but hyperedges weights are proportional to the
similarity between vertices (instances) which is calculated using binary Jaccard
measure. The resulting hypergraph is then clustered using METIS to generate
K clusters. For each of these K meta-clusters, its hyperedges are collapsed into
a single meta-hyperedge. Each meta-hyperedge has an association vector which
contains an entry for each object describing its level of association with the
corresponding meta-cluster.

With their algorithm WClustering, Li & Ding [11] proposed weighting the
base clusterings to ensure removing redundant (similar) partitionings, since this

1 See section 3.2 for a definition of cluster membership matrix.

process produces better results compared to other methods which generate the
consensus from brute-force averaging of the base clusterings. Weights are auto-
matically determined by an optimization process. Experimental results showed
that more accurate clustering was achieved by the k-means algorithm when ap-
plied to the weighted consensus similarity matrix, compared to the results of
CSPA and HGPA.

In Zhang & Li [23], the base clusterings are compared using pairwise simi-
larity, and then divided into groups using K-means. On each group, one of the
previously discussed consensus methods is used: PCA-based consensus algorithm
[2], CSPA and HGPA from [17], and WClustering [11]. Thus, the final result is
K consensuses for the user to select from.

The idea in Caruana et al. [3] is to generate many base clusterings, then
build a similarity matrix for these different partitionings using Rand index. This
similarity matrix is passed to agglomerative hierarchical clustering to build a
meta clustering. The dendrogram shows how the clusterings are similar to each
other, thus there is no final consensus. Instead, the user can analyze the resulting
dendrogram to choose which clustering is the most relevant. To have a diversity
in the base clusterings, feature weighting using Zipf distribution and PCA were
used to produce different base clustering views.

For more information about consensus clustering methods, see Ghaemi et al.
[7] and Vega-Pons & Ruiz-Shulcloper [20].

3 The Proposed Approach

Instead of using a similarity matrix to group or meta-cluster the different par-
titions generated by the base clustering methods, the MultiCons approach is
based on the Frequent Closed Itemsets (FCIs) [15]. FCIs is an association rule
mining approach used to discover relationships between attribute values in a
dataset. FCIs are maximal sets of items (variable values) that are common to a
set of objects (instances) in a data matrix. One of the advantages of FCIs is that
they represent a subset of the frequent itemset lattice, yet they can be used to
derive all the possible association rules. Therefore, by reducing the search space,
memory consumption and execution times for generating all valid association
rules are in most cases drastically reduced compared to the approach based on
frequent itemsets. See [4] for an extensive survey on association rule mining.

The MultiCons approach uses FCIs to find clustering patterns among the
base partitionings. That is, it finds sets of instances that are clustered similarly
by maximal sets of base clusterings. The lattice of these clustering patterns, or
bi-clusters2, is then processed to build different consensuses. Thus, the user will
have several final clusterings to choose from based on his/her preference for the
number of clusters or their contents (does the grouping of instances into clusters
produce meaningful patterns for the user). The successive steps of the proposed
approach, described in algorithm 1, are explained in the following subsections.

2 Bi-clustering is defined by Mirkin [12] as “the simultaneous clustering of both row
and column sets in a data matrix”.

Input : Dataset to cluster
Output: ConsTree tree of consensuses

1 Generate multiple base clusterings of the dataset;
2 Build the membership matrix M;
3 Generate FCPs from M for minsupport = 0;
4 Sort the FCPs in ascending order of the size of their instances list;
5 MaxDT ← Number of base clusterings;
6 BiClust ← {FCPs whose FCIs contain MaxDT base clusters};
7 Assign a label to each bi-cluster in BiClust to build the first consensus vector

and store it in a list of vectors ConsVctrs;
8 /* Build the remaining consensuses */;
9 for DT = (MaxDT - 1) to 1 do

10 BiClust ← BiClust ∪ {FCPs whose FCIs contain DT base clusters};
11 N ← length(BiClust) // Nbr of itemsets in BiClust;
12 repeat
13 for i = 1 to N do

14 Bi ← ith bi-cluster in BiClust;
15 for j = 1 to N, j 6= i do

16 Bj ← jth bi-cluster in BiClust;
17 if Bi.instances list ⊂ Bj .instances list then
18 Remove Bi from BiClust;
19 Next i;

20 else if Bj .instances list ⊂ Bi.instances list then
21 Remove Bj from BiClust;
22 Next j;

23 else if Bi.instances list ∩Bj .instances list 6= ∅ then
24 Bi ← Bi ∪Bj ;
25 Remove Bj from BiClust;
26 Next i;

27 end

28 end

29 end

30 until All bi-clusters in BiClust are unique;
31 Assign a label to each bi-cluster in BiClust to build a consensus vector and

add it to ConsVctrs;

32 end
33 /* Remove similar consensuses */;
34 ST ← Vector of ‘1’s of length MaxDT;
35 for i = MaxDT to 2 do

36 Vi ← ith consensus in ConsVctrs;
37 for j = (i - 1) to 1 do

38 Vj ← jth consensus in ConsVctrs;
39 if Jaccard(Vi, Vj) = 1 then
40 ST [i] ← ST [i] + 1;
41 Remove ST [j];
42 Remove Vj from ConsVctrs;

43 end

44 end

45 end
46 Build the tree of consensuses in ConsVctrs

Algorithm 1: The MultiCons approach.

3.1 Base Clusterings

The base clusterings are hard partitions of a dataset, without limitations on the
number of clusters, or on the category of the clustering algorithms used. Thus,
we can combine a linear partitioning-based clustering like K-means or PAM
with results from hierarchical, Gaussian model, and/or density-based clustering
algorithms, as long as hard partitions are retrieved from them. Hard partitions
means that each instance of the dataset can belong to only one cluster. It is
preferable to use different values of K for each base clustering algorithm, and
to use different settings (if possible) if the same algorithm is used to generate
different clusterings, to ensure the diversity in the base partitionings. See [8] and
[21] for details about clustering methods.

3.2 Membership Matrix

After generating multiple clusterings of the dataset using a set of base clustering
methods, a membership matrix M is built. This matrix is a binary matrix of
N×M cells, where N is the number of instances in the clustered dataset, and M
is the number of cluster vectors (total number of clusters generated by all base
clustering algorithms) as given in definition 1.

Definition 1. A membership matrix M is a triplet (I, C, R) where I is a
finite set of instances represented as rows, C is a finite set of variables, each
designating a cluster, represented as columns, and R is a binary relation defining
relationships between rows and columns: R ⊆ I × C. Every couple (i, c) ∈ R,
where i ∈ I and c ∈ C, means that the instance i belongs to the cluster c.

An example membership matrix is given in table 1. A cluster vector V
(V1, V2, . . . , VN) is a binary vector that represents a cluster as a column of the
matrix, such that Vi = 1 if instance i belongs to the cluster, and Vi = 0 oth-
erwise, ∀i, 1 ≤ i ≤ N. In table 1, for instance, the first column represents the
cluster vector KM C1 = {1, 1, 1, 0, 1, 0, 1, 1, 1, 0}, designated by item KM C1.

Definition 2. An item of a membership matrix M = (I, C, R) is a cluster
identifier c ∈ C and an itemset is a non-empty finite set of items C = {c1, ...,
cn} ⊆ C in M. An itemset C ⊆ C is frequent in M iff its frequency, called
support, in M defined as support(C) = |{I ∈ I | ∀i ∈ I, ∀c ∈ C, we have
(i, c) ∈ R}| is greater than or equal to the user-defined minsupport threshold.

3.3 Generating Bi-Clusters

Having the membership matrix M, the next step is to generate the frequent
closed patterns (FCPs) from which bi-clusters will be generated. FCPs repre-
sent the maximum number of base clusterings that agree on grouping a set of
instances. That is, any subset of these base clusterings that agree on grouping

Table 1: Example membership matrix.

Id KM C1 KM C2 PAM C1 PAM C2 PAM C3 DB C1 DB C2

1 1 0 0 0 1 0 1

2 1 0 0 0 1 0 1

3 1 0 0 0 1 0 1

4 0 1 1 0 0 1 0

5 1 0 0 0 1 0 1

6 0 1 0 1 0 1 0

7 1 0 0 0 1 0 1

8 1 0 0 0 1 0 1

9 1 0 0 0 1 0 1

10 0 1 1 0 0 1 0

the same set of instances will not be considered3. To accomplish this, we use
the FIST algorithm [13] that finds the FCPs using generalized suffix-trees. Each
FCP associates an FCI (a set of base clusters identifiers) and its corresponding
instance identifier list, i.e., the identifiers of dataset instances that are common
to all clusters in the FCI set. Stated another way, FCPs are maximal rectangles in
the membership matrix. See [22] for complexity and applicability considerations
about FCIs and FCPs mining.

Definition 3. A frequent closed pattern P = (C, I) in the membership matrix
M = (I, C, R) is a pair of sets C ⊂ C and I ⊂ I such that:
i) ∀i ∈ I and ∀c ∈ C, we have (i, c) ∈ R.
ii) |I| ≥ minsupport, i.e., C is a frequent itemset.
iii) @i′ ∈ I such that ∀c ∈ C, we have (i′, c) ∈ R.
iv) @c′ ∈ C such that ∀i ∈ I, we have (i, c′) ∈ R.

Consider the following FCP in table 1: ({KM C1, PAM C3, DB C2}, {1, 2, 3,
5, 7, 8, 9}). The itemset {KM C1, PAM C3, DB C2} is a frequent closed itemset
and {1, 2, 3, 5, 7, 8, 9} is the maximal set of instances in relation with all the
three items KM C1, PAM C3 and DB C2. This bi-cluster reflects the fact that
the instances 1, 2, 3, 5, 7, 8 and 9 are common among cluster 1 of K-means,
cluster 3 of PAM, and cluster 2 of DBScan.

The output of this step is the pool of FCPs from which subsets are selected
to build a consensus.

Definition 4. Let M = (I, C, R) be a membership matrix. A consensus clus-
tering L of m bi-clusters from M is a set L = {P1, ..., Pm} with Pk∈[1,m] =

3 This reduces processing time by generating only clustering patterns of maximum
agreement between base clusters. Using, for instance, the well-known Apriori al-
gorithm [1] for generating frequent itemsets, and associating the corresponding in-
stances list with each, will generate all possible patterns, which is redundant for the
proposed approach.

(Ck, Ik), Ck ⊆ C, Ik ⊆ I such that
⋃k=m
k=1 Ik = I. A consensus clustering is an

unique partitioning of the dataset instances.

3.4 Generating Multiple Consensuses

The process of building multiple consensuses starts by building the first consen-
sus, which is the FCPs whose FCIs consist of all the base clusterings. Then, to
build the next consensus, we combine with the previously built bi-clusters the
FCPs whose FCI contains a specific number, called Decision Threshold (DT),
of base clusterings. The DT value represents the minimum number of base par-
titionings (base clustering executions) to consider for building a consensus. For
the first consensus, we have a DT equals to the number of base partitionings,
and we then decrease DT sequentially until DT = 1. By decrementing DT, the
new consensus considers another clustering view generated by a smaller number
of base clusterings.

After the first consensus L = {P1, ..., Pm} was built, and for each DT value,
a bi-cluster P = (C, I), where C is the set of base cluster identifiers, has one of
the following properties that are defined according to sets of instance identifiers:

i) Uniqueness: The bi-cluster does not intersect with any other bi-cluster. That
is, @P ′ = (C ′, I ′) ∈ L such that I ∩ I ′ 6= ∅.

ii) Inclusion: The bi-cluster is a subset of another bi-cluster. That is, ∃P ′ =
(C ′, I ′) ∈ L such that I ⊆ I ′.

iii) Intersection: The bi-cluster intersects with another bi-cluster. That is, ∃P ′

= (C ′, I ′) ∈ L such that I ∩ I ′ 6= ∅, I \ I ′ 6= ∅ and I ′ \ I 6= ∅.

To build a new consensus, intersecting bi-clusters are merged since each one
represent a set of instances that are close (very similar) in the data space4.
The intersection property between two bi-clusters is an indication of closeness of
these bi-clusters. Any bi-cluster with inclusion property is removed. The merg-
ing process repeats until all the remaining bi-clusters all have the uniqueness
property. As we use only a small set of FCPs for generating each consensus, the
process of generating multiple consensuses is fast, even when the set of all FCPs
is large. Also, building consensuses for lower DT values is faster than for high
DT values because the previous consensus contains fewer bi-clusters.

Similar consensuses are removed, and a stability counter (ST) is used to count
how many times each consensus is generated with different values of DT. For
example, if a consensus has ST = 3, this means that this consensus is generated
from 3 consecutive values of DT. The output of this step, that consists of all
consensuses generated for the different DT values, constitutes the ConsTree tree
of consensuses.

4 This is the objective of clustering algorithms, yet they differ in how they define the
similarity between instances.

3.5 ConsTree: A Tree of Consensuses

Each consensus clustering is then represented as a level in the ConsTree tree of
consensuses.

Definition 5. Let M = (I, C, R) be a membership matrix. A tree of consen-

suses from M is an ordered set (L, �) of consensuses L =
⋃DT=MinDT
DT=MaxDT L

DT

ordered according to inclusion relation ⊆ between sets of cluster identifiers. Let’s
denote Lα = {Pα1 , ..., Pαm} and Lβ = {P β1 , ..., P βn } the consensuses generated for
α and β DT values respectively. Let’s denote Pαq = (Cαq , I

α
q) the qth bi-cluster

in Lα and P βr = (Cβr , I
β
r) the rth bi-cluster in Lβ, with 1 ≤ q ≤ m and 1 ≤ r

≤ n. For α ¿ β we have Lα � Lβ, that is ∀Pαq ∈ Lα, ∃P βr ∈ Lβ such that Iαq ⊆
Iβr . Lα is a predecessor of Lβ in the tree of consensuses.

After generating all the possible consensuses, a tree graphical representation
(Hasse diagram of the tree of consensuses) is built to visualize these different
results. Each level in the tree represent a consensus, with nodes representing its
clusters. The bottom level of the tree is the first consensus. At each new level,
the clusters of the lower level are merged into clusters at the higher level.

Fig. 1: Example ConsTree.

An example of the ConsTree is shown in figure 1. The tree explains the result
of applying our approach on a dataset of 399 instances clustered using 12 base

clusterings. The base clusterings are selected randomly with random settings.
By using ST, the tree consists of 7 levels instead of 12. Without it, we will have
duplicated levels, that is, a level at DT=9 which is exactly the same clusters of
DT=10. Other redundant levels that are removed because they are identical to
a higher level consensus5 are: DT=6, 5, 3, and 1. As an analysis tool, the tree
shows that the clusters of sizes 44, 39, or 174 are strong clusters, so the user
should consider this when he/she wants to choose a final consensus clustering.
The ST value can point to the best result as the one that is more stable than
others (the one at DT=7), but as the clustering task is more related to the
relevance of the found patterns to user preference, a user may prefer to select
the consensus at DT=8, because he/she prefers to separate the cluster of 83
instances at DT=7 into 2 clusters like in DT=8, as these 2 may reflect better
patterns for him/her.

Fig. 2: Example of Analysis from ConsTree visualization.

Visualizing the tree enables the user to understand how the consensuses were
built based on different combinations of base clusterings, and to discover strong
partitions in the dataset: The cluster(s) that do not merge with others on a

5 A “higher level consensus” means that it is built from a higher number of base
clusters.

sequence of consensuses, which reflect agreement between many base clusterings
to construct it(them).

Visualizing the tree facilitates not only the analysis of the consensuses, but
also the analysis of the dataset, that is, it enables the user to discover what
partitions are more strong (consist of very similar instances) than others (as the
ones circled in blue and red on the figure 2). It may also highlight a group of
items that are far from being similar to other instances such as the column of
stable cluster circled in red and the similar column beside. In the analysis of
data these stable clusters provide a lot of information on the items they contain.
Furthermore, the fact that these two columns merge into one cluster, circled in
green, rather than merging with any of the previous stable clusters (circled in
blue) provides again insight on the peculiar information their items hold. Based
on that, the user may try to re-preprocess the dataset to get more relevant
clustering results.

4 Synthetic Example

This example is based on the “Cassini” dataset used by Dimitriadou et al. [6]
which consists of 3 structures in a 2D data space: The 2 external structures are
banana-shaped, and the middle one is circle-shaped. The dataset consist of 1000
instances. Supposing that we do not know that the dataset contains 3 natural
clusters, this dataset was clustered using 3 base clustering methods: K-means
with K=2, agglomerative hierarchical clustering with average linkage and K=4,
and a Gaussian model-based clustering with K=7. The graphical display of these
3 base clustering results are shown in figure 3.

(a) K-means (b) Hierarchical (c) Model-based

Fig. 3: Example of clustering Cassini dataset with 3 different base clusterings.

After building the membership matrix of 1000 × 13 binary cells, the FIST
algorithm generates 18 FCPs describing clustering patterns common among the
base clusters. The first consensus consists of 10 clusters which correspond to the
instance lists of the 10 unique FCPs at DT=3. At DT=2, we have 6 FCPs added
to the 10 clusters of the previous consensus. Merging intersecting bi-clusters and

removing subsets will result in only 3 clusters which are the true clustering of the
dataset according to the class labels, as shown in figure 4. At DT=1, we have 2
FCPs added to the 3 clusters from previous step, and after merging intersecting
bi-clusters we will end up with only 1 cluster.

Figure 5 shows the tree of consensuses. In this synthetic example, we have
only 3 consensuses and, obviously, the one in the middle (orange nodes) is the
best. In real tests, the tree will have many levels6, and the user will have several
consensuses to choose from, with respect to the targetted results as explained in
section 3.5. Regarding execution time, since our algorithm works in an agglom-
erative way, with the decrease of DT (after the first consensus) fewer FCPs are
processed to build a consensus, as shown in the example. That is, at DT=2, 16
bi-clusters were processed, but at DT=1, only 5 were processed by lines 9 to 32
of the MultiCons algorithm. Using this approach to build multiple consensuses
from a big FCP set ensures thus a low execution time.

Fig. 4: MultiCons best con-
sensus for Cassini dataset.

Fig. 5: ConsTree for Cassini dataset.

5 Experiments

We implemented the MultiCons algorithm using R language [16] on a DELL
PRECISION M4800 with Intel(R) Core(TM) i7-4710MQ CPU @ 2.50GHz, 32 GB
of RAM, and Microsoft Windows 10 Professional (64-bit) operating system. We
have used the FIST algorithm implementation in Java from the website of the au-
thors [13]. At each test, the base clusterings are generated by random selection of
a set of clustering algorithms and/or parameters settings. Among the clustering
algorithms used: K-means, PAM, CLARA, DBSCAN, agglomerative hierarchi-
cal clustering, AGNES, DIANA, MCLUST (Gaussian Model-Based Clustering),
C-Means, FANNY, Bagged Clustering, and SOM. We compared the results of
MultiCons against the consensus clustering algorithms available in R package
CLUE [9], including the following consensus methods: SE, GV1, DWH, HE,

6 The maximum depth of the tree equals the number of base clusterings used.

SM, GV3, soft/symdiff, and consensus medoid. To validate the results of our
consensus method and the CLUE methods, we compared the clustering results
against the true class labels of the tested dataset using several external valida-
tion measures like NMI (Normalized Mutual Information) [17], Jaccard, cRand
(Corrected Rand), and FM (Fowlkes and Mallows) [5,8] available also in the
CLUE package [10]. However, in real life, true class labels may not exist, and
the evaluation of the results may depend on the ability to extract meaningful
patterns from the generated clusters. Hence, we provide ConsTree to ease this
process.

Continuing the synthetic example in section 4, table 2 shows the validation
of the different base clusterings and consensus methods. MultiCons results are
named Cons 1, Cons 2, and Cons 3. You can see that even when the base clus-
terings produce low quality results (caused by bad selection of the clustering
algorithm to discover the clustering pattern in the dataset, or by bad setting
of the algorithm parameters), consensus clustering can achieve better quality
clustering.

Table 2: Validation of the synthetic example.

Algorithm Jaccard NMI cRand FM

k-means 0.6537341 0.6499608 0.6401733 0.8013933

Hierarchical 0.7791699 0.8904783 0.8188679 0.8827060

MClust 0.4104735 0.7397994 0.4714941 0.6406821

Cons 1 0.3593594 NaN 0.0000000 0.5994659

Cons 2 1.0000000 1.0000000 1.0000000 1.0000000

Cons 3 0.3377604 0.7011586 0.3952182 0.5811716

SE 0.7040477 0.7797105 0.7328262 0.8266073

GV1 1.0000000 1.0000000 1.0000000 1.0000000

DWH 0.5279396 0.5495195 0.5044829 0.6918356

HE 1.0000000 1.0000000 1.0000000 1.0000000

SM 1.0000000 1.0000000 1.0000000 1.0000000

GV3 1.0000000 1.0000000 1.0000000 1.0000000

soft/symdiff 0.4727269 0.2735059 0.4324315 0.6499522

medoids 0.7791699 0.8904783 0.8188679 0.8827060

We present other tests in table 3 presenting a description of the dataset, the
base clusterings, and the quality of the achieved consensus results compared to
the true class using Jaccard measure. We chose the Jaccard measure because
it gives a moderate trade-off between the similarity to the true class and the
number of generated clusters. Note that for CLUE consensus methods, we used
K equal the number of the true classes of the dataset, while MultiCons does not
require K and it generates multiple results with different numbers of clusters.

The datasets Zoo, Smiley, Shapes, Hyper Cube, and Wine are available in the
“mlbench” R package [14]. The other datasets are from Ultsch [19] where the
author of the datasets declare them as the “Fundamental Clustering Problem
Suite”. We can see that the MultiCons approach achieved the best results among
the other consensus methods, except for Wine dataset where it achieved the
second best result.

Table 3: Experimental results.

Dataset Zoo Smiley Shapes
Hyper

Cube
Wine

Chain

link
Atom

Golf

Ball
Hepta Lsun Target Terta

Size 101 500 2000 800 178 1000 800 4002 212 400 770 400

attributes 16 2 2 3 13 3 3 3 3 2 2 3

classes 7 4 4 8 3 2 2 1 7 3 6 4

base

clusterings
9 6 8 8 6 6 6 5 7 5 8 7

K range for

base clusterings
K = 7 2 to 7 2 to 9 4 to 11 2 to 9 2 to 7 2 to 7 2 to 6 4 to 10 2 to 6 3 to 10 2 to 8

Base min quality 0.41 0.40 0.46 0.41 0.32 0.24 0.46 0.17 0.36 0.47 0.33 0.50

Base max quailty 0.87 0.74 1 1 0.69 1 1 0.50 1 1 1 1

Best MultiCons

result
0.84 1 1 1 0.79 1 1 1 1 1 1 1

clusters in best

MultiCons
5 4 4 8 9 2 2 1 7 3 6 4

SE 0.72 0.59 0.83 0.89 0.59 0.83 0.78 1 1 0.45 0.64 0.98

GV1 0.76 0.92 0.66 1 0.41 0.59 0.56 1 1 0.98 0.71 1

DWH 0.77 0.56 0.98 0.91 0.55 0.53 0.84 1 0.96 0.45 0.70 1

HE 0.77 0.78 0.84 1 0.58 0.64 0.60 1 1 0.45 0.67 1

SM 0.77 0.75 1 0.80 0.59 0.65 0.91 1 1 0.48 0.67 0.99

GV3 0.74 0.76 1 1 0.87 0.92 1 1 1 1 0.72 1

soft/symdiff 0.76 0.57 1 1 0.62 0.92 1 1 1 0.47 0.71 1

medoids 0.70 0.74 0.87 1 0.69 0.35 0.57 0.25 1 0.59 0.72 1

6 Conclusions

We presented a new multiple consensus clustering method that require no param-
eters, yet it can build the correct number of clusters based on finding clustering
patterns common in a set of base clusterings. Other consensus methods require
at least the parameter K (like in CLUE methods) to generate K clusters in the
consensus. Without a prior domain knowledge, it is difficult to predict K, while
our method can provide the user with a visualization of how the clusters are
generated and from how many base clusterings, thus one can choose easily what
are the most relevant clusters. All the generated consensuses can be attached to
the original dataset, so that the data analyst can easily compare a set of different
clusterings while other methods provide 1 solution and require either to modify

K or the base clusterings in order to provide a new solution, without providing
any relation between the different results.

To the best of our knowledge, the proposed method is the first to use frequent
closed patterns to detect similarities among base clusterings and to build a con-
sensus from these. One of the benefits of using FCIs technique is execution time:
It is not related to the size of the dataset, instead, it is related to the number of
base clusterings used and whether there are many similarities or many conflicts
between the base clusterings. Thus, even for large datasets, if there is a clustering
structure common to most base clusterings, we will have few FCPs, while other
methods based on distance matrix are limited by the size of the dataset. With
our approach, even when there is a large number of FCPs, MultiCons processes
them very fast since at each consensus, it requires only few FCPs to work with.
Tests showed that CLUE methods GV3 and soft/symdiff require a lot of both
computation and memory compared to MultiCons.

According to our tests, the proposed MultiCons method can produce very
good results (the best results for all the datasets tested but one), generating any
shape for clusters, by benefiting from the different shapes that the considered
base clusterings provide. Thus, we recommend using different clustering algo-
rithms for the base partitionings, with varying K values. The objective of this
work is not just to find a consensus clustering, but also to make the clustering
task pain-free. That is, you do not need anymore to select carefully the base
clusterings or their parameters, which requires some expertise. Instead, the user
only needs to build randomly varying clusterings, and the MultiCons approach
will recommend several results that can be easily analyzed. Using the ConsTree
result of the MultiCons approach, the user can thus detect not only the strong
clusters, but also the outliers, and the borders of very close clusters for which it
is difficult to decide to which cluster they should belong. Such instances will be
recognized as singleton clusters or small clusters that do not merge with others
on several successive levels in the ConsTree.

Our approach is currently used for small store consumer profiling and it is
pretty successful to identify very relevant consumer groups and in highlighting
peculiar groups not visible by any other clustering approach.

References

1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: Proc. VLDB Conf. pp. 487–499 (1994)

2. Asur, S., Ucar, D., Parthasarathy, S.: An ensemble framework for clustering
protein–protein interaction networks. Bioinformatics 23(13), i29–i40 (2007)

3. Caruana, R., Elhawary, M., Nguyen, N., Smith, C.: Meta clustering. In: Proc. IEEE
ICDM Conf. pp. 107–118 (2006)

4. Ceglar, A., Roddick, J.F.: Association mining. ACM Computing Surveys 38(2)
(2006)

5. Dalton, L., Ballarin, V., Brun, M.: Clustering algorithms: on learning, validation,
performance, and applications to genomics. Current Genomics 10(6), 430 (2009)

6. Dimitriadou, E., Weingessel, A., Hornik, K.: A cluster ensembles framework. IOS
Press (2003)

7. Ghaemi, R., Sulaiman, M.N., Ibrahim, H., Mustapha, N.: A survey: clustering
ensembles techniques. World Academy of Science, Engineering and Technology 50,
636–645 (2009)

8. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques.
Journal of Intelligent Information Systems 17(2), 107–145 (2001)

9. Hornik, K.: A CLUE for CLUster Ensembles. Journal of Statistical Software 14(12)
(2005), http://www.jstatsoft.org/v14/i12/

10. Hornik, K.: CLUE: Cluster ensembles (2015), http://CRAN.R-project.org/

package=clue, r package version 0.3-50.
11. Li, T., Ding, C.: Weighted consensus clustering. In: Proc. SIAM Conf. on Data

Mining. pp. 798–809 (2008)
12. Mirkin, B.: Mathematical classification and clustering: From how to what and why.

In: Classification, Data Analysis, and Data Highways. Springer (1998)
13. Mondal, K.C., Pasquier, N., Mukhopadhyay, A., Maulik, U., Bandhopadyay, S.: A

new approach for association rule mining and bi-clustering using formal concept
analysis. In: Machine Learning and Data Mining in Pattern Recognition, pp. 86–
101. Springer (2012)

14. Newman, D., Hettich, S., Blake, C., Merz, C.: UCI repository of machine learning
databases (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

15. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Efficient mining of association
rules using closed itemset lattices. Inf. Systems 24(1), 25–46 (1999)

16. R Development Core Team: R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, Vienna, Austria (2008),
http://www.R-project.org

17. Strehl, A., Ghosh, J.: Cluster ensembles – a knowledge reuse framework for com-
bining multiple partitions. JMLR 3, 583–617 (2003)

18. Topchy, A., Law, M., Jain, A., Fred, A.: Analysis of consensus partition in cluster
ensemble. In: Proc. IEEE ICDM Conf. pp. 225–232 (2004)

19. Ultsch, A.: Clustering with SOM: U*C. In: Proc. WSOM Workshop. pp. 75–82
(2005)

20. Vega-Pons, S., Ruiz-Shulcloper, J.: A survey of clustering ensemble algorithms.
IJPRAI 25(03), 337–372 (2011)

21. Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. on Neural Net-
works 16(3), 645–678 (2005)

22. Yang, G.: The complexity of mining maximal frequent itemsets and maximal fre-
quent patterns. In: ACM SIGKDD. pp. 344–353 (2004)

23. Zhang, Y., Li, T.: Consensus clustering + meta clustering = multiple consensus
clustering. In: Proc. FLAIRS Conf. (2011)

http://www.jstatsoft.org/v14/i12/
http://CRAN.R-project.org/package=clue
http://CRAN.R-project.org/package=clue
http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.R-project.org

