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On the definition and the properties of the principal eigenvalue of some nonlocal operators

In this article we study some spectral properties of the linear operator L Ω + a defined on the space C( Ω) by :

where Ω ⊂ R N is a domain, possibly unbounded, a is a continuous bounded function and K is a continuous, non negative kernel satisfying an integrability condition.

We focus our analysis on the properties of the generalized principal eigenvalue λ p (L Ω + a) defined by

λ p (L Ω + a) := sup{λ ∈ R | ∃ϕ ∈ C( Ω), ϕ > 0, such that L Ω [ϕ] + aϕ + λϕ ≤ 0 in Ω}.
We establish some new properties of this generalized principal eigenvalue λ p . Namely, we prove the equivalence of different definitions of the principal eigenvalue. We also study the behaviour of λ p (L Ω + a) with respect to some scaling of K.

For kernels K of the type, K(x, y) = J(xy) with J a compactly supported probability density, we also establish some asymptotic properties of λ p L σ,m,Ω -1 σ m + a where L σ,m,Ω is defined by L σ,2,Ω [ϕ] := 1 σ 2+N Ω J

xy σ ϕ(y) dy. In particular, we prove that

lim σ→0 λ p L σ,2,Ω - 1 σ 2 + a = λ 1 D 2 (J) 2N ∆ + a ,
where D 2 (J) := R N J(z)|z| 2 dz and λ 1 denotes the Dirichlet principal eigenvalue of the elliptic operator. In addition, we obtain some convergence results for the corresponding eigenfunction ϕ p,σ .

Introduction

The principal eigenvalue of an operator is a fundamental notion in modern analysis. In particular, this notion is widely used in PDE's literature and is at the source of many profound results especially in the study of elliptic semi linear problems. For example, the principal eigenvalue is used to characterise the stability of equilibrium of a reaction-diffusion equation enabling the definition of persistence criteria [START_REF] Cantrell | Diffusive logistic equations with indefinite weights: population models in disrupted environments[END_REF][START_REF] Cantrell | The effects of spatial heterogeneity in population dynamics[END_REF][START_REF]On the effects of spatial heterogeneity on the persistence of interacting species[END_REF][START_REF] Berestycki | Analysis of the periodically fragmented environment model. I. Species persistence[END_REF][START_REF] Engländer | Local extinction versus local exponential growth for spatial branching processes[END_REF][START_REF] Kawasaki | Biological invasions: Theory and practice[END_REF][START_REF] Ross | Transience, recurrence and local extinction properties of the support for supercritical finite measure-valued diffusions[END_REF]. It is also an important tool in the characterisation of maximum principle properties satisfies by elliptic operators [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF][START_REF] Berestycki | The principal eigenvalue and maximum principle for second-order elliptic operators in general domains[END_REF] and to describe continuous semi-groups that preserve an order [START_REF] Akian | A collatz-wielandt characterization of the spectral radius of order-preserving homogeneous maps on cones[END_REF][START_REF] Donsker | On a variational formula for the principal eigenvalue for operators with maximum principle[END_REF][START_REF] Lemmens | Nonlinear perron-frobenius theory[END_REF]. It is further used in obtaining Liouville type results for elliptic semi-linear equations [START_REF] Berestycki | On the principal eigenvalue of elliptic operators in R N and applications[END_REF][START_REF] Berestycki | Liouville-type results for semilinear elliptic equations in unbounded domains[END_REF].

In this article we are interested in such notion for linear operators L Ω + a defined on the space of continuous functions C( Ω) by :

L Ω [ϕ] + aϕ := Ω K(x, y)ϕ(y) dy + a(x)ϕ(x)
where Ω ⊂ R N is a domain, possibly unbounded, a is a continuous bounded function and K is a non negative kernel satisfying an integrability condition. The precise assumptions on Ω, K and a will be given later on.

To our knowledge, for most of positive operators, the principal eigenvalue is a notion related to the existence of an eigen-pair, namely an eigenvalue associated with a positive eigen-element. For the operator L Ω + a, when the function a is not constant, for any real λ, neither L Ω + a + λ nor its inverse are compact operators. Moreover, as noticed in [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF][START_REF] Coville | Pulsating fronts for nonlocal dispersion and kpp nonlinearity[END_REF][START_REF] Kao | Random dispersal vs. nonlocal dispersal[END_REF][START_REF] Shen | Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats[END_REF], the operator L Ω + a may not have any eigenvalues in the space L p (Ω) or C( Ω). For such operator, the existence of an eigenvalue associated with a positive eigenvector is then not guaranteed. Studying quantities that can be used as surrogates of a principal eigenvalue and establishing their most important properties are therefore of great interest for such operators.

In this perspective, we are interested in the properties of the following quantity:

λ p (L Ω + a) := sup{λ ∈ R | ∃ϕ ∈ C( Ω), ϕ > 0, such that L Ω [ϕ] + a(x)ϕ + λϕ ≤ 0 in Ω}, (1.1)
which can be expressed equivalently by the sup inf formula:

λ p (L Ω + a) = sup ϕ∈C( Ω) ϕ>0 inf x∈Ω - L Ω [ϕ](x) + a(x)ϕ(x) ϕ(x) . (1.2) 
This number was originally introduced in the Perron-Frobenius Theory to characterise the eigenvalues of an irreducible positive matrix [START_REF] Collatz | Einschließungssatz für die charakteristischen zahlen von matrizen[END_REF][START_REF] Wielandt | Unzerlegbare, nicht negative matrizen[END_REF]. Namely, for a positive irreducible matrix A, the eigenvalue λ 1 (A) associated with a positive eigenvector can be characterised as follows:

λ p (A) := sup x∈R N x>0 inf i∈{1,...,N } - (Ax) i x i = λ 1 (A) = inf x∈R N x≥0,x =0 sup i∈{1,...,N } - (Ax) i x i =: λ ′ p (A), (1.3) 
also known as the Collatz-Wieldandt characterisation. Numerous generalisation of these types of characterisation exist in the literature. Generalisations of the characterisation of the principal eigenvalue by variants of the Collatz-Wielandt characterisation (i.e. (1.3)) were first obtained for positive compact operators in L p (Ω) [START_REF] Samuel Karlin | Positive operators[END_REF][START_REF]The existence of eigenvalues for integral operators[END_REF][START_REF] Schaefer | A minimax theorem for irreducible compact operators inl p-spaces[END_REF] and later for general positive operators that posses an eigen-pair [START_REF] Friedland | Characterizations of the spectral radius of positive operators[END_REF].

In parallel with the generalisation of the Perron-Frobenius Theory, several inf sup formulas have been developed to characterise the spectral properties of elliptic operators satisfying a maximum principle, see the fundamental works of Donsker and Varadhan [START_REF] Donsker | On a variational formula for the principal eigenvalue for operators with maximum principle[END_REF], Nussbaum, Pinchover [START_REF] Nussbaum | On variational principles for the generalized principal eigenvalue of second order elliptic operators and some applications[END_REF], Berestycki, Nirenberg, Varadhan [START_REF] Berestycki | The principal eigenvalue and maximum principle for second-order elliptic operators in general domains[END_REF] and Pinsky [START_REF] Pinsky | Second order elliptic operator with periodic coefficients: criticality theory, perturbations, and positive harmonic functions[END_REF][START_REF] Ross | Positive harmonic functions and diffusion[END_REF]. In particular, for an elliptic operator defined in a bounded domain Ω ⊂ R N and with bounded continuous coefficients, E := a ij (x)∂ ij +b i (x)∂ i +c(x), several notions of principal eigenvalue have been introduced. On one hand, Donsker and Varadhan [START_REF] Donsker | On a variational formula for the principal eigenvalue for operators with maximum principle[END_REF] have introduced a quantity λ V (E), called principal eigenvalue of E, that satisfies

λ V (E) := inf ϕ∈dom(E) ϕ>0 sup x∈Ω - E[ϕ](x) ϕ(x) = inf{λ ∈ R | ∃ ϕ ∈ dom(E), ϕ > 0 such that E[ϕ](x) + λϕ(x) ≥ 0 in Ω},
where dom(E) ⊂ C( Ω) denotes the domain of definition of E. On the other hand Berestycki, Nirenberg and Varadhan [START_REF] Berestycki | The principal eigenvalue and maximum principle for second-order elliptic operators in general domains[END_REF] have introduced λ 1 (E) defined by:

λ 1 (E) := sup{λ ∈ R | ∃ ϕ ∈ W 2,N (Ω), ϕ > 0 such that E[ϕ](x) + λϕ(x) ≤ 0 in Ω}, = sup ϕ∈W 2,N (Ω) ϕ>0 inf x∈Ω - E[ϕ](x) ϕ(x)
as another possible definition for the principal eigenvalue of E. When Ω is a smooth bounded domain and E has smooth coefficients, both notions coincide (i.e. λ V (E) = λ 1 (E)). The equivalence of this two notions has been recently extended for more general elliptic operators, in particular the equivalence holds true in any bounded domains Ω and in any domains when E is an elliptic self-adjoint operator with bounded coefficients [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF]. It is worth mentioning that the quantity λ V (E) was originally introduced by Donsker and Varadhan [START_REF] Donsker | On a variational formula for the principal eigenvalue for operators with maximum principle[END_REF] to obtain the following variational characterisation of λ 1 (E) in a bounded domain:

λ 1 (E) = sup dµ∈P(Ω) inf ϕ∈dom(E) ϕ>0 Ω - E[ϕ](x) ϕ(x) dµ(x),
where P(Ω) is the set of all probability measure on Ω. Such characterisation is still valid when Ω is unbounded, see Nussbaum and Pinchover [START_REF] Nussbaum | On variational principles for the generalized principal eigenvalue of second order elliptic operators and some applications[END_REF].

Lately, the search of Liouville type results for semilinear elliptic equations in unbounded domains [START_REF] Berestycki | On the principal eigenvalue of elliptic operators in R N and applications[END_REF][START_REF] Rossi | Liouville type results for periodic and almost periodic linear operators[END_REF] and the characterisation of spreading speed [START_REF] Berestycki | Spreading speeds for one-dimensional monostable reaction-diffusion equations[END_REF][START_REF] Nadin | Existence and uniqueness of the solution of a spacetime periodic reactiondiffusion equation[END_REF] have stimulated the studies of the properties of λ 1 (E) and several other notions of principal eigenvalue have emerged. For instance, several new notions of principal eigenvalue have been introduced for general elliptic operators defined on (limit or almost) periodic media [START_REF] Berestycki | Liouville-type results for semilinear elliptic equations in unbounded domains[END_REF][START_REF] Berestycki | On the principal eigenvalue of elliptic operators in R N and applications[END_REF][START_REF] Nadin | The principal eigenvalue of a space-time periodic parabolic operator[END_REF][START_REF] Rossi | Liouville type results for periodic and almost periodic linear operators[END_REF]. For the interested reader, we refer to [START_REF] Berestycki | Generalizations and properties of the principal eigenvalue of elliptic operators in unbounded domains[END_REF], for a review and a comparison of the different notions of principal eigenvalue for an elliptic operator defined in a unbounded domain.

For the operator L Ω + a, much less is known and only partial results have been obtained when Ω is bounded [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF][START_REF]Nonlocal refuge model with a partial control[END_REF][START_REF] Donsker | On a variational formula for the principal eigenvalue for operators with maximum principle[END_REF][START_REF]On the principal eigenvalue of some nonlocal diffusion problems[END_REF][START_REF] Ignat | Lower and upper bounds for the first eigenvalue of nonlocal diffusion problems in the whole space[END_REF][START_REF] Kao | Random dispersal vs. nonlocal dispersal[END_REF] or in a periodic media [START_REF] Coville | Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity[END_REF][START_REF] Coville | Pulsating fronts for nonlocal dispersion and kpp nonlinearity[END_REF][START_REF] Shen | Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats[END_REF][START_REF] Shen | Stationary solutions and spreading speeds of nonlocal monostable equations in space periodic habitats[END_REF]]. More precisely, λ p (L Ω + a) has been compared to one of the following definitions :

λ ′ p (L Ω +a) := inf {λ ∈ R | ∃ϕ ∈ C(Ω) ∩ L ∞ (Ω), ϕ ≥ ≡ 0, s. t. L Ω [ϕ](x) + (a(x) + λ)ϕ(x) ≥ 0 in Ω}
or when L Ω + a is a self-adjoint operator:

λ v (L Ω + a) := inf ϕ∈L 2 (Ω),ϕ ≡0 - L Ω [ϕ] + aϕ, ϕ ϕ 2 L 2 (Ω) , = inf ϕ∈L 2 (Ω),ϕ ≡0 1 2 Ω×Ω K(x, y)[ϕ(x) -ϕ(y)] 2 dxdy -Ω a(x) + Ω K(x, y) dy ϕ 2 (x) dx ϕ 2 L 2 (Ω)
, where , denotes the scalar product of L 2 (Ω). For Ω ⊂ R N a bounded domain and for particular kernels K, an equality similar to λ V (E) = λ 1 (E) has been obtained in [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF], provided that K ∈ C( Ω× Ω) satisfies some non-degeneracy conditions. The author shows that

λ p (L Ω + a) = λ ′ p (L Ω + a). (1.4) 
In a periodic media, an extension of this equality was obtained in [START_REF] Coville | Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity[END_REF][START_REF] Coville | Pulsating fronts for nonlocal dispersion and kpp nonlinearity[END_REF] for kernels K of the form K(x, y) := J(xy) with J a symmetric positive continuous density of probability. In such case, they prove that

λ p (L R N + a) = λ ′ p (L R N + a) = λ v (L R N + a). (1.5)
In this paper, we pursue the works begun in [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF][START_REF] Coville | Pulsating fronts for nonlocal dispersion and kpp nonlinearity[END_REF][START_REF]Nonlocal refuge model with a partial control[END_REF] by one of the present authors and we investigate more closely the properties of λ p (L Ω + a). Namely, we first look whether λ p (L Ω + a) can be characterised by other notions of principal eigenvalue and under which conditions on Ω, K and a the equality (1.4) or (1.5) holds true. In particular, we introduce a new notion of principal eigenvalue, λ ′′ p (L Ω + a), defined by :

λ ′′ p (L Ω + a) := inf {λ ∈ R | ∃ϕ ∈ C c (Ω), ϕ ≥ ≡ 0, such that L Ω [ϕ](x) + (a(x) + λ)ϕ(x) ≥ 0 in Ω}
and we compare this new quantity with λ p , λ ′ p and λ v . Another natural question is to obtain a clear picture on the dependence of λ p with respect to all the parameters involved. If the behaviour of λ p (L Ω + a) with respect to a or Ω can be exhibited directly from the definition, the impact of scalings of the kernel is usually unknown and has been largely ignored in the literature except in some specific situations involving particular nonlocal dispersal operators defined in a bounded domain [START_REF] Andreu | A nonlocal p-laplacian evolution equation with neumann boundary conditions[END_REF][START_REF] Cortazar | How to approximate the heat equation with neumann boundary conditions by nonlocal diffusion problems[END_REF][START_REF] Kao | Random dispersal vs. nonlocal dispersal[END_REF][START_REF] Shen | On principal spectrum points/principal eigenvalues of nonlocal dispersal operators and applications[END_REF].

For a particular type of K and a, we establish the asymptotic properties of λ p with respect to some scaling parameter. More precisely, let K(x, y) = J(xy) and let us denote J σ (z) := 1 σ N J z σ . When J is a non negative function of unit mass, we study the properties of the principal eigenvalue of the operator L σ,m,Ω -1 σ m + a, where the operator L σ,m,Ω is defined by:

L σ,m,Ω [ϕ] := 1 σ m Ω J σ (x -y)ϕ(y) dy.
In this situation, the operator L σ,m,Ω -1 σ m refers to a nonlocal version of the standard diffusion operator with a homogeneous Dirichlet boundary condition. Such type of operators has appeared recently in the literature to model a population that have a constrained dispersal [START_REF] Berestycki | Persistence criteria for populations with non-local dispersion[END_REF][START_REF] Fife | An integrodifferential analog of semilinear parabolic PDEs, Partial differential equations and applications[END_REF][START_REF] Hutson | The evolution of dispersal[END_REF][START_REF] Kao | Random dispersal vs. nonlocal dispersal[END_REF][START_REF] Shen | On principal spectrum points/principal eigenvalues of nonlocal dispersal operators and applications[END_REF]. In this context, the pre-factor 1 σ m is interpreted as a frequency at which the events of dispersal occur. For m ∈ [0, 2] and a large class of J, we obtain the asymptotic limits of λ p L σ,m,Ω -1 σ m + a as σ → 0 and as σ → +∞.

Motivations: nonlocal reaction diffusion equation

Our interest in studying the properties of λ p (L Ω + a) stems from the recent studies of populations having a long range dispersal strategy [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF][START_REF]Nonlocal refuge model with a partial control[END_REF][START_REF] Berestycki | Persistence criteria for populations with non-local dispersion[END_REF][START_REF] Kao | Random dispersal vs. nonlocal dispersal[END_REF][START_REF] Shen | Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats[END_REF]. For such a population, a commonly used model that integrates such long range dispersal is the following nonlocal reaction diffusion equation ( [START_REF] Fife | An integrodifferential analog of semilinear parabolic PDEs, Partial differential equations and applications[END_REF][START_REF] Grinfeld | Non-local dispersal[END_REF][START_REF] Hutson | The evolution of dispersal[END_REF][START_REF] Lutscher | The effect of dispersal patterns on stream populations[END_REF][START_REF] Turchin | Quantitative analysis of movement: Measuring and modeling population redistribution in animals and plants[END_REF]):

∂ t u(t, x) = Ω J(x -y)u(t, y) dy -u(t, x) Ω J(y -x) dy + f (x, u(t, x)) in R + × Ω. (1.6)
In this context, u(t, x) is the density of the considered population, J is a dispersal kernel and f (x, s) is a KPP type non-linearity describing the growth rate of the population. When Ω is a bounded domain [START_REF] Bates | Existence, uniqueness and stability of the stationary solution to a nonlocal evolution equation arising in population dispersal[END_REF][START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF][START_REF]Nonlocal refuge model with a partial control[END_REF][START_REF] Garcia-Melian | A logistic equation with refuge and nonlocal diffusion[END_REF][START_REF] Kao | Random dispersal vs. nonlocal dispersal[END_REF][START_REF] Shen | Stationary solutions and spreading speeds of nonlocal monostable equations in space periodic habitats[END_REF], an optimal persistence criteria has been obtained using the sign of λ p (M Ω + ∂ u f (x, 0)), where M Ω stands for the operator:

M Ω [ϕ] := Ω J(x -y)ϕ(y) dy -j(x)ϕ(x),
where j(x) := Ω J(yx) dy.

In such model, a population will persists if and only if

λ p (M Ω + ∂ u f (x, 0)) < 0. We can easily check that λ p (M Ω + ∂ u f (x, 0)) = λ p (L Ω -j(x) + ∂ u f (x, 0)).
When Ω = R N and in periodic media, adapted versions of λ p have been recently used to define an optimal persitence criteria [START_REF] Coville | Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity[END_REF][START_REF] Coville | Pulsating fronts for nonlocal dispersion and kpp nonlinearity[END_REF][START_REF] Shen | Spreading speeds for monostable equations with nonlocal dispersal in space periodic habitats[END_REF][START_REF] Shen | On principal spectrum points/principal eigenvalues of nonlocal dispersal operators and applications[END_REF]. The extension of such type of persistence criteria for more general environments is currently investigated by ourself [START_REF] Berestycki | Persistence criteria for populations with non-local dispersion[END_REF] by means of our findings on the properties of λ p .

The understanding of the effect of a dispersal process conditioned by a dispersal budget is another important question. The idea introduced by Hutson, Martinez, Mischaikow and Vickers [START_REF] Hutson | The evolution of dispersal[END_REF], is simple and consists in introducing a cost function related to the amount of energy an individual has to use to produce offspring, that jumps on a long range. When a long range of dispersal is privileged, the energy consumed to disperse an individual is large and so very few offsprings are dispersed. On the contrary, when the population chooses to disperse on a short range, few energy is used and a large amount of the offsprings is dispersed. In R N , to understand the impact of a dispersal budget on the range of dispersal, we are led to consider the family of dispersal operator :

M σ,m [ϕ](x) := 1 σ m (J σ ⋆ ϕ(x) -ϕ(x)) ,
where J σ (z) := 1 σ N J z σ is the standard scaling of the probability density J. For such family, the study of the dependence of λ p (M σ,m + a) with respect to σ and m is a first step to analyse the impact of the range of the dispersal σ on the persistence of the population. In particular the asymptotic limits σ → +∞ and σ → 0 are of primary interest.

Assumptions and Main Results

Let us now state the precise assumptions we are making on the domain Ω, the kernel K and the function a. Here, throughout the paper, Ω ⊂ R N is a domain (open connected set of R N ) and for a and K we assume the following:

a ∈ C( Ω) ∩ L ∞ (Ω), (1.7) 
and K is a non-negative Caratheodory function, that is K ≥ 0 and,

∀ x ∈ Ω K(x, •) is measurable, K(•, y
) is uniformly continuous for almost every y ∈ Ω.

(1.8)

For our analysis, we also require that K satisfies the following non-degeneracy condition: There exist positive constants r 0 ≥ r 1 > 0, C 0 ≥ c 0 > 0 such that K satisfies:

C 0 1 Ω∩Br 0 (x) (y) ≥ K(x, y) ≥ c 0 1 Ω∩Br 1 (x) (y) for all x, y ∈ Ω, (1.9) 
where 1 A denotes the characteristic function of the set A ⊂ R N and B r (x) is the ball centred at x of radius r. These conditions are satisfied for example for kernels like K(x, y) = J

x-y g(y)h(x) with h and g positive and bounded in Ω and J ∈ C(R N ), J ≥ 0, a compactly supported function such that J(0) > 0. Note that when Ω is bounded, any kernel K ∈ C( Ω × Ω) which is positive on the diagonal, satisfies all theses assumptions. Under this assumptions, we can check that the operator L Ω + a is continuous in C( Ω), [45].

Let us now state our main results. We start by investigating the case of a bounded domain Ω. In this situation, we prove that λ p , λ ′ p and λ ′′ p represent the same quantity. Namely, we show the following Theorem 1.1. Let Ω ⊂ R N be a bounded domain and assume that K and a satisfy (1.7) -(1.9). Then, the following equality holds :

λ p (L Ω + a) = λ ′ p (L Ω + a) = λ ′′ p (L Ω + a).
In addition, if K is symmetric, then

λ p (L Ω + a) = λ v (L Ω + a).
When Ω is an unbounded domain, the equivalence of λ p , λ ′ p and λ ′′ p is not clear for general kernels. Namely, let consider Ω = R, K(x, y) = J(xy) with J a density of probability with a compact support and such that R J(z)z dz > 0. For the operator L R , which corresponds to the standard convolution by J, by using e λx and constants as test functions, we can easily check that

λ ′ p (L R ) ≤ -1 < -min λ>0 R
J(z)e -λz dz ≤ λ p (L R ). However some inequalities remain true in general and the equivalence of the three notions holds for self-adjoint operators. More precisely, we prove here the following Theorem 1.2. Let Ω ⊂ R N be an unbounded domain and assume that K and a satisfy (1.7) -(1.9). Then the following inequalities hold

λ ′ p (L Ω + a) ≤ λ ′′ p (L Ω + a) ≤ λ p (L Ω + a).
When K is symmetric and such that p(x) := Ω K(x, y) dy ∈ L ∞ (Ω) then the following equality holds :

λ v (L Ω + a) = λ ′ p (L Ω + a) = λ ′′ p (L Ω + a) = λ p (L Ω + a).
Another striking property of λ p refers to the invariance of λ p under a particular scaling of the kernel K. More precisely, we show Proposition 1.3. Let Ω ⊂ R N be a domain and assume that a and K satisfy (1.7) -(1.9). For all σ > 0, let Ω σ := σΩ, a σ (x) := a x σ and

L σ,Ωσ [ϕ](x) := 1 σ N Ωσ K x σ , y σ ϕ(y) dy.
Then for all σ > 0, one has

λ p (L Ω + a) = λ p (L σ,Ωσ + a σ ).
Observe that no condition on the domain is imposed. Therefore, the invariance of λ p is still valid for Ω = R N . In this case, since R N is invariant under the scaling, we get

λ p (L R N + a) = λ p (L σ,R N + a σ ).
Next, for particular type of kernel K, we investigate the behaviour of λ p with respect of some scaling parameter. More precisely, let K(x, y) = J(xy) and let J σ (z) := 1 σ N J z σ . We consider the following operator

L σ,m,Ω [ϕ] := 1 σ m Ω J σ (x -y)ϕ(y) dy.
For J is a non negative function of unit mass, we study the asymptotic properties of the principal eigenvalue of the operator L σ,m,Ω -1 σ m + a when σ → 0 and σ → +∞. To simplify the presentation of our results, let us introduce the following notation. We denote by M σ,m,Ω , the following operator:

M σ,m,Ω [ϕ](x) := 1 σ m 1 σ N Ω J x -y σ ϕ(y) dy -ϕ(x) .
(1.10)

For any domains Ω, we obtain the limits of λ p (M σ,m,Ω + a) when σ tends either to zero or to +∞. Let us denote the second moment of J by

D 2 (J) := R N J(z)|z| 2 dz,
the following statement describes the limiting behaviour of λ p (M σ,m,Ω + a): Theorem 1.4. Let Ω be a domain and assume that J and a satisfy (1.7) -(1.9). Assume further that J is even and of unit mass. Then, we have the following asymptotic behaviour:

• When 0 < m ≤ 2, lim σ→+∞ λ p (M σ,m,Ω + a) = -sup Ω a
• When m = 0, lim σ→+∞ λ p (M σ,0,Ω + a) = 1sup Ω a.

In addition, when Ω = R N and if a is symmetric (a(x) = a(-x) for all x) and the map t → a(tx) is non increasing for all x, t > 0 then λ p (M σ,0,R N + a) is monotone non decreasing with respect to σ.

• When 0 ≤ m < 2, lim σ→0 λ p (M σ,m,Ω + a) = -sup Ω a
• When m = 2 and a ∈ C 0,α (Ω) for some α > 0, then

lim σ→0 λ p (M σ,2,Ω + a) = λ 1 D 2 (J) 2N ∆ + a and λ 1 D 2 (J) 2N ∆ + a := inf ϕ∈H 1 0 (Ω),ϕ ≡0 D 2 (J) 2N Ω |∇ϕ| 2 (x) dx ϕ 2 2 -Ω a(x)ϕ 2 (x) dx ϕ 2 2 .
Note that the results hold for any domains Ω, so the results holds true in particular for Ω = R N . Having established the asymptotic limits of the principal eigenvalue λ p (M σ,2,Ω + a), it is natural to ask whether similar results hold for the corresponding eigenfunction ϕ σ,p when it exists. In this direction, we prove that for m = 2, such convergence does occur : Theorem 1.5. Let Ω be any domain and assume that J and a satisfy (1.7) -(1.9). Assume further that J is even and of unit mass. Then there exists σ 0 such that for all σ ≤ σ 0 , there exists a positive principal eigenfunction ϕ p,σ associated to λ p (M σ,2,Ω + a). In addition, when ϕ p,σ ∈ L 2 (Ω) for all σ ≤ σ 0 , we have

ϕ p,σ → ϕ 1 in L 2 loc (Ω),
where ϕ 1 ∈ H 1 0 (Ω) is a positive principle eigenfunction associated to λ 1

D 2 (J) 2N ∆ + a . Remark 1.
When Ω is bounded, then the condition ϕ p,σ ∈ L 2 is always satisfied. Moreover, in this situation, the above limits ϕ p,σ → ϕ 1 as σ → 0 holds in L 2 (Ω) instead of L 2 loc (Ω).

Comments and straightforward generalisation

First, we can notice that the quantity λ V defined by Donsker and Varadhan [START_REF] Donsker | On a variational formula for the principal eigenvalue for operators with maximum principle[END_REF] for elliptic operators can also be defined for the operator L Ω + a and is equivalent to the quantity λ ′ p . The equality (1.4) can then be seen as the nonlocal version of the equality λ 1 = λ V where λ 1 is the notion introduced by Berestycki-Nirenberg-Varadhan [START_REF] Berestycki | The principal eigenvalue and maximum principle for second-order elliptic operators in general domains[END_REF].

Next, we would like to emphasize, that unlike the classical elliptic operators, due to the lack of a regularising effect of the operator L Ω + a, the quantity λ p (L Ω + a) may not be an eigenvalue, i.e. the spectral problem

L Ω [ϕ](x) + a(x)ϕ(x) + λϕ(x) = 0 in Ω,
may not have a solution in spaces of functions like L p (Ω), C(Ω) [START_REF] Coville | Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity[END_REF][START_REF]Singular measure as principal eigenfunction of some nonlocal operators[END_REF][START_REF] Donsker | On a variational formula for the principal eigenvalue for operators with maximum principle[END_REF][START_REF] Kao | Random dispersal vs. nonlocal dispersal[END_REF]. As a consequence, even in bounded domains, the relations between λ p , λ ′ p , λ ′′ p and λ v are quite delicate to obtain. Another difficulty inherent to the study of nonlocal operators in unbounded domains concerns the lack of natural a priori estimates for the positive eigenfunction thus making standard approximation schemes difficult to use in most case.

Lastly, we make some additional comments on the assumptions we have used on the dispersal kernel K. The non-degeneracy assumption (1.9) we are using, is related to the existence of Local Uniform Estimates [START_REF] Cornea | Finiteness principle and Harnack principle[END_REF][START_REF] Cornea | Martin compactification for discrete potential theory and the mean value property[END_REF] (Harnack type estimates) for a positive solution of a nonlocal equation:

L Ω [ϕ] + b(x)ϕ = 0 in Ω. (1.11)
Such type of estimates is a key tool in our analysis, in particular in unbounded domains, where we use it to obtain fundamental properties of the principal eigenvalue λ p (L Ω + a), such as the limit:

λ p (L Ω + a) = lim n→∞ λ p (L Ωn + a),
where Ω n is a sequence of set converging to Ω. As observed in [START_REF]Harnack type inequality for positive solution of some integral equation[END_REF], some local uniform estimates can also be obtained for some particular kernels K which does not satisfies the non-degeneracy condition (1.9). For example, for kernels of the form K(x, y) = 1 g N (y) J x-y g(y) with J satisfying (1.8) and (1.9) and g ≥ 0 a bounded function such that {x|g(x) = 0} is a bounded set and with Lebesgue measure zero, some local uniform estimates can be derived for positive solutions of (1.11). As a consequence, the Theorems 1.1 and 1.2 hold true for such kernels. We have also observed that the condition (1.9) can be slightly be relaxed and the Theorems 1.1 and 1.2 hold true for kernels K such that, for some positive integer p, the kernel K p defined recursively by :

K 1 (x, y) := K(x, y), K n+1 (x, y) := Ω K n (x, z)K 1 (z, y) dz for n ≥ 1,
satisfies the non-degeneracy condition (1.9).

For a convolution operator, i.e. K(x, y) := J(xy), this last condition is optimal. It is related to a geometric property of the convex hull of {y ∈ R N |J(y) > 0}:

K p satisfies (1.9) for some p ∈ N if and only if the convex hull of {y ∈ R N |J(y) > 0} contains 0.
Note that if a relaxed assumption on the lower bound of the non-degeneracy condition satisfied by K appears simple to find, the condition on the support of K seems quite tricky to relax. To tackle this problem, it is tempting to investigate the spectrum of linear operators involving the Fractional Laplacian, ∆ α :

∆ α ϕ := C N,α P.V. Ω ϕ(y) -ϕ(x) |x -y| N +2α dy , ϕ ≡ 0 in R N \ Ω
That is, to look for the properties of the principal eigenvalue of the spectral problem:

∆ α ϕ + (a + λ)ϕ = 0 in Ω. (1.12) 
As for elliptic operators and L Ω + a, analogues of λ 1 , λ ′ 1 and λ 0 can be defined for ∆ α + a and the relations between all possible definitions can be investigated. When Ω is bounded or a is periodic, the different definitions are equivalent [START_REF] Berestycki | The periodic patch model for population dynamics with fractional diffusion[END_REF]. However, in the situations considered in [START_REF] Berestycki | The periodic patch model for population dynamics with fractional diffusion[END_REF] the operator ∆ α +a has a compact resolvent enabling the use of the Krein Rutmann Theory. Thus, the corresponding λ p is associated with a positive eigenfunction, rendering the relations much more simpler to obtain. Moreover, in this analysis, the regularity of the principal eigenfunction and a Harnack type inequality [START_REF] Cabré | Nonlinear equations for fractional laplacians, i: Regularity, maximum principles, and hamiltonian estimates[END_REF][START_REF] Caffarelli | Regularity theory for fully nonlinear integro-differential equations[END_REF][START_REF] Tan | A harnack inequality for fractional laplace equations with lower order terms[END_REF] for some non negative solution of (1.12) are again the key ingredients in the proofs yielding to the inequality λ ′ p (∆ α + a, Ω) ≤ λ p (∆ α + a, Ω) for any smooth domain Ω.

Such Harnack type inequalities are not known for operators L Ω + a involving a continuous kernel K with unbounded support. Furthermore, it seems that most of the tools used to establish these Harnack estimates in the case of the Fractional Laplacian [START_REF] Cabré | Nonlinear equations for fractional laplacians, i: Regularity, maximum principles, and hamiltonian estimates[END_REF][START_REF] Tan | A harnack inequality for fractional laplace equations with lower order terms[END_REF] do not apply when we consider an operator L Ω + a. Thus, obtaining the inequality

λ ′ p (L Ω + a) ≤ λ p (L Ω + a)
with a more general kernel requires a deeper understanding of Harnack type estimates and/or the development of new analytical tools for such type of nonlocal operators. Nevertheless, in this direction and in dimension one, for some kernels with unbounded support, we could obtain some inequalities between the different notions of principal eigenvalue. Namely, Proposition 1.6. Assume N = 1 and let Ω ⊂ R be a unbounded domain. Assume that K and a satisfy (1.7)-(1.8). Assume further that K is symmetric and there exists C > 0 and α > 3 2 such that K(x, y) ≤ C(1 + |x -y|) -α . Then we have

λ p (L Ω + a) ≤ λ v (L Ω + a) ≤ λ ′ p (L Ω + a) ≤ λ ′′ p (L Ω + a).
Outline of the paper: The paper is organised as follows. In Section 2, we recall some known results and properties of the principal eigenvalue λ p (L Ω + a). The relations between the different definitions of the principal eigenvalue, λ p , λ ′ p , λ ′′ p and λ v (Theorems 1.1, 1.2 and Proposition 1.6) are proved in Section 3. Finally, in Section 4 we derive the asymptotic behaviour of λ p with respect to the different scalings of K (Proposition 1.3 and Theorems 1.4 and 1.5 ).

Notations

To simplify the presentation of the proofs, we introduce some notations and various linear operator that we will use throughout this paper:

• B R (x 0 ) denotes the standard ball of radius R centred at the point x 0

• 1 R will always refer to the characteristic function of the ball B R (0).

• S(R N ) denotes the Schwartz space, [START_REF]Functional analysis, sobolev spaces and partial differential equations[END_REF] • C(Ω) denotes the space of continuous function in Ω,

• C c (Ω) denotes the space of continuous function with compact support in Ω.

• For a positive integrable function J ∈ S(R N ), the constant R N J(z)|z| 2 dz will refer to

R N J(z)|z| 2 dz := R N J(z) N i=1 z 2 i dz
• For a bounded set ω ⊂ R N , |ω| will denotes its Lebesgue measure • For two L 2 functions ϕ, ψ, ϕ, ψ denotes the L 2 scalar product of ψ and ϕ

• For J ∈ L 1 (R N ), J σ (z) := 1 σ N J z σ • We denote by L σ,m,Ω the continuous linear operator L σ,m,Ω : C( Ω) → C( Ω) ϕ → 1 σ m Ω J σ (x -y)u(y) dy, (1.13) 
where Ω ⊂ R N .

• We denote by M σ,m,Ω the operator

M σ,m,Ω := L σ,m,Ω - 1 σ m 2 Preliminaries
In this section, we recall some standard results on the principal eigenvalue of the operator L Ω + a. Since the early work [START_REF] Donsker | On a variational formula for the principal eigenvalue for operators with maximum principle[END_REF] on the variational formulation of the principal eigenvalue, an intrinsic difficulty related to the study of these quantities comes from the possible non-existence of a positive continuous eigenfunction associated to the definition of λ p , λ ′ p , λ ′′ p or to λ v . This means that there is not always a positive continuous eigenfunction associated to λ p , λ ′ p , λ ′′ p or λ v . A simple illustration of this fact can be found in [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF][START_REF]Singular measure as principal eigenfunction of some nonlocal operators[END_REF]. Recently, some progress have been made in the understanding of λ p . In particular, some flexible criteria have been found to guarantee the existence of a positive continuous eigenfunction [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF][START_REF] Kao | Random dispersal vs. nonlocal dispersal[END_REF][START_REF] Shen | Stationary solutions and spreading speeds of nonlocal monostable equations in space periodic habitats[END_REF]]. More precisely, Theorem 2.1 (Sufficient condition [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF]). Let Ω ⊂ R N be a domain, a ∈ C(Ω) ∩ L ∞ (Ω) and K ∈ C( Ω × Ω) non negative, satisfying the condition (1.9). Let us denote ν := supΩ a and assume further that the function a satisfies 1 ν-a ∈ L 1 (Ω 0 ) for some bounded domain Ω 0 ⊂ Ω. Then there exists a principal eigen-pair (λ p , ϕ p ) solution of

L Ω [ϕ](x) + (a(x) + λ)ϕ(x) = 0 in Ω.
Moreover, ϕ p ∈ C( Ω), ϕ p > 0 and we have the following estimate

-ν ′ < λ p < -ν, where ν ′ := sup x∈Ω a(x) + Ω K(x, y) dy .
This criteria is almost optimal, in the sense that we can construct example of operator L Ω + a with Ω bounded and a such that 1 ν-a ∈ L 1 (Ω) and where λ p (L Ω + a) is not an eigenvalue in C( Ω), see [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF][START_REF] Kao | Random dispersal vs. nonlocal dispersal[END_REF][START_REF] Shen | Stationary solutions and spreading speeds of nonlocal monostable equations in space periodic habitats[END_REF].

When Ω is bounded, sharper results have been recently derived in [START_REF]Singular measure as principal eigenfunction of some nonlocal operators[END_REF] where it is proved that λ p (L Ω + a) is always an eigenvalue in the Banach space of positive measure, that is, we can always find a positive measure dµ p that is solution in the sense of measure of

L Ω [dµ p ](x) + a(x)dµ p (x) + λ p dµ p (x) = 0.
(2.1)

In addition, we have the following characterisation of λ p :

Theorem 2.2 ([30, 27]). λ p (L Ω +a) is an eigenvalue in C( Ω) if and only if λ p (L Ω + a) < -sup x∈Ω a(x).
We refer to [START_REF]Singular measure as principal eigenfunction of some nonlocal operators[END_REF] for a more complete description of the positive solution associated to λ p when the domain Ω is bounded. Now, we recall some properties of λ p that we constantly use throughout this paper:

Proposition 2.3. (i) Assume Ω 1 ⊂ Ω 2
, then for the two operators L Ω 1 + a and L Ω 2 + a respectively defined on C(Ω 1 ) and C(Ω 2 ), we have :

λ p (L Ω 1 + a) ≥ λ p (L Ω 2 + a).
(ii) For a fixed Ω and assume that a 1 (x) ≥ a 2 (x), for all x ∈ Ω. Then

λ p (L Ω + a 2 ) ≥ λ p (L Ω + a 1 ).
(iii) λ p (L Ω + a) is Lipschitz continuous with respect to a. More precisely,

|λ p (L Ω + a) -λ p (L Ω + b)| ≤ a -b ∞ (iv)
The following estimate always holds

-sup Ω a(x) + Ω K(x, y) dy ≤ λ p (L Ω + a) ≤ -sup Ω a.
We refer to [START_REF] Coville | On a simple criterion for the existence of a principal eigenfunction of some nonlocal operators[END_REF][START_REF]Nonlocal refuge model with a partial control[END_REF] for the proofs of (i) -(iv). Lastly, we prove some limit behaviour of λ p (L Ω + a) with respect to the domain Ω. Namely, we show Lemma 2.4. Let Ω be a domain and assume that a and K satisfy (1.7)-(1.9). Let (Ω n ) n∈N be a sequence of subset of Ω so that lim n→∞ Ω n = Ω, Ω n ⊂ Ω n+1 . Then we have

lim n→∞ λ p (L Ωn + a) = λ p (L Ω + a)
Proof. By a straightforward application of the monotone properties of λ p with respect to the domain ((i) of Proposition 2.3) we get the inequality

λ p (L Ω + a) ≤ lim n→∞ λ p (L Ωn + a). (2.2) 
To prove the equality, we argue by contradiction. So, let us assume

λ p (L Ω + a) < lim n→∞ λ p (L Ωn + a), (2.3) 
and choose λ ∈ R such that

λ p (L Ω + a) < λ < lim n→∞ λ p (L Ωn + a). (2.4) 
We claim Claim 2.5. There exists ϕ > 0, ϕ ∈ C(Ω) so that (λ, ϕ) is an adequate test function. That is, ϕ satisfies

L Ω [ϕ](x) + (a(x) + λ)ϕ(x) ≤ 0 in Ω.
Assume for the moment that the above claim holds. By definition of λ p (L Ω + a), we get a straightforward contradiction

λ p (L Ω + a) < λ ≤ λ p (L Ω + a).
Hence, lim

n→∞ λ p (L Ωn + a) = λ p (L Ω + a)
Let us now prove Claim 2.5

Proof of Claim 2.5. By definition of ν := sup Ω a, there exists a sequence of points (x k ) k∈N such that x k ∈ Ω and |a(x k ) -ν| < 1 k . By continuity of a, for each k, there exists η k > 0 such that

B η k (x k ) ⊂ Ω,

and sup

Bη k (x k ) |a -ν| ≤ 2 k .
Now, let χ k be the following cut-off" functions :

χ k (x) := χ x k -x ε k
where ε k > 0 is to be chosen later on and χ is a smooth function such that 0 ≤ χ ≤ 1, χ(z) = 0 for |z| ≥ 2 and χ(z) = 1 for |z| ≤ 1. Finally, let us consider the continuous functions a k (•), defined by

a k (x) := sup{a, (ν -inf Ω a)χ k (x) + inf Ω a}. By taking a sequence (ε k ) k∈N so that ε k ≤ η k 2 , ε k → 0, we have a k (x) = a for x ∈ Ω \ B 2ε k (x k ) ν for x ∈ Ω ∩ B ε k (x k ) and therefore a -a k ∞ ≤ sup Bη k (x k ) |ν -a| → 0 as k → ∞. By construction, for k large enough, say k ≥ k 0 , we get for all k ≥ k 0 a -a k ∞ ≤ inf |λ p (L Ω + a) -λ| 2 , | lim n→∞ λ p (L Ωn + a) -λ| 2 .
Since Ω n → Ω when n → ∞, there exists n 0 := n(k 0 ) so that

B η k 0 (x k 0 ) ⊂ Ω n for all n ≥ n 0 .
On the othre hand, from the Lipschitz continuity of λ p (L Ω + a) with respect to a ((iii) Proposition 2.3), inequality (2.4) yields

λ p (L Ω + a k 0 ) < λ < lim n→∞ λ p (L Ωn + a k 0 ). (2.5)
Now, by construction we see that for n ≥ n 0 , sup Ωn a k 0 = sup Ω a k 0 = ν and since

a k 0 ≡ ν in B ε k 0 2 (x k 0 ), for all n ≥ n 0 the function 1 ν-a k 0 ∈ L 1 loc ( Ωn ). Therefore, by Theorem 2.1, for all n ≥ n 0 there exists ϕ n ∈ C( Ωn ), ϕ n > 0 associated with λ p (L Ωn + a k 0 ). Moreover, since x k 0 ∈ n≥n 0 Ω n , for all n ≥ n 0 , we can normalize ϕ n by ϕ n (x k 0 ) = 1. Recall that for all n ≥ n 0 , ϕ n satisfies L Ωn [ϕ n ](x) + (a k 0 (x) + λ p (L Ωn + a k 0 (x)))ϕ n (x) = 0 in Ω n , so from (2.5), it follows that (ϕ n , λ) satisfies L Ωn [ϕ n ](x) + (a k 0 (x) + λ)ϕ n (x) < L Ωn [ϕ n ](x) + (a k 0 (x) + λ p (L Ωn + a k 0 ))ϕ n (x) = 0 in Ω n . (2.6) Let us now define b n (x) := -λ p (L Ωn + a k 0 (x)) -a k 0 (x), then for all n ≥ n 0 , ϕ n satisfies L Ωn [ϕ n ](x) = b n (x)ϕ n (x) in Ω n .
(2.7)

By construction, for n ≥ n 0 , we have b n (x) ≥ -λ p (L Ωn 0 + a k 0 (x))ν > 0. Therefore, since K satisfies the condition (1.9), the Harnack inequality (Theorem 1.4 in [START_REF]Harnack type inequality for positive solution of some integral equation[END_REF]) applies to ϕ n . Thus, for n ≥ n 0 fixed and for any compact set ω ⊂⊂ Ω n there exists a constant C n (ω) such that

ϕ n (x) ≤ C n (ω)ϕ n (y) ∀ x, y ∈ ω.
Moreover, the constant C n (ω) only depends on δ 0 < d(ω,∂Ω)
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, c 0 , x∈ω B δ 0 (x) and inf Ωn b n . Furthermore, this constant is decreasing with respect to inf Ωn b n . Notice that for all n ≥ n 0 , the function b n (x) being uniformly bounded from below by a constant independent of n, the constant C n is bounded from above independently of n by a constant C(ω). Thus, we have

ϕ n (x) ≤ C(ω)ϕ n (y) ∀ x, y ∈ ω.
From a standard argumentation, using the normalization ϕ n (x k 0 ) = 1, we deduce that the sequence (ϕ n ) n≥n 0 is uniformly bounded in C loc (Ω) topology and is locally uniformly equicontinuous. Therefore, from a standard diagonal extraction argument, there exists a subsequence, still denoted (ϕ n ) n≥n 0 , such that (ϕ n ) n≥n 0 converges locally uniformly to a continuous function ϕ which is nonnegative, non trivial function and satisfies ϕ(x k 0 ) = 1.

Since K satisfies the condition (1.9), we can pass to the limit in the Equation (2.6) using the Lebesgue monotone convergence theorem and we get

L Ω [ϕ] + (a k 0 (x) + λ)ϕ(x) ≤ 0 in Ω.
Hence, we have

L Ω [ϕ](x) + (a(x) + λ)ϕ(x) ≤ 0 in Ω, since a ≤ a k 0 .
3 Relation between λ p , λ ′ p , λ ′′ p and λ v

In this section, we investigate the relations between the quantities λ p , λ ′ p , λ ′′ p and λ v and prove Theorems 1.1 and 1.2.

First, remark that, as consequences of the definitions, the monotone and Lipschitz continuity properties satisfied by λ p ((i) -(iii) of Proposition (2.3)) are still true for λ ′ p and λ v . We investigate now the relation between λ ′ p and λ p :

Lemma 3.1.
Let Ω ⊂ R N be a domain and assume that K and a satisfy (1.7)-(1.9). Then,

λ ′ p (L Ω + a) ≤ λ p (L Ω + a).
Proof. Observe that to get inequality λ ′ p (L Ω + a) ≤ λ p (L Ω + a), it is sufficient to show that for any δ > 0:

λ ′ p (L Ω + a) ≤ λ p (L Ω + a) + δ. For δ > 0, let us consider the operator L Ω + b δ where b δ := a + λ p (L Ω + a) + δ. We claim that Claim 3.2. For all δ > 0, there exists ϕ δ ∈ C c (Ω) such that ϕ δ ≥ 0 and ϕ δ satisfies

L Ω [ϕ δ ](x) + b δ (x)ϕ δ (x) ≥ 0 in Ω.
By proving the claim, we prove the Lemma. Indeed, assume for the moment that the claim holds. Then, by construction, (ϕ δ , λ p (L Ω + a) + δ) satisfies

L Ω [ϕ δ ](x) + [a(x) + λ p (L Ω + a) + δ]ϕ δ (x) ≥ 0 in Ω.
Thus, by definition of λ ′ p (L Ω + a), we have λ ′ p (L Ω + a) ≤ λ p (L Ω + a) + δ. The constant δ being arbitrary, we get for all δ > 0:

λ ′ p (L Ω + a) ≤ λ p (L Ω + a) + δ.
Proof of the Claim. Let δ > 0 be fixed. By construction λ p (L Ω + b δ ) < 0, so by Lemma 2.4, there exists a bounded open set ω such that λ p (L ω + b δ ) < 0. For any ε > 0 small enough, by taking ω larger if necessary, arguing as in the proof of Claim 2.5, we can find b ε such that

b δ -b ε ∞,ω = b δ -b ε ∞,Ω ≤ ε, λ p (L ω + b ε (x)) + ε < 0,
and there is

ϕ p ∈ C(ω), ϕ p > 0 associated to λ p (L ω + b ε (x)). That is ϕ p satisfies L ω [ϕ p ](x) + b ε (x)ϕ p (x) = -λ p (L ω + b ε (x))ϕ p (x) in ω. (3.1) 
Without loss of generality, assume that ϕ p ≤ 1. Let ν denotes the maximum of b ε in ω, then by Proposition 2.3, there exists τ > 0 such that

-λ p (L ω + b ε (x)) -ε -ν ≥ τ > 0.
Moreover, since ϕ p satisfies (3.1), there exists d 0 > 0 so that inf ω ϕ p ≥ d 0 .

Let us choose ω ′ ⊂⊂ ω such that

|ω \ ω ′ | ≤ d 0 inf{τ, -λ p (L ω + b ε ) -ε} 2 K ∞ ,
where for a set A, |A| denotes the Lebesgue measure of A.

Since ω′ ⊂⊂ ω and ∂ω are two disjoint closed sets, by the Urysohn's Lemma there exists a continuous function η such that 0 ≤ η ≤ 1, η = 1 in ω ′ , η = 0 in ∂ω. Consider now ϕ p η and let us compute L ω [ϕ p η] + b δ ϕ p η. Then, we have

L ω [ϕ p η] + b δ ϕ p η ≥ -λ p (L ω + b ε )ϕ p -K |ω \ ω ′ | -b ε ϕ p (1 -η) -(b ε -b δ )ϕ p η, ≥ -(λ p (L ω + b ε ) + b δ -b ε ∞,ω )ϕ p - d 0 inf{τ, -λ p (L ω + b ε ) -ε} 2 -b ε (x)ϕ p (1 -η), ≥ -(λ p (L ω + b ε ) + ε)ϕ p - d 0 inf{τ, -λ p (L ω + b ε ) -ε} 2 -max{ν, 0}ϕ p , ≥ -(λ p (L ω + b ε ) + ε + max{ν, 0})ϕ p - d 0 inf{τ, -λ p (L ω + b ε ) -ε} 2 .
Since -λ p (L ω + b ε )ε > 0 and -λ p (L ω + b ε )εν ≥ τ > 0, from the above inequality, we infer that

L ω [ϕ p η] + b δ ϕ p η ≥ -(λ p (L ω + b ε ) + ε + max{ν, 0})d 0 - d 0 inf{τ, -λ p (L ω + b ε ) -ε} 2 , ≥ d 0 inf{τ, -λ p (L ω + b ε ) -ε} 2 ≥ 0.
By construction, we have ϕ p η ∈ C(ω) satisfying

L ω [ϕ p η] + b δ ϕ p η ≥ 0 in ω, ϕ p η = 0 on ∂ω.
By extending ϕ p η by 0 outside ω and denoting ϕ δ this extension, we get

L Ω [ϕ δ ](x) + b δ (x)ϕ δ (x) = L ω [ϕ δ ](x) + b δ (x)ϕ(x) ≥ 0 in ω, L Ω [ϕ δ ](x) + b δ (x)ϕ δ (x) = L ω [ϕ δ ](x) ≥ 0 in Ω \ ω.
Hence, ϕ δ ≥ 0, ϕ ∈ C c (Ω) is the desired test function.

Remark 2.

The assumption (1.9) on K is only needed to reduce the problem on unbounded domains to problem on bounded domains. In addition, the above construction shows that the inequality is still valid if we replace λ ′ p by λ ′′ p (L Ω + a). Thus we have for any domain Ω,

λ ′′ p (L Ω + a) ≤ λ p (L Ω + a).

The bounded case:

Assume for the moment that Ω is a bounded domain and let us show that the three definitions λ p , λ ′ p and λ ′′ p are equivalent and if in addition K is symmetric, λ v is equivalent to λ p . We start by the case λ ′ p = λ p . Namely, we show Lemma 3.3. Let Ω be a bounded domain of R N and assume that a and K satisfy (1.7)-(1.9). Then,

λ p (L Ω + a) = λ ′ p (L Ω + a).
In addition, when L Ω + a is self adjoined, we have

λ p (L Ω + a) = λ v (L Ω + a).
The proof of Theorem 1.1 is a straightforward consequence of the above Lemma. Indeed, by Remark 2 and the definition of λ ′′ p we have

λ ′ p (L Ω + a) ≤ λ ′′ p (L Ω + a) ≤ λ p (L Ω + a)
. Thus, from the above Lemma we get

λ p (L Ω + a) = λ ′ p (L Ω + a) ≤ λ ′′ p (L Ω + a) ≤ λ p (L Ω + a) = λ ′ p (L Ω + a).
Let us now turn to the proof of Lemma 3.3

Proof of Lemma 3.3. By Lemma 3.1, we already have

λ ′ p (L Ω + a) ≤ λ p (L Ω + a).
So, it remains to prove the converse inequality. Let us assume by contradiction that

λ ′ p (L Ω + a) < λ p (L Ω + a).
Pick now λ ∈ (λ ′ p (L Ω + a), λ p (L Ω + a)), then, by definition of λ p and λ ′ p , there exists ϕ and ψ non negative continuous functions such that

L Ω [ϕ](x) + (a(x) + λ)ϕ(x) ≤ 0 in Ω, L Ω [ψ](x) + (a(x) + λ)ψ(x) ≥ 0 in Ω.
Moreover, ϕ > 0 in Ω. By taking λ smaller if necessary, we can assume that ϕ satisfies

L Ω [ϕ](x) + (a(x) + λ)ϕ(x) < 0 in Ω. A direct computation yields Ω K(x, y)ϕ(y) ψ(y) ϕ(y) - ψ(x) ϕ(x) dy > 0.
Since ψ ϕ ∈ C( Ω), the function ψ ϕ achieves a maximum at some point x 0 ∈ Ω, evidencing thus the contradiction:

0 < Ω K(x 0 , y)ϕ(y) ψ(y) ϕ(y) - ψ(x 0 ) ϕ(x 0 ) dy ≤ 0.
Thus, λ ′ p (L Ω + a) = λ p (L Ω + a). In the self-adjoined case, it is enough to prove that

λ ′ p (L Ω + a) = λ v (L Ω + a).
From the definitions of λ ′ p and λ v , we easily obtain that λ v ≤ λ ′ p . Indeed, let λ > λ ′ p (L Ω + a), then by definition of λ ′ p there exists ψ ≥ 0 such that ψ ∈ C(Ω) ∩ L ∞ (Ω) and

L Ω [ψ](x) + (a(x) + λ)ψ(x) ≥ 0 in Ω. (3.2)
Since Ω is bounded and ψ ∈ L ∞ (Ω), ψ ∈ L 2 (Ω). So, multiplying (3.2) by -ψ and integrating over Ω we get

- Ω Ω K(x, y)ψ(x)ψ(y) dxdy - Ω a(x)ψ(x) 2 dx ≤ λ Ω ψ 2 (x) dx, 1 2 Ω Ω K(x, y) (ψ(x) -ψ(y)) 2 dxdy - Ω (a(x) + k(x))ψ(x) 2 dx ≤ λ Ω ψ 2 (x) dx, λ v (L Ω + a) Ω ψ 2 (x) dx ≤ λ Ω ψ 2 (x) dx.
Therefore, λ v (L Ω + a) ≤ λ ′ p (L Ω + a). Let us prove now the converse inequality. Again, we argue by contradiction and let us assume that

λ v (L Ω + a) < λ ′ p (L Ω + a). (3.3) 
Observe first that by density of C( Ω) in L 2 (Ω), we easily check that

-λ v (L Ω + a) = - inf ϕ∈L 2 (Ω),ϕ ≡0 1 2 Ω Ω K(x, y)(ϕ(x) -ϕ(y)) 2 dydx -Ω (a(x) + k(x))ϕ(x) 2 dx ϕ 2 L 2 (Ω) , = - inf ϕ∈L 2 (Ω),ϕ ≡0 -Ω Ω K(x, y)ϕ(x)ϕ(y) dydx -Ω a(x)ϕ(x) 2 dx ϕ 2 L 2 (Ω) , = sup ϕ∈L 2 (Ω),ϕ ≡0 L Ω [ϕ] + aϕ, ϕ ϕ 2 L 2 (Ω) , = sup ϕ∈C( Ω),ϕ ≡0 L Ω [ϕ] + aϕ, ϕ ϕ 2 L 2 (Ω)
.

By (iv) of Proposition 2.3, since λ ′ p (L Ω + a) = λ p (L Ω + a), from (3.3) we infer that λ + defined by

λ + = sup ϕ∈C(Ω) L Ω [ϕ] + aϕ, ϕ Ω ϕ 2 (3.4) satisfies λ + > -λ p (L Ω + a) ≥ max Ω a. (3.5) 
Now, using the same arguments as in [START_REF] Coville | Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity[END_REF][START_REF] Hutson | The evolution of dispersal[END_REF], we infer that the supremum in (3.4) is achieved. Indeed, it is a standard fact [START_REF]Functional analysis, sobolev spaces and partial differential equations[END_REF] that the spectrum of L Ω + a is at the left of λ + and that there exists a sequence ϕ n ∈ C(Ω) such that ϕ n L 2 (Ω) = 1 and (L Ω + aλ + )ϕ n L 2 (Ω) → 0 as n → +∞. By compactness of L Ω : L 2 (Ω) → C(Ω), for a subsequence, lim n→+∞ L Ω [ϕ n ] exists in C(Ω). Then, using (3.5), we see that ϕ n → ϕ in L 2 (Ω) for some ϕ and (L Ω + a)ϕ = λ + ϕ. This equation implies ϕ ∈ C(Ω), and λ + is an eigenvalue for the operator L Ω + a. Moreover, ϕ ≥ 0, since ϕ + is also a minimizer. Indeed, we have

λ + = Ω [L Ω [ϕ](x) + a(x)ϕ(x)]ϕ + (x) dx ϕ + 2 L 2 (Ω) , = Ω [L Ω [ϕ + ](x) + a(x)ϕ + (x)]ϕ + (x) dx ϕ + 2 L 2 (Ω) + Ω Ω K(x, y)ϕ -(x)ϕ + (y) dydx ϕ + 2 L 2 (Ω) , ≤ Ω [L Ω [ϕ + ] + aϕ + (x)]ϕ + (x) dx ϕ + 2 L 2 (Ω) ≤ λ + .
Thus, there exists a non-negative continuous ϕ so that

L Ω [ϕ](x) + (a(x) + λ v )ϕ(x) = 0 in Ω.
Since λ v < λ p , we can argue as above and get the desired contradiction. Hence,

λ v = λ + = λ p = λ ′ p .

The unbounded case:

Now let Ω be an unbounded domain. From Lemma 3.1 and Remark 2, we already know that

λ ′ p (L Ω + a) ≤ λ ′′ p (L Ω + a) ≤ λ p (L Ω + a).
To complete the proof of Theorem 1.2, we are then left to prove that

λ ′ p (L Ω + a) = λ ′′ p (L Ω + a) = λ p (L Ω + a) = λ v (L Ω + a),
when L Ω +a is self-adjoined and the kernel K is such that p(x) := Ω K(x, y) dy is a bounded function in Ω. To do so, we prove the following inequality :

Lemma 3.4.
Let Ω be an unbounded domain and assume that a and K satisfies (1.7)-(1.9). Assume further that K is symmetric and p(x) := Ω K(x, y) dy ∈ L ∞ (Ω). Then, we have

λ p (L Ω + a) ≤ lim inf n→+∞ λ v (L Ωn + a) ≤ λ ′ p (L Ω + a),
where Ω n := (Ω ∩ B n ) n∈N and B n is the ball of radius n centred at 0.

Assume that Lemma 3.4 holds and let us end the proof of Theorem 1.2.

Proof of Theorem 1.2 : From Lemma 3.1 and 3.4, we get the inequalities:

lim n→∞ λ v (L Ωn + a) ≤ λ ′ p (L Ω + a) ≤ λ ′′ p (L Ω + a) ≤ λ p (L Ω + a), λ p (L Ω + a) ≤ lim n→∞ λ v (L Ωn + a) ≤ λ ′ p (L Ω + a) ≤ λ ′′ p (L Ω + a),
with Ω n := Ω ∩ B n (0). Therefore,

lim n→∞ λ v (L Ωn + a) = λ ′ p (L Ω + a) = λ ′′ p (L Ω + a) = λ ′ p (L Ω + a) = λ p (L Ω + a).
It remains to prove that λ v (L Ω + a) = λ p (L Ω + a). By definition of λ ′′ p (L Ω + a), we check that

λ v (L Ω + a) ≤ λ ′′ p (L Ω + a) = λ p (L Ω + a).
On the other hand, by definition of λ v (L Ω + a), for any δ > 0 there exists ϕ δ ∈ L 2 (Ω) such that

1 2 Ω×Ω K(x, y)(ϕ δ (x) -ϕ δ (y)) 2 dydx -Ω (a(x) + p(x))ϕ 2 δ (x) dx ϕ δ 2 L 2 (Ω) ≤ λ v (L Ω + a) + δ. Define I R (ϕ δ ) := 1 2 Ω R ×Ω R K(x, y)(ϕ δ (x) -ϕ δ (y)) 2 dydx -Ω R (a(x) + p R (x))ϕ 2 δ (x) dx ϕ δ 2 L 2 (Ω R )
, with p R (x) := Ω R K(x, y) dy. Since lim R→∞ p R (x) = p(x) for all x ∈ Ω, a ∈ L ∞ and ϕ δ ∈ L 2 (Ω), by Lebesgue's monotone convergence Theorem we get for R large enough

- Ω R (a(x) + p R (x))ϕ 2 δ (x) dx ≤ δ ϕ δ 2 L 2 (Ω R ) - Ω (a(x) + p(x))ϕ 2 δ (x) dx.
Thus, we have for R large enough

I R (ϕ δ ) ≤ 1 2 Ω×Ω K(x, y)(ϕ δ (x) -ϕ δ (y)) 2 dydx -Ω (a(x) + p(x))ϕ 2 δ (x) dx ϕ δ 2 L 2 (Ω) , ≤ ϕ δ 2 L 2 (Ω) ϕ δ 2 L 2 (Ω R ) (λ v (L Ω + a) + δ) + δ, ≤ λ v (L Ω + a) + Cδ,
for some universal constant C > 0. By definition of λ v (L Ω R + a), we then get

λ v (L Ω R + a) ≤ I R (ϕ δ ) ≤ λ v (L Ω + a) + Cδ for R large enough. Therefore, lim R→∞ λ v (L Ω R + a) ≤ λ v (L Ω + a) + Cδ. (3.6) 
Since (3.6) holds true for any δ, we get lim

R→∞ λ v (L Ω R + a) ≤ λ v (L Ω + a).
As a consequence, we obtain

λ p (L Ω + a) = lim n→∞ λ v (L Ωn + a) ≤ λ v (L Ω + a) ≤ λ ′′ p (L Ω + a) = λ p (L Ω + a), which enforces λ v (L Ω + a) = λ p (L Ω + a).
We can now turn to the proof of Lemma 3.4. But before proving this Lemma, we start by showing some technical Lemma in the spirit of Lemma 2.6 in [START_REF] Berestycki | The periodic patch model for population dynamics with fractional diffusion[END_REF]. Namely, we prove Lemma 3.5. Assume Ω is unbounded and let g ∈ L ∞ (Ω) be a non negative function, then for any R 0 > 0, we have

lim R→∞ Ω∩(B R 0 +R \B R ) g Ω∩B R g = 0.
Proof. Without loss of generality, by extending g by 0 outside Ω we can assume that Ω = R N . For any R 0 , R > 0 fixed, let us denote the annulus C R 0 ,R := B R 0 +R \ B R . Assume by contradiction that lim

R→∞ C R 0 ,R g B R g > 0.
Then there exists ε > 0 and R ε > 1 so that

∀ R ≥ R ε , C R 0 ,R g B R g ≥ ε.
Consider the sequence (R n ) n∈N defined by R n := R ε + nR 0 and set a n := C R 0 ,Rn g. For all n, we have C R 0 ,Rn = B R n+1 \ B Rn and

B R n+1 = B Rε ∪ n k=0 C R 0 ,R k .
From the last inequality, for n ≥ 1 we deduce that

a n ≥ ε B Rn g ≥ ε n-1 k=0 a k .
Arguing now as in [START_REF] Berestycki | The periodic patch model for population dynamics with fractional diffusion[END_REF],by a recursive argument, the last inequality yields

∀ n ≥ 1, a n ≥ εa 0 (1 + ε) n-1 . (3.7)
On the other hand, we have

a n = C R 0 ,Rn g ≤ g ∞ |C R 0 ,Rn | ≤ d 0 n N ,
with d 0 a positive constant, contradicting thus (3.7).

We are now in a position to prove Lemma 3.4.

Proof of Lemma 3.4 :

The proof follows some ideas developed in [START_REF]Reaction-diffusion equations for population dynamics with forced speed. I. The case of the whole space[END_REF][START_REF] Berestycki | The periodic patch model for population dynamics with fractional diffusion[END_REF][START_REF] Coville | Existence and uniqueness of solutions to a nonlocal equation with monostable nonlinearity[END_REF][START_REF] Coville | Relations between λ 1 and λ ′ 1 for nonlocal operators in 1d, private communication[END_REF]. To simplify the presentation, let us call λ p = λ p (L Ω + a) and λ ′ p = λ ′ p (L Ω + a). First recall that for a bounded domain Ω, we have

λ p = λ ′ p = λ v .
Let (B n ) n∈N be the increasing sequence of balls of radius n centred at 0 and let Ω n := Ω ∩ B n . By monotonicity of λ p with respect to the domain, we have

λ p (L Ω + a) ≤ λ p (L Ωn + a) = λ v (L Ωn + a) Therefore λ p (L Ω + a) ≤ lim inf n→∞ λ v (L Ωn + a).
Thanks to the last inequality, we obtain the inequality λ p (L Ω + a) ≤ λ ′ p (L Ω + a) by proving that lim inf

n→∞ λ v (L Ωn + a) ≤ λ ′ p (L Ω + a). (3.8)
To prove (3.8), it is enough to show that for any δ > 0

lim inf n→∞ λ v (L Ωn + a) ≤ λ ′ p (L Ω + a) + δ. (3.9)
Let us fix δ > 0 and let us denote

µ := λ ′ p (L Ω + a) + δ. By definition of λ ′ p (L Ω + a) there exists a function ϕ ∈ C(Ω) ∩ L ∞ (Ω), ϕ ≥ 0 satisfying L Ω [ϕ](x) + a(x)ϕ(x) + µϕ(x) ≥ 0 in Ω. (3.10)
Without loss of generality, we can also assume that ϕ L ∞ (Ω) = 1. Let 1 Ωn be the characteristic function of Ω n = Ω ∩ B n and let w n = ϕ1 Ωn . By definition of λ v (L Ωn + a) and since w n ∈ L 2 (Ω n ), we have (3.11) and by using (3.10) we get

λ v (L Ωn + a) w n 2 L 2 (Ωn) ≤ Ωn -L Ωn [w n ](x) -a(x)w n (x) w n (x) dx. (3.11) Since L Ω [ϕ]w n ∈ L 1 (Ω n ), from
λ v (L Ωn + a) w n 2 L 2 (Ωn) ≤ Ωn -L Ωn [w n ](x) -a(x)w n (x) -µw n + µw n w n (x) dx, ≤ µ w n 2 L 2 (Ωn) + Ωn -L Ωn [w n ](x) + L Ω [ϕ](x) w n (x) dx, ≤ µ w n 2 L 2 (Ωn) + Ωn Ω\Ωn K(x, y)ϕ(y) dy w n (x) dx, ≤ µ w n 2 L 2 (Ωn) + I n ,
where I n denotes

I n := Ωn Ω\Ωn K(x, y)ϕ(y) dy ϕ(x) dx.
Observe that we achieve (3.9) by proving

lim inf n→∞ I n ϕ 2 L 2 (Ωn) = 0.
(3.12)

Recall that K satisfies (1.9), therefore there exists C > 0 and R 0 > 0 such that K(x, y) ≤ C1 R 0 (|x -y|)). So, we get

I n ≤ Ωn Ω∩(B R 0 +n \Bn)
K(x, y)ϕ(y) dy w n (x) dx.

(3.13) By Fubini's Theorem, Jensen's inequality and Cauchy-Schwarz's inequality, it follows that

I n ≤ Ω∩(B R 0 +n \Bn) ϕ 2 (y) dy 1/2 Ω∩(B R 0 +n \Bn) Ωn K(x, y)ϕ(x) dx 2 dy 1/2 , ≤ ϕ L 2 (Ω∩(B R 0 +n \Bn)) Ω∩(B R 0 +n \Bn) Ω∩Bn K 2 (x, y)ϕ 2 (x) dx dy 1/2 , ≤ ϕ L 2 (Ω∩(B R 0 +n \Bn)) Ω∩Bn Ω∩B R 0 +n \Bn) K 2 (x, y) dy ϕ 2 (x) dx 1/2 .
Since K and p are bounded functions, we obtain 

I n ≤ K ∞ p ∞ ϕ L 2 (Ω∩(B R 0 +n \Bn) ϕ L 2 (Ω∩Bn) . ( 3 
I n ϕ 2 L 2 (Ωn) ≤ C ϕ L 2 (Ω∩(B R 0 +n \Bn))
ϕ L 2 (Ω∩Bn) .

Thanks to Lemma 3.5, the right hand side of the above inequality tends to 0 as n → ∞. Hence, we get

lim inf n→∞ λ v (L Ωn + a) ≤ µ + lim inf n→∞ I n ϕ n 2 L 2 (Ωn) = λ ′ p (L Ω + a) + δ. (3.15)
Since the above arguments holds true for any arbitrary δ > 0, the Lemma is proved. 

λ v (L Ω + a) ≤ λ ′ p (L Ω + a).
When N = 1, the decay restriction imposed on the kernel can be weakened, see [START_REF] Coville | Relations between λ 1 and λ ′ 1 for nonlocal operators in 1d, private communication[END_REF]. In particular, we have Lemma 3.6. Let Ω be an unbounded domain and assume that a and K satisfy (1.7)- (1.8). Assume further that K is symmetric and K satisfies 0 ≤ K(x, y) ≤ C(1 + |x -y|) -α for some α > 3 2 . Then one has

λ p (L Ω + a) ≤ lim inf n→+∞ λ v (L Ωn + a) ≤ λ ′ p (L Ω + a),
where

Ω n := Ω ∩ (-n, n).
Proof. By arguing as in the above proof, for any δ > 0 there exists (3.17)

ϕ ∈ C(Ω) ∩ L ∞ (Ω) such that L Ω [ϕ] + (a + λ p (L Ω + a) + δ)ϕ(x) ≥ 0 in Ω.
Let us now treat two cases independently:

Case 1: ϕ ∈ L 2 (Ω)
In this situation, again by using Cauchy-Schwarz's inequality, Jensen's inequality and Fubini's Theorem, the inequality (3.16) yields

I n ≤ ϕ L 2 (Ωn) Ω\Ωn Ωn K 2 (x, y) dx ϕ 2 (y) dy 1 2
.

Recall that K satisfies K(x, y) ≤ C(1 + |x -y|) -α for some C > 0 and α > 3/2, therefore p(y) := Ω K(x, y) dx is bounded and from the latter inequality we enforce

I n ≤ C ϕ L 2 (Ω\Ωn) L 2 (Ωn) .
Thus,

lim inf n→∞ I n ϕ 2 L 2 (Ωn) ≤ lim inf n→∞ ϕ L 2 (Ω\Ωn) ϕ L 2 (Ωn) = 0. Case 2: ϕ ∈ L 2 (Ω)
Assume now that ϕ ∈ L 2 (Ω), then we argue as follows. Again, applying Fubini's Theorem and Cauchy-Schwarz's inequality in the inequality (3.16) yields

I n ≤ ϕ L 2 (Ωn) (Ω∩R -)\Ωn Ωn K(x, y) 2 dx 1 2 ϕ(y) dy + (Ω∩R + )\Ωn Ωn K(x, y) 2 dx 1 2 ϕ(y) dy , ≤ ϕ L 2 (Ωn) Ĩ- n + Ĩ+ n . (3.18)
Recall that by assumption there exists

C > 0 such that K(x, y) ≤ C(1 + |x -y|) -α with α > 3 2 . So, we have Ĩ- n ≤ C (Ω∩R -)\Ωn Ωn (1 + |x -y|) -2α dx 1 2
ϕ(y) dy,

Ĩ+ n ≤ C (Ω∩R + )\Ωn n -n (1 + |x -y|) -2α dx 1 2
ϕ(y) dy.

To complete our proof, we have to show that

Ĩ± n ϕ L 2 (Ωn)
→ 0. The proof being similar in both cases, so we only prove that

Ĩ+ n ϕ L 2 (Ωn)
→ 0. We claim that Claim 3.7. There exists C > 0 so that for all n ∈ N,

(Ω∩R + )\Ωn Ωn (1 + |x -y|) -2α dx 1 2 ϕ(y) dy ≤ C.
Assume for the moment that the claim holds true, then from (3.18), we deduce that

I n ϕ 2 L 2 (Ωn) ≤ C ϕ L 2 (Ωn) → 0 when n → ∞.
Hence, in both situation, we get

lim inf n→∞ λ v (L Ωn + a) ≤ µ + lim inf n→∞ I n ϕ n 2 L 2 (Ωn) = λ ′ p (L Ω + a) + δ
Since δ > 0 can be chosen arbitrary, the above inequality is true for any δ > 0 and the Lemma is proved.

Proof of the Claim. Since ϕ ∈ L ∞ (Ω) and y ≥ n then x ≤ y and we have

Ĩ+ n ≤ ϕ ∞ Ω∩R + \Ωn Ωn (1 + y -x) -2α dx 1 2 dy, ≤ ϕ ∞ +∞ n n -n (1 + y -x) -2α dx 1 2 dy, ≤ ϕ ∞ √ 2α -1 +∞ n (1 + y -n) -α+ 1 2 dy, ≤ C +∞ 0 (1 + z) -α+ 1 2 dz.

Asymptotic behaviour of the principal eigenvalue under scaling

In this section, we investigate further the properties of the principal eigenvalue λ p (L Ω + a) and in particular its behaviour with respect to some scaling of the kernel K ((Proposition 1.3) and Theorem 1.4). For simplicity, we split this section into two subsections, one dedicated to the the proof of Proposition 1.3 and the other one dealing with the proof of Theorem 1.4. Let us start with the scaling invariance of L Ω + a, (Proposition 1.3)

Scaling invariance

This invariance is a consequence of the following observation. By definition of λ p (L Ω + a), we have for all λ < λ p (L Ω + a),

L Ω [ϕ](x) + (a(x) + λ)ϕ(x) ≤ 0 in Ω,
for some positive ϕ ∈ C(Ω). Let X = σx, Ω σ := 1 σ Ω and ψ(X) := ϕ(σX) then we can rewrite the above inequality as follows

Ω K X σ , y ϕ(y) dy + (a X σ + λ)ϕ X σ ≤ 0 for any X ∈ Ω σ , Ω K X σ , y ϕ(y) dy + (a σ (X) + λ)ψ(X) ≤ 0 for any X ∈ Ω σ , Ωσ K σ (X, Y ) ψ(Y ) dY + (a σ (X) + λ)ψ(X) ≤ 0 for any X ∈ Ω σ , with K σ (x, y) := 1 σ N K( x σ , y σ ) and a σ (x) := a x σ . Thus ψ is a positive continuous function that satisfies L σ,Ωσ [ψ](x) + (a σ (x) + λ)ψ(x) ≤ 0 in Ω σ .
Therefore, λ ≤ λ p (L σ,Ωσ + a σ ) and as a consequence

λ p (L Ω + a) ≤ λ p (L σ,Ωσ + a σ ).
Interchanging the role of λ p (L Ω + a) and λ p (L σ,Ωσ + a σ ) in the above argument yields

λ p (L Ω + a) ≥ λ p (L σ,Ωσ + a σ ).
Hence, we get λ p (L Ω + a) = λ p (L σ,Ωσ + a σ ).

Asymptotic limits of

λ p L σ,m,Ω - 1 σ m + a
Let us focus on the behaviour of the principal eigenvalue of the spectral problem

M σ,m,Ω [ϕ] + (a + λ)ϕ = 0 in Ω,
where

M σ,m,Ω [ϕ] := 1 σ m Ω J σ (x -y)ϕ(y) dy -ϕ(x) , with J σ (z) := 1 σ N J z σ .
Assuming that 0 ≤ m ≤ 2, we obtain here the limits of λ p (M σ,m + a) when σ → 0 and σ → ∞. But before going to the study of these limits, we recall a known inequality. Lemma 4.1. Let J ∈ C(R N ), J ≥ 0, J symmetric with unit mass, such that |z| 2 J(z) ∈ L 1 (R N ) . Then for all ϕ ∈ H 1 0 (Ω) we have

- Ω Ω J(x -y)ϕ(y) dy -ϕ(x) ϕ(x) dx ≤ 1 2 R N J(z)|z| 2 dz ∇ϕ 2 L 2 (Ω) .
Proof. Let ϕ ∈ C ∞ c , then by applying the standard Taylor expansion we have

ϕ(x + z) -ϕ(x) = 1 0 z i ∂ i ϕ(x + tz) dt (4.1) = z i ∂ i ϕ(x) + 1 0 t 1 0 z i z j ∂ ij ϕ(x + tsz) ds dt (4.2)
where use the Einstein summation convention

a i b i = N i=1 a i b i . Let us denote I(ϕ) := - Ω Ω J(x -y)ϕ(y) dy -ϕ(x) ϕ(x) dx.
Then, for any ϕ ∈ C c (Ω), ϕ ∈ C c (R N ) and we can easily see that

I(ϕ) = 1 2 R 2N J(x -y)(ϕ(x) -ϕ(y)) 2 dxdy.
By plugging the Taylor expansion of ϕ (4.1) in the above equality we see that

1 2 R 2N J(z)(ϕ(x + z) -ϕ(x)) 2 dzdx = 1 2 R N R N J(z) 1 0 z i ∂ i ϕ(x + tz)dt 2 dzdx, ≤ 1 2 R 2N J(z) |z i | 1 0 |∂ i ϕ(x + tz)| 2 dt 1 2 2 dzdx, ≤ 1 2 R 2N J(z) N i=1 z 2 i N i=1 1 0 |∂ i ϕ(x + tz)| 2 dt dzdx
where we use in the last inequality the standard inequality

( i a i b i ) 2 ≤ ( N i=1 a 2 i )( N i=1 b 2 i
). So, by Fubini's Theorem and by rearranging the terms in the above inequality, it follows that

I(ϕ) ≤ 1 2 R N J(z)|z| 2 dz ∇ϕ 2 L 2 (Ω) .
By density of C ∞ c (Ω) in H 1 0 (Ω), the above inequality holds true for ϕ ∈ H 1 0 (Ω), since obviously the functional I(ϕ) is continuous in L 2 (Ω).

Let us also introduce the following notation

J σ (z) := 1 σ N J z σ , p σ (x) := Ω J σ (x -y) dy, D 2 (J) := R N J(z)|z| 2 dz, A(ϕ) := Ω aϕ 2 (x) dx ϕ 2 L 2 (Ω) , R σ,m (ϕ) := 1 σ m Ω (p σ (x) -1)ϕ 2 (x) dx ϕ 2 L 2 (Ω) , I σ,m (ϕ) := 1 σ m -Ω Ω J(x -y)ϕ(y) dy -ϕ(x) ϕ(x) dx ϕ 2 L 2 (Ω) -A(ϕ) J (ϕ) := D 2 (J) 2 Ω |∇ϕ| 2 (x) dx ϕ 2 L 2 (Ω)
.

With this notation, we see that

λ v (M σ,m,Ω + a) = inf ϕ∈L 2 (Ω) I σ,m (ϕ),
and by Lemma 4.1, for any ϕ ∈ H 1 0 (Ω) we get

I σ,m (ϕ) ≤ σ 2-m J (ϕ) -A(ϕ). (4.3) 
We are now in position to obtain the different limits of λ p (M σ,m,Ω + a) as σ → 0 and σ → ∞. For simplicity, we analyse three distinct situations: m = 0, 0 < m < 2 and m = 2. We will see that m = 0 and m = 2 are ,indeed, two critical situations.

Let us first deal with the easiest case, that is, when 0 < m < 2.

4.2.1

The case 0 < m < 2:

In this situation, we claim that Claim 4.2. Let Ω be any domain and let J ∈ C(R N ) be positive, symmetric and such that |z| 2 J(z) ∈ L 1 (R N ). Assume further that J satisfies (1.7)-(1.9) and 0 < m < 2 then

lim σ→0 λ p (M σ,m,Ω + a) = -sup Ω a lim σ→+∞ λ p (M σ,m,Ω + a) = -sup Ω a
Proof. First, let us look at the limit of λ p when σ → 0. Up to adding a large positive constant to the function a, without any loss of generality, we can assume that the function a is positive somewhere in Ω. Since M σ,m,Ω + a is a self-adjoined operator, by Theorem 1.2 and (4.3), for any ϕ ∈ H 1 0 (Ω) we have

λ p (M σ,m,Ω + a) = λ v (M σ,m,Ω + a) ≤ I σ,m (ϕ) ≤ σ 2-m J (ϕ) -A(ϕ).
Define ν := sup Ω a, and let (x n ) n∈N be a sequence of point such that |νa(x n )| < 1 n . Since a is positive somewhere, we can also assume that for all n, x n ∈ Γ := {x ∈ Ω | a(x) > 0}.

By construction, for any n > 0, there exists ρ n such that B ρ (x n ) ⊂ Γ for any positive ρ ≤ ρ n . Fix now n, for any 0 < ρ ≤ ρ n there exists ϕ ρ ∈ H 1 0 (Ω) such that supp(ϕ ρ ) ⊂ B ρ (x n ) and therefore, lim sup On the other hand, by using the test function (ϕ, λ) = (1, -ν) we can easily check that for any σ > 0

σ→0 λ p (M σ,m,Ω + a) ≤ -A(ϕ ρ ) = - Bρ(xn) aϕ 2 ρ (x) dx ϕ ρ 2 L 2 (Ω)

≤min

λ p (M σ,m,Ω + a) ≥ -ν. Hence, -ν ≤ lim inf σ→0 λ p (M σ,m,Ω + a) ≤ lim sup σ→0 λ p (M σ,m,Ω + a) ≤ -ν.
Now, let us look at the limit of λ p (M σ,m,Ω + a) when σ → +∞. This limit is a straightforward consequence of (iv) of the Proposition 2.3. Indeed, as remarked above, for any σ by using the test function (ϕ, λ) = (1, -ν), we have -ν ≤ λ p (M σ,m,Ω + a)

whereas from (iv) of the Proposition 2.3 we have

λ p (M σ,m,Ω + a) ≤ -sup Ω - 1 σ m + a .
Therefore, since m > 0 we have

-ν ≤ lim σ→+∞ λ p (M σ,m,Ω + a) ≤ -ν.
Remark 4. . From the proof, we obtain also some of the limits in the cases m = 0 and m = 2. Indeed, the analysis of the limit of λ p (M σ,m,Ω + a) when σ → 0 holds true as soon as m < 2. Thus,

λ p (M σ,0,Ω + a) → -sup Ω a as σ → 0.
On the other hand, the analysis of the limit of λ p (M σ,m,Ω + a) when σ → +∞ holds true as soon as m > 0. Therefore, λ p (M σ,2,Ω + a) →sup Ω a as σ → +∞.

4.2.2

The case m = 0

In this situation, one of the above argument fails and one of the expected limits is not -ν any more. Indeed, we have Proof. As already noticed in Remark 4, the limit of λ p (M σ,0,Ω + a) when σ → 0 can be obtained by following the arguments developed in the case 0 < m < 2. Therefore, it remains only to establish the limit of λ p (M σ,0,Ω + a) when σ → ∞.

As above, up to adding a large positive constant to a, without any loss of generality, we can assume that a is positive somewhere in Ω and we denote ν := sup Ω a > 0. By using constant test functions and (iv) of the Proposition 2.3, we observe that -ν ≤ λ p (M σ,0,Ω + a) ≤ 1ν, for all σ > 0.

So, we have lim sup

σ→∞ λ p (M σ,0,Ω + a) ≤ 1 -ν.
On the other hand, for any ϕ ∈ C c (Ω) we have for all σ,

I σ,0 (ϕ) Ω ϕ 2 (x) = - Ω Ω J σ (x -y)ϕ(y) dy -ϕ(x) ϕ(x)dx - Ω aϕ 2 (x) dx, = - Ω×Ω J σ (x -y)ϕ(x)ϕ(y)dxdy + Ω ϕ 2 (x) dx - Ω aϕ 2 (x) dx, ≥ -ϕ L 2 (Ω) Ω Ω J σ (x -y)ϕ(x) dx 2 dy 1/2 + Ω ϕ 2 (x) dx -sup Ω a Ω ϕ 2 (x) dx, ≥ -J σ ∞ ϕ 2 L 2 (Ω) + Ω ϕ 2 (x) dx -ν Ω ϕ 2 (x) dx, ≥ - J ∞ σ N/2 + 1 -ν Ω ϕ 2 (x) dx.
Thus, for all σ we have

I σ,0 (ϕ) ≥ - J ∞ σ N/2 + 1 -ν .
By density of C c (Ω) in L 2 (Ω), the above inequality holds for any ϕ ∈ L 2 (Ω). Therefore, by Theorem 1.2 for all σ To conclude this subsection, we analyse the monotonic behaviour of λ p (M σ,0,Ω + a) with respect to σ in the particular case Ω = R N . More precisely, Proposition 4.4. Let Ω = R N , a ∈ C(R N ) and J ∈ C(R N ) be positive, symmetric and such that |z| 2 J(z) ∈ L 1 (R N ). Assume further that J satisfies (1.7)-(1.9), m = 0 and a is symmetric (a(x) = a(-x) for all x) and the map t → a(tx) is non increasing for all x, t > 0. Then the map σ → λ p (σ) is monotone non decreasing.

λ p (M σ,0,Ω + a) = λ v (M σ,0,Ω + a) ≥ - J ∞ σ N/2 + 1 -ν,
Proof. When Ω = R N , thanks to Proposition 1.3, we have

λ p (M σ,0,R N + a) = λ p (M 1,0,R N + a σ (x)).
Since the function a σ (x) is monotone non increasing with respect to σ, by (i) of Proposition 2.3, for all σ ≥ σ * we have

λ p (M σ * ,0,R N + a) = λ p (M 1,0,R N + a σ * (x)) ≤ λ p (M 1,0,R N + a σ (x)) = λ p (M σ,0,R N + a).

The case m = 2

Finally, let us study the case m = 2 and end the proof of Theorem 1.4. In this situation, we claim that Lemma 4.5. Let Ω be a domain, a ∈ C(Ω) and let J ∈ C(R N ) be positive, symmetric and such that |z| 2 J(z) ∈ L 1 (R N ). Assume further that J satisfies (1.7)-(1.9) , a ∈ C 0,α (Ω) with α > 0 and m = 2 then

lim σ→+∞ λ p (M σ,2,Ω + a) = -sup Ω a, lim σ→0 λ p (M σ,2,Ω + a) = λ 1 D 2 (J)K 2,N 2 ∆ + a, Ω , (4.4) 
where

K 2,N := 1 |S N -1 | S N-1 (s.e 1 ) 2 ds = 1 N and λ 1 (K 2,N D 2 (J)∆ + a, Ω) := inf ϕ∈H 1 0 (Ω),ϕ ≡0 K 2,N J (ϕ) -A(ϕ).
Proof. In this situation, as already noticed in Remark 4, by following the arguments used in the case 2 > m > 0, we can obtain the limit of λ p (M σ,2,Ω + a) as σ → ∞. So, it remains to prove (4.4).

Let us rewrite I σ,2 (ϕ) in a more convenient way. Let ρ σ (z) := 1 σ 2 D 2 (J) J σ (z)|z| 2 , then for ϕ ∈ H 1 0 (Ω), we have

I σ,2 (ϕ) = 1 ϕ 2 L 2 (Ω) 1 2σ 2 Ω×Ω J σ (x -y)(ϕ(x) -ϕ(y)) 2 dxdy -R σ (ϕ) -A(ϕ), (4.5) 
= 1 ϕ 2 L 2 (Ω) D 2 (J) 2 Ω×Ω ρ σ (x -y) (ϕ(x) -ϕ(y)) 2 |x -y| 2 dxdy -R σ (ϕ) -A(ϕ). (4.6) 
We are now is position to prove (4.4). Let us first show that lim sup

σ→0 λ p (M σ,2,Ω + a) ≤ λ 1 K 2,N D 2 (J) 2 ∆ + a, Ω . (4.7) 
This inequality follows from the two following observations. First, for any ω ⊂ Ω compact subset of Ω, we have for σ small enough

p σ (x) = Ω J σ (x -y) dy = 1 for all x ∈ ω.
Therefore, for ϕ ∈ C ∞ c (Ω) and σ small enough,

R σ,2 (ϕ) = 1 σ 2 ϕ 2 L 2 (Ω) Ω (p σ (x) -1)ϕ 2 (x) dx = 0. (4.8)
Secondly, by definition, ρ σ is a continuous mollifier such that

     ρ σ ≥ 0 in R N , R N ρ σ (z)dz = 1, ∀ σ > 0, lim σ→0 |z|≥δ ρ σ (z)dz = 0, ∀ δ > 0,
which, from the characterisation of Sobolev spaces in [START_REF] Bourgain | Another look at sobolev spaces[END_REF][START_REF] Brezis | How to recognize constant functions. connections with sobolev spaces[END_REF][START_REF]A new approach to sobolev spaces and connections to Γ-convergence[END_REF], enforces that lim

σ→0 Ω×Ω ρ σ (x -y) (ϕ(x) -ϕ(y)) 2 |x -y| 2 dxdy = K 2,N ∇ϕ 2 L 2 (Ω) , for any ϕ ∈ H 1 0 (Ω). (4.9) Thus, for any ϕ ∈ C ∞ c (Ω) lim sup σ→0 λ p (M σ,2,Ω + a) ≤ lim σ→0 I σ,2 (ϕ) = K 2,N J (ϕ) -A(ϕ).
From the above inequality, by definition of λ 1

K 2,N D 2 (J) 2
∆ + a, Ω , it is then standard to obtain lim sup

σ→0 λ p (M σ,2,Ω + a) ≤ λ 1 K 2,N D 2 (J) 2 ∆ + a, Ω .
To complete our proof, it remains to establish the following inequality

λ 1 K 2,N D 2 (J) 2 ∆ + a, Ω ≤ lim inf σ→0 λ p (M σ,2,Ω + a).
Observe that to obtain the above inequality, it is sufficient to prove that

λ 1 K 2,N D 2 (J) 2 ∆ + a, Ω ≤ lim inf σ→0 λ p (M σ,2,Ω + a) + 2δ for all δ > 0. (4.10)
Let us fix δ > 0. Now, to obtain (4.10), we construct adequate smooth test functions ϕ σ and estimate K 2,N J (ϕ σ ) -A(ϕ σ ) in terms of λ p (M σ,2,Ω + a), δ and some reminder R(σ) that converges to 0 as σ → 0. Since our argument is rather long, we decompose it into three steps.

Step One: Construction of a good the test function

We first claim that, for all σ > 0, there exists

ϕ σ ∈ C ∞ c (Ω) such that M σ,2,Ω [ϕ σ ](x) + (a(x) + λ p (M σ,2,Ω + a) + 2δ)ϕ σ (x) ≥ 0 for all x ∈ Ω.
Indeed, by Theorem 1.2, we have λ p (M σ,2,Ω + a) = λ ′′ p (M σ,2,Ω + a), therefore for all σ, there exists

ψ σ ∈ C c (Ω) such that M σ,2,Ω [ψ σ ](x) + (a(x) + λ p (M σ,2,Ω + a) + δ)ψ σ (x) ≥ 0 for all x ∈ Ω. Since ψ σ ∈ C c (Ω), we can easily check that M σ,2,R N [ψ σ ](x) + (a(x) + λ p (M σ,2
,Ω + a) + δ)ψ σ (x) ≥ 0 for all x ∈ R N . Now, let η be a smooth mollifier of unit mass and with support in the unit ball and consider η τ := 1 τ N η z τ for τ > 0. By taking φσ := η τ ⋆ ψ σ and observing that M

σ,2,R N [ φσ ](x) = η τ ⋆ (M σ,2,R N [ψ σ ])(x) for any x ∈ R N , we deduce that η τ ⋆ M σ,2,R N [ψ σ ] + (a(x) + λ p (M σ,2,Ω + a) + δ)ψ σ ≥ 0 for all x ∈ R N , M σ,2,R N [ φσ ](x) + (λ p (M σ,2,Ω + a) + δ) φσ (x) + η τ ⋆ (aψ σ )(x) ≥ 0 for all x ∈ R N .
By adding and subtracting a, we then have, for all

x ∈ R N , M σ,2,R N [ φσ ](x) + (a(x) + λ p (M σ,2,Ω + a) + δ) φσ (x) + R N η τ (x -y)ψ σ (y)(a(y) -a(x)) dy ≥ 0.
For τ small enough, say τ ≤ τ 0 , the function φσ ∈ C ∞ c (Ω) and for all x ∈ Ω we have

M σ,2,R N [ φσ ](x) = 1 σ 2 R N J σ (x -y) φσ (y) dy -φσ (x) , = 1 σ 2 Ω J σ (x -y) φσ (y) dy -φσ (x) = M σ,2,Ω [ φσ ](x).
Thus, from the above inequalities, for τ ≤ τ 0 , we get for all x ∈ Ω,

M σ,2,Ω [ φσ ](x) + (a(x) + λ p (M σ,2,Ω + a) + δ) φσ (x) + R N η τ (x -y)ψ σ (y)(a(y) -a(x)) dy ≥ 0.
Since a is Hölder continuous, we can estimate the integral by

R N η τ (x -y)ψ σ (y)(a(y) -a(x)) dy ≤ R N η τ (x -y)ψ σ (y) a(y) -a(x) |y -x| α |x -y| α dy, ≤ κτ α φσ (x),
where κ is the Hölder semi-norm of a. Thus, for τ small, says τ ≤ inf{ δ 2κ 1/α , τ 0 }, we have

M σ,2,Ω [ φσ ](x) + (a(x) + λ p (M σ,2,Ω + a) + 2δ) φσ (x) ≥ 0 for all x ∈ Ω. ( 4.11) 
Let us consider now ϕ σ := γ φσ , where γ is a positive constant to be chosen. From (4.11), we obviously have M σ,2,Ω [ϕ σ ](x) + (a(x) + λ p (M σ,2,Ω + a) + 2δ)ϕ σ (x) ≥ 0 for all x ∈ Ω.

(4.12)

By taking γ := R N ψ 2 σ (x) dx R N φ2 σ (x) dx , we get R N ψ 2 σ (x) dx R N ϕ 2 σ (x) dx = 1. (4.13)
Step Two: A first estimate of λ 1

Now, by multiplying M σ,2,Ω [ϕ σ ] by -ϕ σ and integrating over Ω, we then get

- Ω M σ,2,Ω [ϕ σ ]ϕ σ (x) dx = - R N ×R N 1 σ 2 J σ (x -y)(ϕ σ (y) -ϕ σ (x))ϕ σ (x) dydx, (4.14) 
= 1 2σ 2 R N ×R N J σ (x -y)(ϕ σ (y) -ϕ σ (x)) 2 dxdy, (4.15) 
= D 2 (J) 2 R N ×R N ρ σ (z) (ϕ σ (x + z) -ϕ σ (x)) 2 |z| 2 dzdx. (4.16) 
By combining (4.11) and (4.16) we therefore obtain

D 2 (J) 2 R N ×R N ρ σ (z) (ϕ σ (x + z) -ϕ σ (x)) 2 |z| 2 dzdx - R N a(x)ϕ 2 σ (x) dx ≤ (λ p (M σ,2,Ω + a) + 2δ) R N ϕ 2 σ (x) dx. (4.17)
On the other hand, inspired by the proof of Theorem 2 in [START_REF] Brezis | How to recognize constant functions. connections with sobolev spaces[END_REF], since ϕ σ ∈ C ∞ c (R N ), by Taylor's expansion, for all x, z ∈ R N , we have

|ϕ σ (x + z) -ϕ σ (x) -z • ∇ϕ σ (x)| ≤ i,j |z i z j | 1 0 t 1 0 |∂ ij ϕ σ (x + tsz)| ds dt. Therefore, |z • ∇ϕ σ (x)| ≤ i,j |z i z j | 1 0 t 1 0 |∂ ij ϕ σ (x + tsz)| ds dt + |ϕ σ (x + z) -ϕ σ (x)|,
and for every θ > 0 we have

|z • ∇ϕ σ (x)| 2 ≤ C θ   i,j |z i z j | 1 0 t 1 0 |∂ ij ϕ σ (x + tsz)| ds dt   2 + (1 + θ)|ϕ σ (x + z) -ϕ σ (x)| 2 , ≤ C θ i,j |z i z j | 2 [0,1] 2 t 2 |∂ ij ϕ σ (x + tsz)| 2 dsdt + (1 + θ)|ϕ σ (x + z) -ϕ σ (x)| 2 .
Thus, by integrating in x and z over R N × R N , we get

ρ σ (|z|) |z| 2 |z • ∇ϕ σ (x)| 2 dzdx ≤ C θ ρ σ (|z|) i,j |z i z j | 2 |z| 2 [0,1] 2 t 2 |∂ ij ϕ σ (x + tsz)| 2 dsdt dzdx +(1 + θ) ρ σ (|z|) |ϕ σ (x + z) -ϕ σ (x)| 2 |z| 2 dzdx.
For σ small, supp(ρ σ ) ⊂ B 1 (0), and we have for all

x ∈ R N , R N ρ σ (|z|) |z| 2 |z • ∇ϕ σ (x)| 2 dz = K 2,N |∇ϕ σ (x)| 2 , whence, K 2,N R N |∇ϕ σ (x)| 2 dx ≤ C θ ρ σ (|z|) i,j |z i z j | 2 |z| 2 [0,1] 2 t 2 |∂ ij ϕ σ (x + tsz)| 2 dsdt dzdx +(1 + θ) ρ σ (|z|) |ϕ σ (x + z) -ϕ σ (x)| 2 |z| 2 dzdx. (4.18) 
L 2 (Ω) and then subtracting A(ϕ σ ) on both side, we get

K 2,N J (ϕ σ ) -A(ϕ σ ) ≤ R(σ) + (1 + θ)I σ,2 (ϕ σ ) + θA(ϕ σ ), (4.19) 
where R(σ) is defined by

R(σ) := C θ ϕ σ 2 L 2 (Ω) ρ σ (|z|) i,j |z i z j | 2 |z| 2 [0,1] 2 t 2 |∂ ij ϕ σ (x + tsz)| 2 dsdt dzdx.
By combining now (4.19) with (4.17), by definition of λ 1

K 2,N D 2 (J) 2 
∆ + a, Ω , we obtain

λ 1 K 2,N D 2 (J) 2 ∆ + a, Ω ≤ R(σ) + (1 + θ)[λ p (M σ,2,Ω + a) + 2δ] + θ a L ∞ (Ω) . (4.20) 
Step Three: Estimates of R(σ) and conclusion

Let us now estimate R(σ) and finish our argument.

By construction, we have

∂ ij ϕ σ = ∂ ij η τ ⋆ ψ σ .
So, by Fubini's Theorem and standard convolution estimates, we get for σ small

R(σ) ≤ i,j |z|≤1 [0,1] 2 ρ σ (|z|) |z i z j | 2 |z| 2 t 2 R N |∂ ij η τ ⋆ ψ σ (x + tsz)| 2 dx dtdsdz, ≤   |z|≤1 [0,1] ρ σ (|z|) i,j |z i z j | 2 |z| 2 t 2 dtdz   ∇ 2 η τ L 1 (R N ) ψ σ 2 L 2 (R N ) , ≤ 2 3 ∇ 2 η τ L 1 (R N ) ψ σ 2 L 2 (R N ) |z|≤1 ρ σ (|z|)|z| 2 dz.
Combining this inequality with (4.20), we get

λ 1 K 2,N D 2 (J) 2 ∆ + a, Ω ≤ (1 + θ)[λ p (M σ,2,Ω + a) + 2δ] + θ a L ∞ (Ω) + 2C θ 3 ∇ 2 η τ L 1 (R N ) ψ σ 2 L 2 (R N ) ϕ σ 2 L 2 (Ω) |z|≤1 ρ σ (|z|)|z| 2 dz. Since ϕ σ ∈ C ∞ c (Ω), ϕ σ 2 L 2 (Ω) = ϕ σ 2 L 2 (R N )
and thanks to (4.13), the above inequality reduces to 5 Asymptotics of ϕ p,σ

λ 1 K 2,N D 2 (J) 2 ∆ + a, Ω ≤ (1 + θ)[λ p (M σ,2,Ω + a) + 2δ] + θ a L ∞ (Ω) + 2C θ 3 ∇ 2 η τ L 1 (R N ) |z|≤1 ρ σ (|z|)|z| 2 dz.
In this last section, we investigate the existence of a positive continuous eigenfunction ϕ p,σ associated to the principal eigenvalue λ p (M σ,2,Ω + a).

The existence of such a ϕ p,σ is a straightforward consequence of the existence criteria in bounded domain (Theorem 2.2) and the asymptotic behaviour of the principal eigenvalue (Theorem 1.4).

Indeed, assume first that Ω is bounded, then since a ∈ L ∞ ( Ω), there exists σ 0 such that for all σ ≤ σ 0 , 1 σ 2sup From the above argument, we can easily obtain the existence of eigenfunction when Ω is unbounded. Indeed, let Ω 0 be a bounded sub-domain of Ω and let γ := sup{|λ 1 (Ω 0 )| ; |λ 1 (Ω)|}. Since a is bounded in Ω, there exists σ 0 such that for all σ ≤ σ 0 ,

1 σ 2 -sup Ω a > 2 + γ.
As above, since λ p (M σ,2,Ω 0 + a) → λ 1 (Ω 0 ), there exists σ 1 such that for all σ ≤ σ 1 we have λ p (M σ,2,Ω 0 + a) ≤ 1 + γ.

For any bounded domain Ω ′ such that Ω 0 ⊂ Ω ′ ⊂ Ω, by monotonicity of λ p (M σ,2,Ω ′ + a) with respect to Ω ′ , for all σ ≤ σ 1 we have λ p (M σ,2,Ω ′ + a) ≤ 1 + γ.

Therefore, for all σ ≤ σ 2 := inf{σ 0 , σ 1 }, we have

λ p (M σ,2,Ω ′ + a) + 1 ≤ 1 σ 2 -sup Ω ′ a,
and thus, thanks to Theorem 2.2, for all σ ≤ σ 2 there exists ϕ p,σ associated to λ p (M σ,2,Ω ′ + a).

To construct a positive eigenfunction ϕ p,σ associated to λ p (M σ,2,Ω + a), we then argue as follows.

Let (Ω n ) n∈N be an increasing sequence of bounded sub-domain of Ω that converges to Ω. Then, for all σ ≤ σ 2 , for each n there exists a continuous positive function ϕ n,σ associated to λ p (M σ,2,Ωn + a). Without any loss of generality, we can assume that ϕ n is normalised by ϕ n (x 0 ) = 1 for some fixed x 0 ∈ Ω 0 . Since for all n, λ p (M σ,2,Ωn + a) + 1 ≤ 1 σ 2sup Ωn a, the Harnack inequality applies to ϕ n and thus the sequence (ϕ n ) n∈N is locally uniformly bounded in C 0 topology. By a standard diagonal argument, there exists a subsequence, still denoted (ϕ) n∈N , that converges point-wise to some nonnegative function ϕ. Thanks to the Harnack inequality, ϕ is positive. Passing to the limit in the equation satisfied by ϕ n , thanks to the Lebesgue dominated convergence Theorem, ϕ satisfies M σ,2,Ω [ϕ](x) + (a(x) + λ p,σ (M σ,2,Ω + a))ϕ(x) = 0 for all x ∈ Ω.

Since a is continuous and ((a(x) + λ p,σ (M σ,2,Ω + a)) -1 σ 2 ) < 0, we deduce that ϕ is also continuous. Hence, ϕ is a positive continuous eigenfunction associated with λ p,σ (M σ,2,Ω + a).

Remark 5. We observe that such arguments hold also for the operators M σ,m,Ω + a with 0 < m < 2, since in such cases, λ p (σ) < +∞ for all σ andsup Ω (-1 σ 2 + a) → +∞. Thus, when 0 < m < 2, for σ(m) small enough, there exists always a positive function ϕ p,σ ∈ C( Ω) associated with λ p (M σ,m,Ω + a).

Finally, let us complete the proof of Theorem 1.5 by obtaining the asymptotic behaviour of ϕ p,σ when σ → 0 assuming that ϕ p,σ ∈ L 2 (Ω). We first recall the following useful identity : Therefore by the characterisation of Sobolev space in [START_REF]A new approach to sobolev spaces and connections to Γ-convergence[END_REF][START_REF] Ponce | An estimate in the spirit of poincarés inequality[END_REF], for any bounded sub-domain Ω ′ ⊂ Ω, along a sequence, ϕ p,σ → ϕ in L 2 (Ω ′ ). Moreover, by extending ϕ p,σ by 0 outside Ω, we have ϕ p,σ ∈ L 2 (R N ) and for any ψ ∈ C 2 c (Ω) by Proposition 5.1 it follows that D 2 (J) 2 (5.4) being true for any ψ, it follows that ϕ is the smooth positive eigenfunction associated to λ 1 normalised by ϕ L 2 (Ω) = 1 = lim σ→0 ϕ p,σ L 2 (Ω) . The normalised first eigenfunction being uniquely defined, we get ϕ = ϕ 1 and ϕ p,σ → ϕ 1 in L 2 loc (Ω) when σ → 0.

Remark 3 .

 3 In the above proof, since w = ϕ1 Ωn ∈ L 2 (Ω) and L Ω [w n ] = L Ωn [w n ], the inequality (3.11) is true with λ v (L Ω + a) instead of λ v (L Ωn + a). Thus, we get immediately

and λ v (L Ωn + a) w n 2 L 2 (Ωn) ≤ µ w n 2 L 2 (

 2222 Ωn) + I n , where µ := λ p (L Ω + a) + δ), w n := ϕ1 (-n,n) and I n denotes I n := Ωn Ω\Ωn K(x, y)ϕ(y) dy ϕ(x) dx.

  Bρ(xn)a + (x).By taking the limit ρ → 0 in the above inequality, we then get lim supσ→0 λ p (M σ,m,Ω + a) ≤ -a(x n ). Thus, lim sup σ→0 λ p (M σ,m,Ω + a) ≤ -ν + 1 n .By sending now n → ∞ in the above inequality, we obtain lim sup σ→0 λ p (M σ,m,Ω + a) ≤ -ν.

Lemma 4 . 3 .

 43 Let Ω be any domain and let J ∈ C(R N ) be positive, symmetric and such that |z| 2 J(z) ∈ L 1 (R N ). Assume further that J satisfies (1.7)-(1.9) and m = 0 thenlim σ→0 λ p (M σ,0,Ω + a) =sup Ω a lim σ→+∞ λ p (M σ,0,Ω + a) = 1sup Ω a

  M σ + a) ≥ 1ν. Hence, 1ν ≤ lim inf σ→+∞ λ p (M σ,0,Ω + a) ≤ lim sup σ→+∞ λ p (M σ,0,Ω + a) ≤ 1ν.

(4. 21 )

 21 Now, since |z|≤1 ρ σ (|z|)|z| 2 dz ≤ σ 2 , letting σ → 0 in (4.21) yieldsλ 1 K 2,N D 2 (J) 2 ∆ + a, Ω ≤ (1 + θ)[2δ + lim inf σ→0 λ p (M σ,2,Ω + a)] + θ a L ∞ (Ω) . (4.22)Since (4.22) holds for every θ, we obtainλ 1 K 2,N D 2 (J) 2 ∆ + a, Ω ≤ lim inf σ→0λ p (M σ,2,Ω + a) + 2δ.

Ω a > 1 + λ 1 K 2 , 1 K 2 ,N D 2 (J) 2 ∆

 121222 N D 2 (J) 2 ∆ + a, Ω . Now, thanks to λ p (M σ,2,Ω + a) → λ + a, Ω , for σ small enough, says σ ≤ σ 1 , we get λ p (M σ,2,Ω + a) ≤ 1 + λ 1 K 2,N D 2 (J) 2 ∆ + a, Ω .Thus, for σ ≤ inf{σ 1 , σ 0 },λ p (M σ,2,Ω + a) < 1 σ 2sup Ω a,which, thanks to Theorem 2.2, enforces the existence of a principal positive continuous eigenfunction ϕ p,σ associated with λ p (M σ,2,Ω + a).

Proposition 5 . 1 . 2 R= 1 2 R 2 R- 1 2 R- 1 2 R 2 R

 51222222 Let ρ ∈ C c (R N ) be a radial function, then for all u ∈ L 2 (R N ), ϕ ∈ C ∞ c (R N ) we haveR N ×R N ρ(z)[u(x + z)u(x)]ϕ(x) dzdx = 1 N ×R N ρ(z)u(x)∆ z [ϕ](x) dzdx, where ∆ z [ϕ](x) := ϕ(x + z) -2ϕ(x) + ϕ(xz).Proof. SetI := R N ×R N ρ(z)[u(x + z)u(x)]ϕ(x) dzdx.By standard change of variable, thanks to the symmetry of ρ, we getI N ×R N ρ(z)[u(x + z)u(x)]ϕ(x) + 1 2 R N ×R N ρ(-z)[u(xz)u(x)]ϕ(x), = 1 N ×R N ρ(z)[u(x + z)u(x)]ϕ(x) + 1 2 R N ×R N ρ(z)[u(x)u(x + z)]ϕ(x + z), = N ×R N ρ(z)[u(x + z)u(x)][ϕ(x + z)ϕ(x)], = N ×R N ρ(z)u(x)[ϕ(x)ϕ(xz)] + 1 2 R N ×R N ρ(z)u(x)[ϕ(x + z)ϕ(x)], = 1 N ×R N ρ(z)u(x)[ϕ(x + z) -2ϕ(x) + ϕ(xz)].Consider now σ ≤ σ 2 (Ω) and let ϕ p,σ be a positive eigenfunction associated with λ p,σ . That isϕ p,σ satisfies M σ,2,Ω [ϕ p,σ ](x) + (a(x) + λ p,σ )ϕ p,σ (x) = 0 for all x ∈ Ω. (5.1)Let us normalize ϕ p,σ by ϕ p,σ L 2 (Ω) = 1. Multiplying (5.1) by ϕ p,σ and integrating over Ω, we getD 2 (J) 2 Ω×Ω ρ σ (xy) |ϕ p,σ (y)ϕ p,σ (x)| 2 |x -y| 2 dxdy ≤ Ω (a(x) + λ p,σ )ϕ 2 p,σ (x) dx ≤ C.Since a and λ p,σ are bounded independently of σ ≤ σ 2 (Ω), the constant C stands for all σ ≤ σ 2 (Ω). Therefore for any bounded sub-domain Ω ′ ⊂ Ω, Ω ′ ×Ω ′ ρ σ (xy) (ϕ p,σ (y)ϕ p,σ (x)) 2 |x -y| 2 dxdy < C.

Ω×R N ρ σ (z) |z| 2

 2 ϕ p,σ (x)∆ z [ψ](x) dxdz = -Ω (a(x) + λ p,σ -1 + p σ (x))ψϕ p,σ dx. (5.2) Recall that ψ ∈ C ∞ c (R N ), so there exists C(ψ) and R(ψ) such that for all x ∈ R N |∆ z [ψ](x) -t z(∇ 2 ψ(x))z| < C(ψ)|z| 3 1 B R(ψ) (x).Therefore, since ϕ p,σ is bounded uniformly in L 2 (Ω),D 2 (J) 2 Ω×R N ρ σ (z) |z| 2 ϕ p,σ (x)[∆ z [ψ](x) -t z(∇ 2 ψ(x))z] dxdz ≤ CC(ψ) R N ρ n (z)|z| → 0. (5.3)On the other hand, ψ ∈ C 2 c (Ω) enforces that for σ small enough supp(1p σ (x)) ∩ supp(ψ) = ∅. Thus passing to the limit along a sequence in (5.2),thanks to (5.3), we getD 2 (J)K 2,N2Ω ϕ(x)∆ψ(x) dx + Ω ϕ(x)ψ(x)(a(x) + λ 1 ) dx = 0.(5.4)
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