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Introduction

The electrodynamic loudspeaker is a nonlinear electroacoustic transducer that includes several nonlinear phenomena, mainly due to mechanical suspensions, coil with ferromagnetic core and temperature variations (see e.g. [START_REF] Klippel | Tutorial: Loudspeaker nonlinearities-causes, parameters, symptoms[END_REF]). In this paper we address the numerical correction of distortions in the high level response of these systems. Several signal processing or physically inspired approach have been considered (see e.g. [START_REF] Klippel | Compensation for nonlinear distortion of horn loudspeakers by digital signal processing[END_REF], [START_REF] Dai | Compensation of loudspeaker nonlinearity in acoustic echo cancellation using raised-cosine function[END_REF] and references therein). Such approaches do not allow straightforward inference of physical knowledge in the model and its parameters nor in the design process of the controller. Moreover, such system identification techniques can lead to non-physically unstable behaviors. We propose a method in the port-Hamiltonian (pH) formalism, which provides a continuous-time state-space model structured according to energy flows. This guarantees the passivity of the model, including the nonlinear case. In this preliminary work, magnetic and thermal effects are neglected, and we consider a simple low frequency approximation of the acoustic load. This leads to a simple open non-linear system which allows for an easy derivation of the controller. The proposed method is based on the differential flatness of the resulting pH system, which allows for exact trajectory planing.

The port-Hamiltonian modeling of the loudspeaker is given in section 2. A remainder on differential flatness theory is given in section 3. Then we build the feed-forward controller for the loudspeaker. Finally, section 4 is devoted to the application of the method in discrete-time. First, we present the numerical method which preserves the passivity property. Second, simulation results for a FANE Sovereign 12-500LF are shown.

The electrodynamic loudspeaker

This section details the physical model of the loudspeaker considered in the remainder. We firstly extend the usual linear modeling (namely, the Thiele and Small modeling) to account for the nonlinearity that first appears in practice. Secondly, we recast this model in the port-Hamiltonian framework. That proves the passivity of the model.

Physical description and model

The electrodynamic loudspeaker is a transducer which is composed of an electromagnetic and a mechanical parts, a simplified lumped parameter model of which has been proposed by Thiele and Small (see figure 2). This modeling includes a simple acoustical load as additional spring effect due to air volume in the cabinet, and additional air mass and dissipation due to acoustic radiation, see [START_REF] Thiele | Loudspeakers in vented boxes: Part 1[END_REF][START_REF] Small | Vented-Box Loudspeaker Systems -Part 1: Small-Signal Analysis[END_REF][START_REF] Ravaud | Time-varying non linear modeling of electrodynamic loudspeakers[END_REF]. The corresponding set of ordinary differential equations are derived by applying Kirchhoff's laws to the electrical part and Newton's second law to the mechanical part:

The electromagnetic part involves:

v a ptq " R r ¨ia ptq `L ¨Bt i a ptq `Bl ¨Bt qptq, (1) 
m ¨B2 t qptq " Bl ¨ia ptq ´Rd ¨Bt qptq ´Fs pqq.

(

) 2 
v a and i a are respectively the input tension and current (in receiver convention with received power P a " v a ¨ia ), L is the inductance of the voice-coil (linear approximation) and R r is the electrical resistance of the wires of the coil. q is the diaphragm's displacement (distance from equilibrium), m is the total mass of the moving part (including the diaphragm, voice coil and the equivalent mass due to acoustical load), and R d is the linear approximation of the mechanical losses (including frictions and acoustical power radiation). The electro-mechanical coupling terms are the back e.m.f v L " Bl ¨Bt q, and the Lorentz force F L " Bl ¨ia , with Bl the product of the (constant) magnetic induction field's magnitude with the length of the coil's wire in that field. According to the literature [START_REF] Knudsen | Low-frequency loudspeaker models that include suspension creep[END_REF][START_REF] Klippel | Tutorial: Loudspeaker nonlinearities-causes, parameters, symptoms[END_REF], the main nonlinearity is the spring effect F s pqq. In the original model of Thiele and Small, it is supposed to be linear with stiffness k 0 :

F s pqq " F lin pqq " k 0 ¨q. (3) 
Here, we consider a phenomenological position saturating nonlinear spring given in equation ( 4) and figure 3, with q sat the saturating position. The nonlinear term F sat does not contribute around the origin q " 0. 

Port-Hamiltonian formulation

Port-Hamiltonian systems The port-Hamiltonian (pH) formalism have been introduced in the 90's. It provides a framework for the passive guaranteed modeling of open dynamical system through a state space representation structured according to energy flows with state x P R nx , input u P R nu and storage function Hpxq P R `(see [START_REF] Maschke | An intrinsic Hamiltonian formulation of network dynamics: Non-standard Poisson structures and gyrators[END_REF][START_REF] Schaft | Port-Hamiltonian systems: an introductory survey[END_REF][START_REF] Duindam | Modeling and Control of Complex Physical Systems: The Port-Hamiltonian Approach[END_REF] for details). Here, we consider the same algebraic-differential formulation as in [START_REF] Falaize | Energy-balanced models for acoustic and audio systems: a port-Hamiltonian approach[END_REF], which includes a resisitive variable w P R nw and a dissipative relation zpwq P R nw :

¨Bt x w y '" ¨Jx ´K G x K J w G w ´G x ´G w J y ‹ '¨¨∇ Hpxq zpwq u ', (5) 
where the output y P R nu , and J x , J w and J y are skew-symmetric matrices. Matrices K P R nxˆnw , G x P R nxˆν and G w P R nwˆν . The incoming power is S " u ¨y, and function z restores the (possibly nonlinear) dissipated power Dpwq " zpwq ¨w ě 0 with zp0q " 0 and positive definite Jacobian matrix r Bzpwq Bw s m,n " Bzmpwq Bwn , so that the following power balance holds:

¨∇Hpxq zpwq u ' ¨¨B t x w y '" B t Hpxq ´Dpwq `S " 0 (6) 
Port-Hamiltonian modeling of the loudspeaker The pH system that corresponds to the loudspeaker's modeling (1), ( 2) and ( 4) is composed of n x " 3 storage components (coil, moving mass and spring), n w " 2 dissipative components (electric resistance and mechanical damping) and n u " 1 source (input tension). For storage components, the state is x " rx c , x m , x s s with x c "φ the magnetic flux in the coil, x m "m ¨Bt q the momentum of the mass and x s "q the elongation of the spring. The Hamiltonian is Hpxq"H c px c q`H m px m q`H s px s q with quadratic storage functions H c and H m defined in table 1, and nonlinear potential energy H s px s q " The dissipative variables are w " rw r , w d s , with w r " i r the current in the resistance and w d " B t q the velocity associated to the damping, and associated function zpwq " rz r pw r q, z d pw d qs " rR r ¨wr , R d ¨wd s . The input is the tension from the amplifier u a " v a , and the output is the current y a " i a .

The structure matrices in (5) are obtained applying conservation laws (namely, Kirchhoff and Newton's laws) to the following set of power variables (see table 1):

∇Hpxq " ri c , B t q,F s s , B t x " rv c , mB 2 t q, B t qs w " ri r , B t qs , z " rv r , F d s y " i a , u " v a (7) Label Electric Flux " i (A) Effort " v (V) (c) coil inductance x c " φ H c px c q " x 2 c 2¨L i c " BH c Bx c v c " B t x c (r) resistance w r " i r z r pw r q " R r ¨wr i r " w r v r " z r pw r q (a) external port i a " y a v a " u a Label Mechanic Flux " B t q (m.s ´1) Effort " F (N) (m) Total mass x m " m ¨Bt q H m px m q " x 2 m 2¨m B t q " BH m Bx m F m " B t x m (s) Nonlinear spider x s " q H s px s q " k0 2 x 2 s `Hsat px s q B t q "B t x s F s " BH s Bx s (d) Mechanical damping w d " B t q z d pw d q " R d ¨wd B t q "w d F d " z d pw d q
Table 1: Elementary components in the nonlinear pH modeling of the loudspeaker.

The nonlinear port-Hamiltonian system corresponding to the loudspeaker modeling (1), ( 2) and ( 4) is given by ( 5), with [START_REF] Rouchon | Flatness and motion planning: the car with n trailers[END_REF] and the following structure matrices:

J x " ¨0 ´Bl 0 `Bl 0 ´1 0 `1 0 ', K " ¨1 0 0 1 0 0 ', G x " ¨1 0 0 ' J w " 0, G w " 0, J y " 0. (8) 

Remark 2.1 (Perspectives)

The pH systems framework allows easy inclusion of modeling refinement, such as the dynamic behavior of the magnetic circuit (magnet, iron and air-gap) [START_REF] Falaize | Modélisation d'un haut parleur électro-dynamique: approche dans le cadre des Systèmes à Hamitoniens à Ports[END_REF], or the fractional order dynamic [START_REF] Gorrec | Diffusive systems coupled to an oscillator: a Hamiltonian formulation[END_REF] due to the losses by magnetic hysteresis and eddy-currents [START_REF] Schäfer | Modelling of lossy coils using fractional derivatives[END_REF]. This will be studied in further works.

Flatness and trajectory planning

The flatness-based feed-forward controller for the system (5) is derived in this section. After a short remainder on differential flatness, this method is used to derive a closedform expression of the input that ensures the system's state follows a given trajectory. Then, the pH structure is exploited to derive an equivalent formal expression.

Recalls

Here we recall the notion of differential flatness for the full linearization of nonlinear systems via dynamic feedback (see [START_REF] Rouchon | Flatness and motion planning: the car with n trailers[END_REF][START_REF] Fliess | Flatness and defect of non-linear systems: introductory theory and examples[END_REF][START_REF] Levine | Analysis and control of nonlinear systems: A flatness-based approach[END_REF] for details). A classic dynamical system given by B t x " f px, uq, with state x P R nx , input u P R nµ and nonlinear dynamic f : R nx ˆRnµ Ñ R nx is differentially flat if both the following conditions are satisfied.

(I) There exists a finite set µ P R nµ of variables which are differentially independent and such that the µ i 's are functions of the state x, and the input u with a finite number of its derivatives µ " ϕ µ px, u, B t u, ¨¨¨, B pαµq t uq, µ P R nµ .

(II) Any system variable is a function of µ and of a finite number of its derivatives:

x " ϕ x `µ, B t µ, ¨¨¨, B pαxq t µ ˘and u " ϕ u `µ, B t µ, ¨¨¨, B pαx`1q t µ ˘.
The set µ is the linearizing (or flat) output of the system, with dimpµq " dimpuq " n µ .

Flat output and input design

The loudspeaker model ( 5) proves differentially flat: basic manipulations of equations ( 1), ( 2) and ( 4) show that the position is the flat output µ " q, with α µ " 0, α x " 2 and µ "

ϕ µ px 3 q, x " ϕ x pµ, B t µ, B 2 t µq " ¨L Bl `m ¨B2 t µ `Rd ¨Bt µ `Fs pµq m ¨Bt µ µ '.
This leads to the following closed-from expression of the input v a " u:

u " ϕ u `µ, B t µ, B 2 t µ, B 3 t µ ˘(9) " m ¨L Bl ¨B3 t µ `Rd ¨L `Re ¨m Bl ¨B2 t µ `ˆB x F s pµq `L `Re ¨Rd Bl `Bl ˙¨B t µ (10) 
`Rr Bl ¨Fs pµq.

Then, given any admissible nominal trajectory of the flat output µ ‹ , the nominal input trajectory u ‹ of the input u is obtained from [START_REF] Levine | Analysis and control of nonlinear systems: A flatness-based approach[END_REF], replacing all occurrences of µ by µ ‹ , that is u ‹ " ϕ u `µ‹ , B t µ ‹ , ¨¨¨, B pαx`1q t µ ‹ ˘(see [START_REF] Hagenmeyer | Continuous-time non-linear flatness-based predictive control: an exact feedforward linearisation setting with an induction drive example[END_REF]). Here, the target is the diaphragm's displacement and the feed-forward controller is given by equation [START_REF] Hagenmeyer | Continuous-time non-linear flatness-based predictive control: an exact feedforward linearisation setting with an induction drive example[END_REF], replacing µ with q ‹ .

Port-Hamiltonian formalization

The same basic manipulations on equations ( 5), ( 7) and ( 8) rather than on (1), ( 2) and (4) yields x " ϕ x pµ, B t µ, B 2 t µq, with

ϕ x pµ, B t µ, B 2 t µq " ¨pB x H c q ´1B tpBx H m q ´1 pBtµq`z d pBtµq`BxH s pµq Bl ṗB x H m q ´1 pB t µq µ ‹ ‹ ' .
This formal expression combined with Kirchhoff's voltage law encoded in the pH structure (5) makes the input appear to be composed of three terms v a " v c `vr `vL that find straightforward individual interpretations. The input of the mechanical subsystem (m, s, d) is the Lorentz force F L " Bl ¨iL , which is designed to compensate the mechanical dynamic and loss i L " 1 Bl " B t pB x H m q ´1pB t µq `zd pB t µq `Bx H s pµq ‰ .

Coil v c Bt Ð φ BxH ´1 c ÐÝ i c " i L Wire v r z r Ð i r " i L back e.m.f v L " Bl ¨Bt µ.
Then, the input u " v a for the electrical part (c, r) is designed to compensate the electrical dynamic and loss so that i L " i ‹ L . Finally, each term in the controller v a corresponds to a chain of conversion from µ to a tension:

Simulation and results

This section is concerned with the discrete-time simulation of the algebro-differential system [START_REF] Schaft | Port-Hamiltonian systems: an introductory survey[END_REF], that is, the computation of xpkq " xpk ¨Ts q from upkq " upk ¨Ts q, with k P N, for the constant sampling frequency f s " 1{T s , in such a way that a discrete power balance is satisfied. First, we present a structure-preserving numerical scheme and show direct simulation for a given loudspeaker. Second, results for the flatnessbased controller are shown.

Passive-guaranteed numerical scheme and simulation

Here, the objective is to define the discrete time derivative of the state δ t xpkq and the discrete gradient of the Hamiltonian δ x Hpkq so as to recover the chain rule in discrete time: δ t Epkq " δ x Hpkq ¨δt xpkq. The level of energy is the one associated to the state xpkq through storage function H. Additionally, we choose a first order finite difference scheme: δ t xpkq " xpk`1q´xpkq Ts to approximate the variation of the state. Then, for a pH system composed of a collection of mono-variant energy storing components, the Hamiltonian is Hpxq " ř nx n"1 H n px n q and the solution is 

This numerical scheme restores the midpoint rule for linear systems, with its natural extension to the nonlinear cases. Applying this numerical method to the pH system (5) leads to an implicit system of algebraic equations, which is then solved by Newton-Raphson algorithm. 

Results

The feed-forward controller [START_REF] Hagenmeyer | Continuous-time non-linear flatness-based predictive control: an exact feedforward linearisation setting with an induction drive example[END_REF] is applied to the same loudspeaker device as in section 4.1, and numerical simulations are performed. We assign a sinusoidal trajectory to the target flat output: µ ‹ " A ¨sinp2π ¨f0 ¨tq , with amplitude A " 0.7 ¨qsat (m) and frequency f 0 " 100(Hz). Since the system is supposed initially at rest, initial values for the flat output and all the needed derivatives have to be zeros for the trajectory to be admissible [START_REF] Levine | Analysis and control of nonlinear systems: A flatness-based approach[END_REF]. Here, the set pµ ‹ , B t µ ‹ , B 2 t µ ‹ , B 3 t µ ‹ q is smoothed between t " 0 and t " 1{f 0 with third order polynomial. Results for the target input v ‹ a is given in figure 5. The comparison between the target µ ‹ and the simulated flat output µ for the input v ‹ a are given in figure 5.

Figure 5: Upper: Input tension v ‹ a (upper) for a sinusoidal target trajectory (smoothed at the origin) with amplitude 3.62mm and frequency f 0 " 100 Hz (f s " 48kHz). Lower: Target and system's flat output.

Conclusion

Firstly, we recast the usual Thiele-Small modeling of loudspeaker in port-Hamiltonian framework. The model has been slightly refined to include the main nonlinearity according to the literature, preserving passivity due to pH structure. Secondly, we designed an numerically efficient flatness-based feed-forward controller. We have shown that port-Hamiltonian framework permits a physical interpretation of the generation of the controller. The main perspective is the application of this method to a real device. We shall include several refinement of the physical model (magnetic, thermic and acoustic) in future work, benefiting from the modular construction of pH systems. The change of variable from the pH state to the Brunovsky coordinate provided by the flatness property of the system shall be used to build an additional feedback controller to account for model or measurement errors in practice. Another perspective is to study the possible automated derivation of the flat output based on a port-Hamiltonian system and bond-graph formalism.

Figure 1 :

 1 Figure 1: Schematic view of the electrodynamic loudspeaker.

a:

  voltage source (amplifier) r: wire resistance, c: coil inductance, L: back electromotive force. The mechanical part involves: m: moving mass (diaphragm, coil and air) s: spring effects (spider, dust cap and air) d: damping effects (idem) L: Lorentz force.

Figure 2 :

 2 Figure 2: Thiele and Small equivalent electro-mechanic modeling of loudspeakers.

F¯( 4 )

 4 s pqq " F lin pqq `Fsat pqq F sat pqq " 4ks 4´π ´tan ´π¨q 2¨qsat ¯´π¨q 2¨qsat Figure 3: Linear and nonlinear spring.

rδ x

  Hpkqs n " H n `xn pk `1q ˘´H n `xn pkq xn pk `1q ´xn pkq .

Figure 4 :

 4 Figure 4: Simulated displacement for a FANE Sovereign 12-500LF excited with a sinusoidal tension (amplitude 100V and frequency 100Hz).

  The device used for simulation is a FANE Sovereign 12-500LF, with physical parameters in table 2. Simulation results are given in figure4.

	m	0.075 (kg)	Bl	16.37 (T¨m)
	L	2.36 (mH)	k0	7.14 (N¨m ´1)
	Rr	5.9 (Ω)	ks	100 (N¨m ´1)
	R d 3 (N¨s¨m ´1)	qsat	5.17 (mm)

Table 2 :

 2 Physical parameters for the simulated FANE Sovereign 12-500LF loudspeaker.
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