
HAL Id: hal-01245610
https://hal.science/hal-01245610

Submitted on 17 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Inferray: fast in-memory RDF inference
Julien Subercaze, Christophe Gravier, Jules Chevalier, Frederique Laforest

To cite this version:
Julien Subercaze, Christophe Gravier, Jules Chevalier, Frederique Laforest. Inferray: fast in-memory
RDF inference. VLDB, Sep 2016, New Delhi, India. �hal-01245610�

https://hal.science/hal-01245610
https://hal.archives-ouvertes.fr

Inferray:
fast in-memory RDF inference

Julien Subercaze, Christophe Gravier
Jules Chevalier, Frederique Laforest

Laboratoire Hubert Curien, UMR CNRS 5516
Université Jean Monnet

25 rue docteur Rémy Annino
F-42000, Saint-Etienne, France

ABSTRACT

The advent of semantic data on the Web requires efficient
reasoning systems to infer RDF and OWL data. The linked
nature and the huge volume of data entail efficiency and
scalability challenges when designing productive inference
systems. This paper presents Inferray, an implementation of
RDFS, ρDF, and RDFS-Plus inference with improved per-
formance over existing solutions. The main features of Infer-
ray are 1) a storage layout based on vertical partitioning that
guarantees sequential access and efficient sort-merge join in-
ference; 2) efficient sorting of pairs of 64-bit integers using
ad-hoc optimizations on MSD radix and a custom counting
sort; 3) a dedicated temporary storage to perform efficient
graph closure computation. Our measurements on synthetic
and real-world datasets show improvements over competi-
tors on RDFS-Plus, and up to several orders of magnitude
for transitivity closure.

1. INTRODUCTION
The Resource Description Framework (RDF) is a graph-

based data model accepted as the W3C standard in Febru-
ary 1999, outlining the core data model for Semantic Web
applications. At a high-level, the Semantic Web can be con-
ceptualized as an extension of the current Web to enable the
creation, sharing and intelligent re-use of machine-readable
content on the Web. The adoption of RDF has broadened
on the Web in recent years and as of mid-2013, the num-
ber of triples in the Linked Open Data (LOD) project has
reached 62 billion [14].

The elemental constituents of the RDF data model are
RDF terms that are used in reference to resources. The set of
RDF terms is broken down into three disjoint subsets: URIs
(or IRIs), literals and blank nodes. These RDF terms con-
stitute the core of the Semantic Web named as RDF triple,
which is a 3-tuple of RDF terms, and is commonly denoted
by 〈s, p, o〉 for 〈subject, property, object〉. Each RDF triple

represents an atomic “fact” or “claim”, where the labeled
property (must be a URI), also called a predicate, describes
the relationship between the subject (either a URI or a blank
node) and the object (a URI, blank node or literal). It is
common practice to conceptualize RDF datasets as directed
labeled graphs, where subjects and objects represent labeled
vertices and properties describe directed, labeled edges. For
instance, the following triple entails that humans belong to
a larger group called mammal:

<human, rdfs:subClassOf, mammal>

Recently, there has been growing interest in the database
community to design efficient Semantic Web databases known
as triple stores. The aim of triple stores is to handle poten-
tially large volumes of RDF data and to support SPARQL, a
mature, feature-rich query language for RDF content. Sev-
eral novel triple store design principles have been suggested
in the literature, such as vertical partitioning [1], horizon-
tal partitioning [13], direct primary hashing [6], multiple
indexing [35], compactness of data [36], and efficient query
implementation [20, 21].
An inference layer coupled with a triple store provides

an interesting feature over aggregated Web data. Ontol-
ogy Based Data Access (OBDA) systems, usually support
inference [26, 16]. Loosely speaking, inference utilizes the
formal underlying semantics of the terms in the data to en-
able the derivation of new knowledge. It is used to assert
equalities between equivalent resources, flag inconsistencies
where conflicting data are provided, execute mappings be-
tween different data models concerned with the same do-
main. For instance, utilizing the following triple with the
previous one,

<mammal, rdfs:subClassOf, animal>

and by considering the fact that the property rdfs:subClassOf

is transitive, we can infer the following new triple:

<human, rdfs:subClassOf, animal>

Inference is specified within a family of recommendations
by the W3C, ranging from simple entailment regime like
RDFS to more complex ones like OWL Full [31]. However,
reasoning over RDF data is an ambitious goal with many
inherent difficulties, especially the time complexity of entail-
ment. This complexity ranges from P to NEXPTIME [31],
and the OWL 2 Full language [32] is even proven undecid-
able.

5

While these theoretical results may seem discouraging for
database practitioners, it is important to note that special
efforts have been made to specify working logics for real-
world systems like simplified RDFS [33], ρDF, and RDFS-
Plus. RDFS is the original specification. But in practice,
systems usually perform incomplete RDFS reasoning and
consider only rules whose antecedents are made of two-way
joins [11]. This is fairly common in practice, as single-
antecedent rules derive triples that do not convey interesting
knowledge, but satisfy the logician. Hence, inference engines
such as Jena [18] and OWLIM [4] propose using lightweight
flavors of RDFS. ρDF is another common meaningful sub-
set of RDFS, designed to contain the essential semantics
of RDFS while reducing the number of rules. RDFS-Plus
[2] was conceived to provide a framework that allows the
merging of datasets and the discovery of triples of practical
interest.

In general, inference schemes are inherently divided into
two main approaches, backward-chaining and forward-chain-
ing. Backward-chaining performs inference at query time,
when the set of inferred triples is limited to the triple pat-
terns defined in the query (e.g., rewriting/ extending queries
and posing them against the original data). Forward-chaining
exhaustively generates all the triples from asserted ones, i.e.,
makes explicit the implicit data, through the application of
certain rules. This process is called materialization, since in-
ferred triples are explicitly written into the triple store. The
query-specific backward-chaining techniques adversely affect
query response times due to live inference. It is well suited to
frequently changing data since forward-chaining requires full
materialization after deletion. The materialization approach
offers two particular benefits: off-line or pre-runtime exe-
cution of inference and consumer-independent data access,
i.e., inferred data can be consumed as explicit data with-
out integrating the inference engine with the runtime query
engine. Herein, we focus on forward-chaining inference (ma-
terialization), but acknowledge the trade-off between both
techniques. In the rest of the paper, unless otherwise stated,
inference means forward-chaining inference.

Most of the research on forward-chaining has focused on
decidability and fragment selection. The theory of process-
ing per se has generally been relegated to secondary status.
Regardless of the algorithm used for inference, execution
involves numerous memory accesses. Excessive memory ac-
cesses in the presence of limited memory bandwidth results
in CPU stalling – as the CPU waits for the data required
while it is being fetched from the main memory. In contrast,
a predictive memory access pattern guides the prefetcher to
retrieve the data correctly in advance, thus enabling a better
usage of memory bandwidth.

1.1 Contribution and outline
In this paper, we revisit the problem of in-memory infer-

ence, with a focus on sequential memory access and sorting
algorithms. Our system Inferray, a portmanteau of infer-
ence and array, uses widely dynamic arrays of 64-bit in-
tegers. We demonstrate that the performance of sequential
memory access can be exploited to design and implement an
efficient forward-chaining inference system for both RDFS
and RDFS-Plus.

The scientific contributions of the paper are three-fold:

• We address the transitivity closure issue that under-
mines performance of iterative rule-based inference sys-
tems. We validate that it is worth paying the perfor-
mance penalty of translating data into Nuutila’s algo-
rithm data layout for a massive speedup and improved
scalability.

• We show that using a fixed-length encoding in a ver-
tical partitioning approach with sorted tables on both
〈s, o〉 and 〈o, s〉 enables very efficient inference and du-
plicate removal. As a consequence, most of the system
performance relies on an efficient sort of the property
tables made up of key-value pairs.

• Using a dense numbering scheme, we lower the en-
tropy of the values outputted by the dictionary encod-
ing. We leverage this low entropy by designing two
fast sorting algorithms that outperforms state-of-the-
art generic sorting algorithms on our use case.

We compare Inferray to alternative RDFS, ρdf, and RDFS-
Plus inference systems and show that Inferray outperforms
its competitors in scalability for transitive closure and per-
formance on the most demanding ruleset. Inferray is avail-
able as a stand-alone reasoner, and is also compliant with
Jena’s interface. Inferray source code and experimental data
are distributed under the Apache 2 License.

2. RELATED WORK & ANALYSIS
Traditional reasoning research literature has mostly fo-

cused on issues relating to expressivity, tractability, sound-
ness, and completeness, particularly in closed domains with
evaluation demonstrated over ontologies. However, infer-
ence over practical triple stores has an orthogonal set of
requirements: scalability and execution time. This leads
to two different sets of triple stores (including open source
and commercial) where one offers an inference layer on top
of the query layer (under the term Storage And Inference
Layer (SAIL)), while the other primarily focuses on simple
SPARQL querying support. Sesame [7], Jena TDB [18], RD-
Fox [19] and OWLIM [4] belong to the first set, inherently
supporting in-memory and native inference, while Hexastore
[35], TripleBit [36] and RDF-3X [20] belongs to the second
category of triple stores. The literature also points to some
experimental techniques on large scale reasoning [29].
In terms of lightweight subsets of RDFS and OWL, ap-

proaches for forward-chaining are classified into two cat-
egories based on their underlying algorithmic approaches
(Description Logics are outside the scope of this paper):
the RETE Algorithm [10] and iterative rules systems. The
RETE algorithm works on pattern matching principles –
where rule sets are represented as a DAG and are matched
to facts that are represented as relational data tuples. The
current version of the algorithm is not public due to intel-
lectual property constraints. However, several systems have
implemented their own flavor of RETE [18]. Furthermore,
RETE has recently been ported to GPU architectures [23].
Iterative rule systems offer a simpler design. Rules are

iteratively applied to the data until a stopping criterion is
matched. These systems usually operate on a fixed-point
iteration principle – i.e., inference terminates when an iter-
ation (application of all rules) derives no triples. Due to its

6

simplicity, iterative rules application is widely used in dis-
tributed inference systems [29, 34], on highly parallel archi-
tectures such as CRAY XMT [11] and in Sesame and RDFox.
Similarly, the OWLIM reasoners family uses a custom rule
entailment process with a fixed-point inference mechanism.

2.1 Duplicate elimination
Duplicate elimination introduces a significant performance

bottleneck in inference engines. Duplicates are triples that
are generated by two different valid resolution paths, i.e.,
they are either already present in the system (as an output
of other rules, or as an output of the same rule but with dif-
ferent input triples) or they are derived multiple times due
to concurrency issues in distributed/parallel settings. Thus
far, in an iterative system, it is important to cleanup dupli-
cates immediately – this prevents a combinatorial explosion
that would make the process intractable.

Cleaning up duplicates has been thoroughly discussed in
the literature, especially when data are partially replicated
during inference: on peers [29, 34] and on memory chunks
using shuffle addressing [11]. Weaver and Haendler [34] ac-
knowledge the issue, yet they offer no hint for duplicates
elimination. In WebPIE [29], much of the design of the
algorithm is focused on the duplicate elimination strategy.
Even after introducing a series of optimizations to avoid du-
plicate generation, WebPIE spends a significant time clean-
ing up duplicates. WebPIE allows the measurement of time
spent on duplicate elimination, since this is a synchroniza-
tion barrier in the system. On the Lehigh University Bench-
mark (LUBM) [12], when applying OWL/1 rules, the sys-
tem spends 15.7 minutes out of 26 on cleaning duplicates.
Sesame checks the existence of each inferred triple to avoid
duplicates, however it is not possible to measure the time
spent eliminating duplicates, nor is this possible for Jena
or OWLIM. In [11], Goodman et al. take advantage of the
Cray XMT hardware architecture to implement large-scale
reasoning. The Cray XMT is designed for massively par-
allel computing with non-uniform memory accesses, with
primary application on large-scale graph processing. The
memory architecture of the Cray XMT allows for checking
the existence of a triple in a global hashtable before its inser-
tion, without suffering the performance penalty that would
occur on an x86 architecture.

2.2 Memory Access Patterns
The two primary data structures used by forward-chaining

inference systems include graphs and dynamic collections of
triples. Jena encompasses triples and rules as a graph, as
an input for the RETE algorithm. Sesame also uses a graph
model for its iterative rule-based algorithm. The main struc-
ture of its RDF graph is a linked list of statements. Thus, it
offers good indexing to iterate over a list of triples. However,
in this setting, the lack of multiple indices seriously hinders
performance. These two previous reasoners are too slow and
are usually not included in benchmarks. RDFox, a much
faster reasoner, uses a tailor-made data structure that sup-
ports parallel hash-joins in a mostly lock-free manner. This
structure enables scalable parallelism at the cost of random
memory accesses. As for WebPIE, its in-memory model is a
collection of objects representing triples. The disk/memory
management is solely left to Hadoop and no optimization is
provided. Finally, nothing can be commented on OWLIM
design, as no details have been disclosed by its authors.

Accessing data from a graph structure requires random
memory accesses. Many random memory accesses incur a
high rate of cache misses. On sufficiently large datasets it
also causes high rates of page faults and Translation Looka-

side Buffer (TLB) load misses, thus, limiting the available
memory bandwidth and forcing main memory accesses.
In the aforementioned work by Goodman, the random

memory accesses issue no longer holds due to the architec-
ture of the Cray XMT. Performance reported by the authors,
using 512 processors and 4TB of main memory, indicates a
rate of 13.2 million triples/sec. on a subset of RDFS, 10,000
times faster than WebPIE. However, the price tag of such
a supercomputer, i.e., several million dollars, does not fit
every wallet. On a more reasonable budget, recent experi-
ments of the RETE algorithm on high-end GPUs [23] report
a throughput of 2.7 million triples/sec. for ρdf and 1.4 mil-
lion triples/sec. for RDFS. However, dedicated hardware is
still required compared to the usual commodity servers.
Herein, we focus on mainstream architectures and our rea-

soner efficiently runs on any commodity machine. To over-
come the memory bandwidth bottleneck, we focus our efforts
on designing a data structure and algorithms that favor se-
quential access. As previously stated, there are two ways
of designing an inference algorithm, namely, the RETE al-
gorithm or the fixed-point inference that iteratively applies
rules. The RETE algorithm requires a graph data struc-
ture that performs massive random memory accesses. Due
to the very nature of the RETE algorithm, we believe it
would be difficult to design a cache-friendly data structure
that replaces the traditional graph. Fundamentally, one can-
not foresee which triples will be matched by the pattern-
matching stage of the algorithm. Hence, we do not pursue
this approach and direct our research towards fixed-point
inference. We demonstrate a rule-based inference system
designed around sequential memory access that exhibits pre-
viously unmatched performance.

3. INFERRAY: OVERVIEW
We design Inferray with the objective of enhancing infer-

ence performance through an approach that both minimizes
duplicate generation and leverages memory bandwidth using
sequential memory accesses.
The global inference process is described in Algorithm 1.

Inferray performs two steps to complete the inference pro-
cess. In a first step, transitive closures are computed using
a different data layout than for the second step (Line 2).
The transitive closure cannot be performed efficiently using
iterative rules application since duplicate generation rapidly
degrades performance. To tackle this issue, we use the very
efficient algorithm from Nuutila. This closure is applied on
schema data for RDFS (subClass and subProperty), and
is also applied to every transitive property as well as for
sameAs for RDFS-Plus. Details on transitive closure are
given in Section 4.1.
In a second step, Inferray applies rules iteratively, until a

fixed-point is reached (condition in Line 4). To derive new
triples using rules, Inferray takes two inputs: existing triples
and newly-inferred triples, except for the very first iteration,
where existing and newly-inferred storages are identical (see
Line 3). For the rule-based inference stage, we observe that
triple inference is identical to the process of performing joins
and inserts. Due to the selectivity of the rules for all the
fragments supported by Inferray, the vertical partitioning

7

approach is well suited to perform inference efficiently using
sort-merge joins. This structure along with the inference
mechanism are described in Section 4.2.

Inferred triples are stored in the structure inferred. These
triples may contain triples that are already in the main struc-
ture: the duplicates. Duplicates are therefore removed from
inferred, then these new triples are added in main and new

to continue the process. Section 4.3 presents this process.
The rule sets supported by Inferray are of various com-

plexities. RDFS and ρDF require only two-way joins that
are efficiently performed. However, several rules of RDFS-
Plus contain multi-way joins that may hinder performance.
We detail in Section 4.4 how we efficiently handle these rules.

Algorithm 1: Inferray: main loop

Input: Set of triples triples, triples stores:
main, inferred, new

Output: Set of triples with inferred triples
1 main← triples;
2 transitivityClosures();
3 new ← main;
4 while new 6= ∅ do
5 inferred← infer(main, new);
6 new ← inferred \main;
7 main← main ∪ new;

8 end

To perform sort-merge joins efficiently, property tables
that contain pairs of 〈subject, object〉 (〈s, o〉 in the rest of
the paper) must be sorted on 〈s, o〉 and possibly on 〈o, s〉.
Inferray must also maintain sorted and duplicate-free prop-
erty tables after each iteration of rules. The design choices
and sorting algorithms are presented in Section 5.

4. INFERENCE MECHANISMS

4.1 Transitivity Closure
For the case of transitivity closure computation, perfor-

mance is hindered by the large number of duplicates gen-
erated at each iteration [29]. By definition, subproperties
do not inherit the transitivity property, i.e., we cannot in-
fer that a subproperty of a transitive property is transitive.
This implies that any statement of the form p is transitive

must hold prior to the inference process. This allows us to
handle transitivity closure before processing the fixed-point
rule-based inference.

In practice, transitivity closure computation differs for
RDFS and RDFS-Plus. For RDFS, the closure is com-
puted for both subClassOf and subPropertyOf. For RDFS-
Plus the closure is extended to every property declared as
transitive. RDFS-Plus also includes owl:sameAS symmetric
property on individuals. To compute the transitivity closure
on the symmetric property, we first add, for each triple, its
symmetric value and then we apply the standard closure.

Computing the transitivity closure in a graph is a well-
studied problem in graph theory. It still remains a difficult
problem for large scale data [8]. Fortunately, for the case
of RDF data, transitivity closure is always applied to the
schema data, the Tbox, which is always of a very reasonable
size compared to the set of instances, the Abox. Instances
(Abox) are guaranteed to match the closure of their respec-
tive classes through the CAX-SCO rule.

The schema graph does not present any guarantee regard-
ing the presence or absence of cycles. The fastest known al-
gorithm to compute transitivity closure in a digraph, cyclic
or acyclic, is Nuutila’s algorithm [22]. The algorithm first
performs a strong component detection. A quotient graph
is then computed, each component c is linked to another c′

if there is an edge from some node in c to some node in
c′. The quotient graph is then topologically sorted in re-
verse order. The reachable set of each node in the quotient
graph is computed as the union of the reachable sets in its
outgoing edges. This relation used to compute the quotient
graph ensures that the transitivity closure of the original
graph can be deduced from the transitivity closure of the
quotient graph. The closed original graph is achieved by
mapping back strong components from the quotient graph
to their original nodes. All steps, other than unioning reach-
able sets, are linear time operations.
Cotton’s implementation1 of Nuutila’s algorithm is ori-

ented towards high-performance using compact data layout.
The strong component detection is implemented with bit
vectors to ensure compactness and a better cache behavior.
The computationally intensive step of unioning reachable
sets is optimized by storing reachable sets as sets of inter-
vals. This structure is compact and is likely to be smaller
than the expected quadratic size. Branchless implementa-
tion of merging ensures high performance.
This method performs well when node numbers are dense.

This interval representation provides a compact representa-
tion and exhibits a low memory footprint. Therefore, for
our implementation, sparsity of the graph is reduced by first
splitting it into connected components and later renumber-
ing the nodes to ensure high density. For this purpose, we
use the standard UNION-FIND algorithm, then translate the
nodes’ ID to keep a dense numbering, finally applying Nuu-
tila’s algorithm. The closure of each connected component
is thus far added to the list of 〈s, o〉 in the main triple store.

4.2 Sort-Merge-Join Inference
Each inference rule consists of a head element and a body

element. The body indicates the condition(s) that must
be validated to assert new triples. For instance the rule
CAX-SCO (Table 5, #3) that is shared between the three
aforementioned rulesets, states that if class c1 is subclass
of c2, then every resource of type c1 is also of type c2.
In practice, most of the patterns are selective on the prop-

erty value. Thus, we use vertical partitioning [1] to store the
triples in the memory in order to harness the advantages of
selectivity. The principle of vertical partitioning is to store
a list of triples 〈s, p, o〉 into n two-column tables where n is
the number of unique properties. Field testing has shown
great performance for query answering as well as scalability.
Experiments from Abadi et al. were also reproduced and
validated by an independent study [27].
In Inferray, the triple store layout is based on vertical

partitioning with column tables. Triples are encoded using
a dictionary. This is common practice among triple stores
(Triple Matrix, RDF3-X) to reduce the space occupied by
triples and to enhance performance by performing arith-
metic comparisons instead of strings comparisons. Each part
of a triple, i.e., subject, properties, or object, is encoded to
a fixed-length numerical value of 64 bits. Due to the large

1https://code.google.com/p/stixar-graphlib/

8

volume of data (the LOD cloud is already over several hun-
dred billions triples) 32 bits would not be sufficient. From a
database point of view, applying rules is similar to selecting
triples matching a pattern and inserting new ones accord-
ing to a given pattern2. The alternative consists in using
a hash-join strategy, like RDFox. However, while applying
rules, sorted property tables are reused in many join opera-
tions, thus mutualizing sorting time. As shown in [3], sorting
represents more than half the time required in a sort-merge
join. Moreover, sorted property tables are later reused to op-
timize both duplicate elimination and merging (Lines 6 and
7, Algorithm 1). Due to the mutualization of the sorting
time, sort-merge join becomes more efficient than hash-join.

Traditional vertical partitioning approaches enforce sort-
ing property tables on 〈s, o〉 alone. However, in order to
perform sort-merge joins, some rules require property tables
to be also sorted on 〈o, s〉. Consequently, property tables
are stored in dynamic arrays sorted on 〈s, o〉, along with
a cached version sorted on 〈o, s〉. The cached 〈o, s〉 sorted
index is computed lazily upon need. This cache may be
cleared at runtime if memory is exhausted.

Figure 4 shows a concrete example of inference, where
the previously described rule CAX-SCO is applied to sam-
ple data. Triples for the property subClassOf are given
in the first vertical list, sorted on 〈s, o〉, starting from the
left. The triples for this column are the explicit ones in
our running example (<human, rdfs:subClassOf, mammal>

and <mammal, rdfs:subClassOf, animal>), and are encoded
with the respective values [2, 1, 3] and [2, 1, 4]. The triples
read as follows: property value (1) then from top to bottom,
subject and object – [2, 3] for the first triple and [2, 4] for
the second. These triples are listed in the column of index 1,
sorted on 〈s, o〉, according to the provided dictionary encod-
ing (top right of Figure 4). The vertical partitioning scheme
is preserved: properties are sorted, and for each, the set of
(subject, object) pairs are subject-sorted. We also introduce
two instances for the sake of illustration – :Bart and :Lisa

of type human. We illustrate how the system infers that
:Bart and :Lisa are both of type mammal and animal.

Properties

. . .

0 1 7 n

. . .

. . .

S1,1

S1,n

S1,2

Object Sorted

2

2

2

3

4

5

6

CAX-SCO

O7,1

2

O7,2

O1,n

S7,1

S7,2

6 3 35 56 4 4

n

. . .
7

Inferred Triples

Dictionary

human 2

mammal 3

subClassOf 1

animal 4

:Bart 5

:Lisa 6

type 7{ {

su
b

C
la

ss
O

f P
ro

p
e

rt
y

ta
b

le

ty
p

e
P

ro
p

e
rt

y
ta

b
le

Figure 4: Sort-Merge-Join Inference: CAX-SCO.

This example presents the principle of Sort-Merge-Join
Inference on a single triple store. However, in the practice,
applying rules to a single triplestore leads to the derivation
of numerous duplicates at each iteration. To avoid dupli-
cates, new triples from the previous iteration are used in
combination with the main triple store.

While the described procedure is specific to the rules sim-
ilar to CAX-SCO, other rules do, however, follow a similar or
simpler principle to infer new triples. We precisely describe

2See http://topbraid.org/spin/rdfsplus.html for a
SPARQL version of RDFS-Plus

1 1 81 96 4 3 7 3 21 11 2 1

Main Inferred

11 71 2 3

Sort

&

Remove

duplicates

1 1 21 61 8 4 7 3 39 71 2 3

NewMain

Merge

lists

&

Keep new

triples

&

Skip

duplicates

Figure 5: Updating property tables after an iteration. For
the next iteration, New will serve as input for rule applica-
tion

the different classes of rules in Section 4.4 and analyze their
respective complexities.
Our system applies all the rules in bulk to triples to result

in a set of property tables containing inferred triples and
possibly some duplicates. To perform the next iteration, i.e.
the application of rules with the newly inferred triples, we
first sort on 〈s, o〉 and remove duplicates from the inferred
triples. Second, we add inferred triples that were not already
present in the main triple store (Line 7, Algorithm 1) and
finally, we sort the property tables to which new triples have
been added. In the case of receiving new triples in a property
table, the possibly existing 〈o, s〉 sorted cache is invalidated.

4.3 Merging Data
Fig. 5 shows the update process that takes place at each

iteration, after all rules have been fired. This process takes
place for every property when new triples have been inferred.
In the first step, inferred triples are sorted and duplicates

are removed. In the second step, main and inferred triples
are merged into the updated version of main; inferred triples
that do not exist in main are copied in new. Duplicate re-
moval takes place in these two steps: during the first step
by removing the inferred duplicates; and during the second
one by skipping triples in inferred that are already in main.
The time complexity of the whole process is linear as both
lists are sorted. On the one hand, each rule is executed on
a dedicated thread (Line 5 of Algorithm 1) and holds its
own inferred property table to avoid potential contention.
On the other hand, data merging (Lines 6 and 7) deals with
independent property tables, this process is also easily par-
allelized.

4.4 Rule Classes
We pigeonholed the rules into classes, according to their

selection and insertion patterns. Under the hood, these
classes are effectively used in Inferray to implement rules
with similar patterns – the list of rules with their classes is
given in Table 5. RDFS and ρdf contain rules with a maxi-
mum of two triple patterns in the body part, i.e. the select
query. Rules with a single triple pattern in the body are
trivial and are not detailed here.
For two-way joins on triple patterns 〈s1, p1, o1〉 we intro-

duced the following classes.
Alpha. Join for α-rules is performed on either subject

or object for the two triples. Since Inferray stores both

9

〈s, o〉 and 〈o, s〉 sorted property tables, this sort-merge join
is efficiently performed, as described for CAX-SCO in Fig. 4.
Beta. β-rules perform a self-join on the property table

associated with the fixed property in both triple patterns.
Join is performed on the subject for one pattern and on the
object for the other. As Inferray stores both 〈s, o〉 and 〈o, s〉-
sorted tables, the join is a standard sort-merge join as for
the α-rules, with the potential overhead of computing the
〈o, s〉-sorted table if not already present.

Gamma. For the γ-rules, one triple pattern has a fixed
property and two variables 〈s, o〉, also being properties. The
join is performed on the property of the second triple pat-
tern. Consequently, this requires to iterate over several
property tables for potential matches. Fortunately, in prac-
tice, the number of properties is much smaller compared to
classes and instances.

Delta. For the δ-rules, the property table of the second
antecedent is copied (may be reversed) into the resulting
property table.

Same-as. The four same-as rules generate a significant
number of triples. Choosing the base table for joining is
obvious – since the second triple patterns select the entire
database. Inferray handles the four rules with a single loop,
iterating over the same-as property table. EQ-REP-P is the
simplest case; the property table associated with the subject
is copied and appended to the property table associated to
the object. EQ-REP-O and EQ-REP-S follow the same plan
as for γ-rules. EQ-SYM falls in the trivial case of the single
triple pattern rule.

Theta. This class embeds all transitive rules. The tran-
sitivity closure for these rules is computed before the fixed-
point iteration using the process described in Section 4.1.

RDFS-Plus has three rules with three triple patterns in
the antecedent (PRP-TRP, PRP-FP and PRP-IFP). PRP-TRP is
the generalization of the transitivity closure from SCM-SCO

and SCM-SPO to all transitive properties. PRP-TRP is han-
dled in a similar fashion, viz., by computing the closure as
described in Section 4.1. PRP-FP and PRP-IFP are identi-
cal (except for the first property), the system iterates on all
functional and inverse-functional properties, and performs
self-joins on each property table. For PRP-FP, sorted prop-
erty tables on 〈s, o〉 and 〈o, s〉 allow linear-time self-joins.
The total complexity is O(k · n) where k is the number of
functional and inverse functional properties and n is the
largest number of items in a property table.

5. SORTING KEY/VALUE PAIRS
The cornerstone of Inferray is the sorting step that takes

place at two different times in the process. First, when in-
ferred triples are merged into main and new. Second, when a
property table is required to be sorted on 〈o, s〉 for inference
purpose. These two operations differ slightly, as the first
one requires potential duplicates to be removed, whereas
property tables are duplicate-free for the second operation.
To sort these lists of pairs of integers efficiently, we use a

dense numbering technique to reduce the entropy. The low
entropy allows us to design efficient algorithms that outper-
form state-of-the-art generic solutions on our use case.

5.1 Dense Numbering
A key observation is that inference does not produce new

subjects, properties or objects – only new combinations of

existing s, p, o are created in the form of triples. From a
graph point of view, inferencing corresponds to increasing
the density of the graph.
In property tables, except for Same-as, subjects are of

the same nature (property or not) as are objects (either
property or non-property). For instance, the property table
for rdfs:domain contains properties as subjects and non-
properties as objects. Subject/Object pairs are sorted lexi-
cographically. We aim at keeping numbers dense for prop-
erties on one side, and for non-properties on the other.
Numbering of properties must start at zero for the array

of property tables (Figure 4). The number of properties is
negligible compared to the number of non-properties. Dense
numbering is performed at loading time. Each triple is read
from the file system, dictionary encoding and dense number-
ing happen simultaneously. However, we do not know in ad-
vance the number of properties and resources in the dataset,
hence it is not possible to perform dense numbering starting
at zero for properties. To circumvent this issue and to avoid
a full data scan, we split our numbering space, i.e., [0; 264],
at 232 – considering that in practice the number of proper-
ties is smaller than the number of resources. We assign the
properties numbers in decreasing order and resources in an
increasing order. For instance, the first property will be as-
signed 232, the second 232 − 1, and the first resource will be
assigned 232 +1, thereby, keeping dense numbering for both
cases. To access the array of property tables, we perform a
simple index translation.

5.2 Counting sort
Counting sort is an integer sorting algorithm that shows

excellent performance for small values ranges, in other words,
when the entropy is low.
Sorting pairs with counting sort is not a well-studied prob-

lem, therefore we devise an adaptation of the algorithm to
fulfill our requirement (Algorithm 2). The underlying idea
of our counting sort for pairs is to keep the histogram prin-
ciple for sorting the subjects (assuming we sort on 〈s, o〉) –
while being able to sort in linear time the objects associated
with each subject value (i.e., keys of the histogram).
For this purpose, we store the objects in a single array.

By using their positions in the unsorted array, combined
with histogram values, we are able to sort subarrays corre-
sponding to subjects. Finally, we build the sorted array by
combining the histogram and the object sorted arrays.
The algorithm is given in Algorithm 2. For the sake of

explanation, a trace of Algorithm 2 on a sample array is
presented in Figure 6. The algorithm starts by computing
the traditional histogram on the subjects’ values and keeps
a copy of it (Lines 1 and 2). The starting position of each
subject in the final array is computed by scanning the array
and summing the consecutive values (Line 3).
The second step (Lines 4 to 10) builds an array in which

object values are placed according to the future position of
their associated subjects in the final sorted array. These
object values are unsorted. In Figure 6, the subject with
value 4 appears twice (first and last pairs) with object values
1 and 4. After this step, the object value 4 is in position
2 in the objects array, before object value 1. Subarrays
of objects are associated with each histogram value. For
the subject si, the subarray starts at the position given by
startingPositions[si] and its length is equal to the number
of subjects in the array, i.e. histogram[si]. Objects are

10

Algorithm 2: Counting sort algorithm for pair of inte-
gers in a single array, also removing duplicate pairs.

Data: an array of integer pairs, representing a serie of pairs
pi = (si, oi). width is the range of the array. Subjects
s are on even indices, Objects o are on odd indices.

Result: A sorted array of unique pairs of key-value, sorted
by key then value

1 histogram = histogram of subjects;
2 histogramCopy = copyArray(histogram);

// Compute starting position of objects
3 int[] start = cumulative(histogram);

// Put objects in unsorted subarrays
4 int[] objects = int[pairs.length/2]
5 for i = 0; i < pairs.length; i + = 2 do

6 int position = start[pairs[i]−min];
7 int remaining = histogram[pairs[i]-min];
8 histogram[pairs[i]−min]−−;
9 objects[position+ remaining − 1] = pairs[i+ 1];

10 end

// Sort objects for each subject
11 for i = 0; i < start.length; i++ do

12 sortFromTo(objects, start[i], start[i+ 1]);
13 end

// Build the resulting array
14 int j = 0, l = 0, previousObject = 0;
15 for i = 0; i < histogramCopy.length; i++ do

16 int val = histogramCopy[i];
17 int subject = min+ i
18 for k = 0; k < val; k++ do

19 int object = objects[l++]
// Avoid duplicates

20 if k == 0 || object ! = previousObject then
21 pairs[j++] = subject;
22 pairs[j++] = object;

23 end

24 previousObject = object;
25 end

26 end

27 trimArrayToSize(pairs, j);

added in the subarray starting from the end. The relative
position in the subarray is given by histogram[si]. Once an
object for si is added, this value is decreased. Hence, the
absolute position of the object value in the objects array is
given by the sum of startingPosition[si] and histogram[si].
In the third step (Lines 11 to 13), the subarrays are sorted

using the traditional counting sort algorithm. Start and end
indices are given by scanning startingPosition.
The resulting array is reconstructed by scanning the copy

of the histogram (the original contains only 0 after the sec-
ond step) (Lines 14 to 26). Removal of duplicates and pos-
sible trim are also implemented at this step.

5.3 MSDA Radix
Radix sort is one of the oldest sorting algorithms. A radix

sort successively examines D-bit digits (the radix) of the K-
bit keys. There are two strategies to implement radix sort
depending on the order in which digits are processed: Least
Significant Digit (LSD) or Most Significant Digit (MSD).
MSD groups blocks by digits and recursively processes these
blocks on the next digits. While LSD needs to examine all
the data, MSD is, in fact, sublinear in most practical cases.
To sort the property tables, we sort pairs of key-value of 64
bits each. For this case, radix remains a better choice than
merge sort [25]. A standard radix sort will group blocks on
the first digit examined, and recursively process blocks until

4 1 2 3 1 2 5 3 4 44 1 2 3 1 2 5 3 4 44 1 2 3 1 2 5 3 4 44 1 2 3 1 2 5 3 4 44 1 2 3 1 2 5 3 4 44 1 2 3 1 2 5 3 4 4Array of pairs

Subjects’ histogram 1 1 0 2 1

s o s o s o s o s o

 1 2 3 4 5

Starting positions 0 1 2 2 4

3 32 14

3 32 41

{ {

Objects
Sort subarrays

Lines

1..3

4..10

11..13

 histogramCopy

1 1 0 2 1

Objects

3 32 41

4 1 2 3 1 2 5 3 4 44 1 2 3 1 2 5 3 4 44 1 2 3 1 2 5 3 4 44 1 2 3 1 2 5 3 4 44 1 2 3 1 2 5 3 4 44 1 2 3 1 2 5 3 4 4 1 2 2 3 1 2 5 3 4 41 2 2 3 1 2 5 3 4 41 2 2 3 1 2 5 3 4 41 2 2 3 1 2 5 3 4 41 2 2 3 1 2 5 3 4 41 2 2 3 1 2 5 3 4 4

 1 2 3 4 5

1 2 2 3 4 1 4 4 5 3 1 2 2 3 4 1 4 4 5 3 1 2 2 3 4 1 4 4 5 3 1 2 2 3 4 1 4 4 5 3 1 2 2 3 4 1 4 4 5 3 1 2 2 3 4 1 4 4 5 3
14..26

Replace values

using histogram and objects

Repeat n times

Starting Positions

0 1 2 2 4

0 1 2 2 4

 1 2 3 4 5

0 1 2 2 4

0 1 2 2 4

0 1 2 2 4

0 1 2 2 4

Objects

 1

13

13

3 3

2

2

3 32

1

14

4 1 2 3 1 2 5 3 4 44 1 2 3 1 2 5 3 4 44 1 2 3 1 2 5 3 4 44 1 2 3 1 2 5 3 4 44 1 2 3 1 2 5 3 4 44 1 2 3 1 2 5 3 4 4

Input Array

4 4 2 3 1 2 5 3 4 14 4 2 3 1 2 5 3 4 14 4 2 3 1 2 5 3 4 14 4 2 3 1 2 5 3 4 14 4 2 3 1 2 5 3 4 14 4 2 3 1 2 5 3 4 1

4 4 2 3 1 2 5 3 4 14 4 2 3 1 2 5 3 4 14 4 2 3 1 2 5 3 4 14 4 2 3 1 2 5 3 4 14 4 2 3 1 2 5 3 4 14 4 2 3 1 2 5 3 4 1

s o s o s o s o s o

4 4 2 3 1 2 5 3 4 14 4 2 3 1 2 5 3 4 14 4 2 3 1 2 5 3 4 14 4 2 3 1 2 5 3 4 14 4 2 3 1 2 5 3 4 14 4 2 3 1 2 5 3 4 1

4 4 2 3 1 2 5 3 4 14 4 2 3 1 2 5 3 4 14 4 2 3 1 2 5 3 4 14 4 2 3 1 2 5 3 4 14 4 2 3 1 2 5 3 4 14 4 2 3 1 2 5 3 4 1

4 1 2 3 1 2 5 3 4 44 1 2 3 1 2 5 3 4 44 1 2 3 1 2 5 3 4 44 1 2 3 1 2 5 3 4 44 1 2 3 1 2 5 3 4 44 1 2 3 1 2 5 3 4 4

Histogram

1 1 0 1 1

1 0 0 1 1

0 0 0 1 1

0 0 0 1 0

0 0 0 0 0

 1 2 3 4 5

1 1 0 2 1

Figure 6: Trace of Algorithm 2 on a sample array. Steps are
identified by the line numbers of the algorithm.

Range Algorithm Size

(entropy) 500K 1M 5M 10M 25M 50M

500K Counting 27.7 35.7 64.1 70.4 42.0 56.0

(18.9) MSDA Radix 31.2 31.2 33.3 23.4 20.3 22.4

1M Counting 20.8 27.7 49.0 64.9 66.8 42.1

(19.9) MSDA Radix 27.7 29.4 33.7 32.8 19.1 18.4

5M Counting 6.2 10.8 25.2 33.1 48.0 63.2

22.6 MSDA Radix 20.8 22.7 29.4 30.6 33.4 33.6

10M Counting 3.3 6.0 18.5 24.6 36.3 47.7

(23.26) MSDA Radix 47.6 20.8 27.7 29.4 30.4 33.1

25M Counting 1.4 2.7 9.9 16.1 23.5 31.8

(24.58) MSDA Radix 41.6 33.3 19.5 21.9 24.0 24.5

50M Counting 0.7 1.3 5.7 10.1 17.5 23.6

(25.58) MSDA Radix 35.7 35.7 17.6 19.3 22.8 23.2

Generic

Radix128 21 20.4 21.8 22.4 22.7 22.7

Merge128 27.5 27 25 21.8 20 18.75

Mergesort 22.7 20.8 18.0 17.8 16.2 15.6

Quicksort 8.6 7.9 5.9 5.6 5.2 5.1

Table 1: Performance in millions of pairs second for count-
ing, MSD radix adaptive for ranges and sizes from 500K to
50M. Standard algorithms are given without entropy. Op-
erating ranges are underlined. Results in italic are adapted
from [25].

keys are sorted. In the case of equality between keys, radix
sort is called to sort on the values.
In the worst case, 128 bits are examined. However, in

our case, we can take advantage of the dense numbering
– the whole range of 64 bits is unlikely to be completely
in use for every property table and all numbers are in a
window around 232. Therefore, the significant bit for radix

11

sorting may start in the i-th position, where i ≥ D. It
is consequently useless to sort the leading i − 1 bits. To
determine i, Inferray computes the number of leading zeros
of the range divided by the size of the radix. For a range
of 10 million with an 8-bit radix, significant values start at
the sixth byte out of eight. For small or dense datasets this
optimized MSD radix sort saves multiple recursive calls. We
denote this version as MSDA (A for adaptive) radix in what
follows.

5.4 Operating Ranges
Intuitively, counting and radix sort algorithms are ex-

pected to reach their respective peaks under different con-
ditions. The range of the data is the primary bottleneck for
counting sort. For a very large range where data is sparsely
distributed, the algorithm will perform poorly. Meanwhile,
radix will efficiently cluster data by blocks and the sublinear
effect will be higher. On the contrary, we expect counting
sort to outperform radix for small data ranges.

We conduct experiments to fix the boundaries of opti-
mal operating ranges for both algorithms. We considered
ranges (r) and sizes (n) that are common for Linked Open
Data datasets, from 500K to 50M. We compare our count-
ing sort and MSDA radix with state-of-the-art algorithms
from [25]. The algorithms noted Radix128 and Merge128
are SIMD optimized implementations of Radix and Merge-
sort, running on CPU. Since Inferray sorts pairs of 64-bit
integers, we compare our approach against 128-bit integer
sorting algorithms.

The results of our experiments are shown in Table 1. Our
algorithms are at least on par with state-of-the art algo-
rithms for 83.3% of the considered cases, and offer a three
times improvement in the best case. In the worst case (5M
elements, 25.58 bits entropy), our approach reaches 70% of
state-of-the-art throughput.

The main reason behind this performance is that by de-
sign, both our algorithms (Counting and MSDA) takes largely
advantage of the low entropy induced by the dense num-
bering. At the opposite, generic sorting algorithms should
not be impacted by entropy variation. As reported in [25],
both Radix128 and Merge128 are barely impacted by en-
tropy variation. A second reason, is that these algorithms
are highly performant on smaller keys (i.e. 32 bits). Cur-
rent width of the SIMD registers prevent them to perform
efficiently on 128-bit integers.

For small ranges (500K and 1M), counting sort outper-
forms largely radix algorithms when the size of the collection
outgrows the range of the data. For r = 1M and n = 25M ,
counting offers a 3.5 factor of improvement. These values
mean a very dense graph, in which radix algorithms must
perform a high number of recursions. For very sparse graphs,
i.e., large r and small n, counting sort suffers a performance
penalty from scanning large sparse arrays. Radix sort at the
opposite end offers better performance when data is sparse.
Grouping becomes efficient from the first examined digits
and thus strongly limits recursive calls. As a rule of thumb,
counting outperforms MSD radix when the size of the col-
lection is greater than its range. When the range is greater
than the number of elements, the adaptive MSD radix con-
sistently outperforms the standard implementation. The
values used by Inferray for sorting property tables are the
ones underlined in Table 1.

6. BENCHMARK
In this section, we evaluate our Java implementation of In-

ferray against state-of-the-art systems supporting in-memory
inference. Our testbed is an Intel Xeon E3 1246v3 processor
with 8MB of L3 cache. The system is equipped with 32GB
of main memory; a 256Go PCI Express SSD. The system
runs a 64-bit Linux 3.13.0 kernel with Oracle’s JDK 7u67.
Competitors. We run the benchmark on major solu-

tions from both the commercial and open-source worlds. As
a commercial world representative, we use OWLIM-SE, the
lite version being limited in its memory usage [17]. OWLIM
is widely used in both academic benchmarks and commer-
cial solutions. OWLIM is also well known for powering the
knowledge base of the BBC’s FIFA WorldCup 2010 web-
site [15], and for its performance [17]. As open-source so-
lutions we use RDFox [19] and WebPIE [29]. RDFox al-
lows fast in-memory, parallel, datalog reasoning. Unlike
our sort-merge-join inference approach, RDFox proposes a
mostly lock-free data structure that allows parallel hash-
based joins. WebPIE, unlike its backward-chaining counter-
part QueryPIE [30], is a forward-chaining reasoner, based
on Hadoop. All competitors but WebPIE – which cannot
by design, are configured to use in-memory models.
Data. As there is no well-established benchmark for

RDFS and RDFS-Plus inference, we built our own bench-
mark with widely used real-world ontologies as well as gen-
erated ontologies usually found in SPARQL benchmarks. As
stated in [9], it is necessary to benchmark on both generated
and real-world data to obtain significant results. Regarding
real-world ontologies, we use the taxonomy of Yago [28] that
contains a large set of properties. This dataset challenges
the vertical partitioning approach, due to the large num-
ber of generated tables. Transitive closure is challenged by
the large number of subClassOf and subPropertyOf state-
ments. We use the Wikipedia Ontology [24], automatically
derived from Wikipedia categories, which contains a large
set of classes and a large schema. As generated ontologies,
we use 8 LUBM [12] datasets ranging from 1 million to 100
million triples. Only RDFS-Plus is expressive enough to
derive many triples on LUBM. We use BSBM [5] to gener-
ate ontologies that support RDFS. We generated datasets
from 1 million triples up to 50 million. We implemented a
transitive closure dataset generator that generates chains of
subclassOf for a given length. We use 10 of these datasets,
with chains from 100 nodes to 25,000. All datasets are ac-
cessible online.
Measures. All experiments are conducted with a timeout

of 15 minutes. Experiments are executed twice to warm
up caches and are then repeated five times, average values
over the five runs are reported. We report inference time
for Inferray , RDFox and WepPIE. For OWLIM, we use
the same methodology as [19] – we measure execution times
for materialisation and for import, we then substract the
two times. CPU and software counters for cache, TLB and
page faults are measured with perf software. This tool also
comes with the repeat option for warming up the file system
caches.
Rulesets. We ran the benchmarks using four rulesets,

ρdf, RDFS, RDFS default and RDFS-Plus. OWLIM-SE
and RDFox have built-in rulesets and offer to use custom
ones. We use their built-ins for RDFS and we implemented
custom rule sets for the remaining ones. WebPIE supports

12

Type Dataset Fragment Reasoners

Inferray OWLIM RDFox Webpie

S
y
n
th
et
ic

BSBM 1M

ρDF 193 1,1157 56 N/A

RDFS-default 254 1,750 63 N/A

RDFS-Full 403 786 85 66,300

BSBM 5M

ρDF 341 7,522 282 N/A

RDFS-default 394 3,424 405 N/A

RDFS-Full 863 5,503 510 89.,400

BSBM 10M

ρDF 580 16,856 589 N/A

RDFS-default 702 18,283 763 N/A

RDFS-Full 2,026 19,930 990 110,700

BSBM 25M

ρDF 1,220 22,279 1,298 N/A

RDFS-default 2,756 22,425 1,859 N/A

RDFS-Full 5,082 22,443 2,355 296,300

BSBM 50M

ρDF 3,049 – 3,908 N/A

RDFS-default 2,865 – 4,898 N/A

RDFS-Full 6,445 – 4,566 –

R
ea
l-
W
o
rl
d

Wikipedia

ρDF 275 573 120 N/A

RDFS-default 250 719 161 N/A

RDFS-Full 652 791 160 63,700

Yago

ρDF 3,124 21,925 1,575 N/A

RDFS-default 3,200 22,639 1,659 N/A

RDFS-Full 3,824 28,438 2,251 1.4e6

Wordnet

ρDF 536 6,182 313 N/A

RDFS-default 444 2,503 288 N/A

RDFS-Full 1,398 7,248 396 67,340

Table 2: Experiments on RDFS flavors. Execution times is
in miliseconds. Each value is the average over five runs.

Type Dataset Fragment Reasoners

Inferray OWLIM RDFox

S
y
n
th
et
ic

LUBM 1M RDFS-Plus 19 1,324 69

LUBM 5M RDFS-Plus 114 3,907 322

LUBM 10M RDFS-Plus 540 6,175 855

LUBM 25M RDFS-Plus 1,092 12,493 1,920

LUBM 50M RDFS-Plus 1,984 31,187 4,077

LUBM 75M RDFS-Plus 2,047 48,233 6,939

LUBM 100M RDFS-Plus 2,514 72,098 10,613

R
ea
l-

w
o
rl
d Wikipedia RDFS-Plus 310 3,033 342

Yago Taxonomy RDFS-Plus 3,085 29,747 3,204

Wordnet RDFS-Plus 232 5,692 860

Table 3: Experiments on RDFS-Plus. Execution times is in
miliseconds. Each value is the average over five runs.

RDFS and direct type hierarchy inferencing, but does not
offer support for custom rule sets.

6.1 Transitivity Closure
For the first experiment, we compute the transitivity clo-

sure for chains of triples of various length. For an input

chain of length n, exactly n
2
−n

2
triples are inferred. For In-

ferray, we measure regular runs, data are translated into the
vertical partitioning structure, rules are started, even if no
further triples are inferred. Results are reported in Table 4.

First of all, Inferray scales well beyond its competitors.
While OWLIM stops for a chain of 2,500 nodes, i.e., to gen-
erate around three millions triples, RDFox manages to reach
the generation of 50M triples for a chain of 5,000 nodes. In-
ferray scales up to the generation of 313M triples in 14.7

System

Length of subclassOf chain

100 500 1000 2500 5000 10000 25000

Inferray 22 53 165 612 1253 3275 14712

OWLIM 45 1952 21200 361231 – – –
RDFox 8 303 3034 87358 597286 – –

Table 4: Performance for the transitivity closure. Execution
time in milliseconds

seconds, reaching a throughput of 21.3M triples per second.
For chains over 25,000 nodes, Inferray stops due to lack of
memory (≥ 16GB). Second, Inferray is much faster than
other systems. For a chain of 2,500 nodes, Inferray is 142
times faster than RDFox and 590 times faster than OWLIM.
Cotton’s implementation exhibits very good memory behav-
ior. While OWLIM struggles with high page faults and TLB
misses rates, Inferray remains memory-friendly, as depicted
in Figure 7. RDFox is faster than Inferray on the small-
est dataset, thanks to a lower TLB misses rate. For largest
datasets, RDFox suffers from growing cache misses and TLB
misses rates. Meanwhile, its page faults rates demain mostly
on par with Inferray.
The introduction of the temporary storage for transitivity

closure along with the compact and efficient implementation
of Nuutila’s algorithm offers a major improvement in both
performance and scalability.

6.2 RDFS Fragments
RDFS, RDFS-default and ρdf have very similar levels of

expressiveness. RDFS in its full version derives many more
triples than its default version (Section 3). However, this
derivation does not entail a higher complexity since all use-
less triples can be inferred in linear-time in a post-processing
step. For this latter fragment, RDFox consistently outper-
forms OWLIM and Inferray on both real-world and syn-
thetic datasets. The hash-based structure of RDFox offers
a better handling of triples generated by RDFS rules 8, 12,
13, 6 and 10 from Table 5. Inferray is largely impacted by
the duplicate elimination step caused by these triples. Re-
garding scalability, both Inferray and RDFox handle mate-
rialization up to 50M, while OWLIM timeouts. On RDFS-
default and ρdf, performance are more balanced between In-
ferray and RDFox. RDFox remains faster on small dataset
(BSBM1M and real-world datasets), while Inferray perfor-
mance improves with the size of the dataset. The memory
behaviour, not reported due to lack of space, shows that
the hash-based data structure from RDFox does not suffer
much from random memory access. Its L1 cache miss rate is
slightly over 1.2%, while Inferray exhibit a constant rate of
3.4 %. We believe this behaviour is due to the nature of the
rules applied for RDFS. These rules are applied on small set
of properties, and properties are never variable in the rules.
Therefore, the linked-list mechanism from RDFox that con-
nects triples with similar 〈s, p〉 and similar 〈o, p〉 offers an
interesting solution that matches well with the nature of
RDFS rules.

6.3 RDFS-Plus
Table 3 present results for RDFS-Plus. RDFS-Plus is

the most demanding ruleset in our benchmark. It contains
more rules than the previous ones, including three-way joins
and rules with property as a variable. For this benchmark,
OWLIM is much slower than Inferray and RDFox, by at

13

500 1000 2500

0

50

100

150

200

rd
fo
x

rd
fo
x

rd
fo
x

in
fe
rr
ay

in
fe
rr
ay

in
fe
rr
ay

ow
li
m
se

ow
li
m
se

ow
li
m
se

Cache Misses / triple

500 1000 2500

0

5

10

15

20

25

30

rd
fo
x

rd
fo
x

rd
fo
x

in
fe
rr
ay

in
fe
rr
ay

in
fe
rr
ay

ow
li
m
se

ow
li
m
se

ow
li
m
se

dTLB misses / triple

500 1000 2500

0

5 · 10−2

0.1

0.15

rd
fo
x

rd
fo
x

rd
fo
x

in
fe
rr
ay

in
fe
rr
ay

in
fe
rr
ay

ow
li
m
se

ow
li
m
se

ow
li
m
se

Page Faults / Triple

Figure 7: Cache misses, TLB misses and Page Faults per triple inferred for the transitivity closure benchmark.

lubm5 lubm10 lubm25 lubm50 lubm75 lubm100 Wiki Yago Wordnet

0

5 · 10−2

0.1

0.15

0.2

rd
fo
x

rd
fo
x

rd
fo
x

rd
fo
x

rd
fo
x

rd
fo
x

rd
fo
x

rd
fo
x

rd
fo
x

in
fe
rr
a
y

in
fe
rr
a
y

in
fe
rr
a
y

in
fe
rr
a
y

in
fe
rr
a
y

in
fe
rr
a
y

in
fe
rr
a
y

in
fe
rr
a
y

in
fe
rr
a
y

o
w
li
m
se

o
w
li
m
se

o
w
li
m
se

o
w
li
m
se

o
w
li
m
se

o
w
li
m
se

o
w
li
m
se

o
w
li
m
se

o
w
li
m
se

dTLB-load-misses rate

lubm5 lubm10 lubm25 lubm50 lubm75 lubm100 Wiki Yago Wordnet

0

20

40

60

rd
fo
x

rd
fo
x

rd
fo
x

rd
fo
x

rd
fo
x

rd
fo
x

rd
fo
x

rd
fo
x

rd
fo
x

in
fe
rr
a
y

in
fe
rr
a
y

in
fe
rr
a
y

in
fe
rr
a
y

in
fe
rr
a
y

in
fe
rr
a
y

in
fe
rr
a
y

in
fe
rr
a
y

in
fe
rr
a
y

o
w
li
m
se

o
w
li
m
se

o
w
li
m
se

o
w
li
m
se

o
w
li
m
se

o
w
li
m
se

o
w
li
m
se

o
w
li
m
se

o
w
li
m
se

LLC-Cache-misses

lubm5 lubm10 lubm25 lubm50 lubm75 lubm100 Wiki Yago Wordnet

0

5

10

rd
fo
x

rd
fo
x

rd
fo
x

rd
fo
x

rd
fo
x

rd
fo
x

rd
fo
x

rd
fo
x

rd
fo
x

in
fe
rr
a
y

in
fe
rr
a
y

in
fe
rr
a
y

in
fe
rr
a
y

in
fe
rr
a
y

in
fe
rr
a
y

in
fe
rr
a
y

in
fe
rr
a
y

in
fe
rr
a
y

o
w
li
m
se

o
w
li
m
se

o
w
li
m
se

o
w
li
m
se

o
w
li
m
se

o
w
li
m
se

o
w
li
m
se

o
w
li
m
se

o
w
li
m
se

L1 dcache miss rate

lubm5 lubm10 lubm25 lubm50 lubm75 lubm100 Wiki Yago Wordnet

0

50

100

150

200

rd
fo
x

rd
fo
x

rd
fo
x

rd
fo
x

rd
fo
x

rd
fo
x

rd
fo
x

rd
fo
x

rd
fo
x

in
fe
rr
a
y

in
fe
rr
a
y

in
fe
rr
a
y

in
fe
rr
a
y

in
fe
rr
a
y

in
fe
rr
a
y

in
fe
rr
a
y

in
fe
rr
a
y

in
fe
rr
a
y

o
w
li
m
se

o
w
li
m
se

o
w
li
m
se

o
w
li
m
se

o
w
li
m
se

o
w
li
m
se

o
w
li
m
se

o
w
li
m
se

o
w
li
m
se

page-faults per 1K Triples

Figure 8: Cache misses (L1d and LLC), TLB misses and
Page Faults per triple inferred for the RDFS-Full bench-
mark.

least a factor 7. Inferray consistently outperforms RDFox,
by a factor 2 except on the Wikipedia Ontology where both
reasoners offer similar performance. Inferray scales linearly
with the size of the dataset on the synthetic LUBM dataset.
RDFox offers a linear scalability up to LUBM50M. Perfor-
mance degrades slightly afterwards. The main difference
with the RDFS benchmark, is the complexity of the rules.
In this case, Inferray offers better performance than its com-
petitors when rules become more complex. RDFox fails to
scale for more complex fragments due to its triple store data
structure: the more complex the fragment, the more non-
uniform memory accesses are made in its two-dimensional
array through pointers. Wikipedia and Yago benchmarks
present similar results for Inferray and RDFox because they
do not rely much on owl: constructs. The difference is more
noticeable on the rest of the datasets, where Inferray largely
outperforms its competitors. Vertical partitioning is chal-
lenged by multi-way joins but it still offers superior per-
formance compared to the hash-based structure of RDFox.
In this case, the RETE approach from OWLIM seems to
have difficulties handling a large ruleset while iterative ap-
proaches from RDFox and Inferray suffer less penalty.

6.4 Memory accesses
Figure 8 presents the rates of cache misses (L1 data and

Last Level), TLB misses, and page faults per triple inferred
for the RDFS-Plus benchmark. Regarding main memory ac-
cess pattern (TLB and page faults), the iterative approaches
from RDFox and Inferray largely outperform the RETE al-
gorithm from OWLIM. We reported in Section 6.2 the fol-
lowing L1 cache miss rates for RDFox and Inferray: re-
spectively 1.2 % and 3.4 %. Interestingly, Inferray cache
behaviour does not vary with the ruleset, whereas RDFox
cache performance degrades on RDFS-Plus, reaching a miss
rate of 11 % on Wordnet. The size of the dataset, as ex-
pected by design, does not impact Inferray’s cache behaviour.

7. CONCLUSION
In this paper, we present algorithms and data structures

that drive Inferray, a new forward-chaining reasoner. The
main technical challenges are to perform efficient transitive
closure, to foster predictable memory access patterns for me-
chanical sympathy, and to efficiently eliminate duplicates.
The first challenge is addressed by a transitive closure com-
putation performed before the inference algorithm. The sec-
ond challenge is tackled by a sort-merge-join inference algo-
rithm over sorted arrays of fixed-length integers that favors
sequential memory access. Duplicate elimination is handled
by scanning arrays after efficient sorting, using efficient sort-
ing algorithms for low entropy. Our exhaustive experiments

14

demonstrate that leveraging solutions for these issues lead to
an implemented system that outperforms existing forward-
chaining reasoners on complex fragments. This paper comes
with an open-source implementation of Inferray, which will
be of the utmost practical interest to working ontologists.

Acknowledgement

The authors would like to thank the reviewers for their help-
ful comments. The authors would also like to thank Satish
Nadathur for his help on sorting algorithms, Jacopo Urbani
for his help with WebPIE and QueryPIE and the authors of
RDFox for their help in configuring their system.

8. REFERENCES
[1] D. J. Abadi, A. Marcus, S. R. Madden, and

K. Hollenbach. Scalable semantic web data
management using vertical partitioning. In PVLDB,
2007.

[2] D. Allemang and J. Hendler. Semantic web for the

working ontologist: effective modeling in RDFS and

OWL. Elsevier, 2011.

[3] C. Balkesen, G. Alonso, J. Teubner, and M. T. Ozsu.
Multi-core, main-memory joins: Sort vs. hash
revisited. PVLDB, 2013.

[4] B. Bishop, A. Kiryakov, D. Ognyanoff, I. Peikov,
Z. Tashev, and R. Velkov. OWLIM: A family of
scalable semantic repositories. Semantic Web, 2011.

[5] C. Bizer and A. Schultz. The Berlin SPARQL
benchmark. IJSWIS, 2009.

[6] M. A. Bornea, J. Dolby, A. Kementsietsidis,
K. Srinivas, P. Dantressangle, O. Udrea, and
B. Bhattacharjee. Building an efficient RDF store over
a relational database. In SIGMOD, 2013.

[7] J. Broekstra, A. Kampman, and F. Van Harmelen.
Sesame: A generic architecture for storing and
querying RDf and RDF schema. In ISWC. 2002.

[8] S. Dar and R. Ramakrishnan. A performance study of
transitive closure algorithms. In SIGMOD Record,
1994.

[9] S. Duan, A. Kementsietsidis, K. Srinivas, and
O. Udrea. Apples and Oranges: A Comparison of
RDF Benchmarks and Real RDF Datasets. In
SIGMOD, 2011.

[10] C. L. Forgy. Rete: A fast algorithm for the many
pattern/many object pattern match problem.
Artificial intelligence, 1982.

[11] E. L. Goodman and D. Mizell. Scalable in-memory
RDFS closure on billions of triples. In SSWS, 2010.

[12] Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark
for OWL knowledge base systems. Journal of Web

Semantics, 2005.

[13] S. Gurajada, S. Seufert, I. Miliaraki, and
M. Theobald. TriAD: a distributed shared-nothing
RDF engine based on asynchronous message passing.
In SIGMOD, 2014.

[14] B. Hu and E. M. Rodrigues. Programmable analytics
for linked open data. In LDOW, 2014.

[15] A. Kiryakov, B. Bishop, D. Ognyanoff, I. Peikov,
Z. Tashev, and R. Velkov. The features of BigOWLIM
that enabled the BBC’s World Cup website. In
Workshop on Semantic Data Management, 2010.

[16] R. Kontchakov, M. Rezk, M. Rodŕıguez-Muro,
G. Xiao, and M. Zakharyaschev. Answering sparql
queries over databases under owl 2 ql entailment
regime. In -ISWC 2014, pages 552–567. 2014.

[17] L. Ma, Y. Yang, Z. Qiu, G. Xie, Y. Pan, and S. Liu.
Towards a complete OWL ontology benchmark. 2006.

[18] B. McBride. Jena: Implementing the RDF Model and
Syntax Specification. In SemWeb, 2001.

[19] B. Motik, Y. Nenov, R. Piro, I. Horrocks, and
D. Olteanu. Parallel materialisation of datalog
programs in centralised, main-memory RDF systems.
In Proc. AAAI, pages 129–137, 2014.

[20] T. Neumann and G. Weikum. RDF-3X: a RISC-style
engine for RDF. PVLDB, 2008.

[21] T. Neumann and G. Weikum. Scalable join processing
on very large RDF graphs. In SIGMOD, 2009.

[22] E. Nuutila. Efficient transitive closure computation in

large digraphs. PhD thesis, Helsinki University, 1995.

[23] M. Peters, C. Brink, S. Sachweh, and A. Zündorf.
Scaling Parallel Rule-Based Reasoning. In The

Semantic Web: Trends and Challenges. 2014.

[24] S. P. Ponzetto and M. Strube. Deriving a large scale
taxonomy from Wikipedia. In AAAI, 2007.

[25] N. Satish, C. Kim, J. Chhugani, A. D. Nguyen, V. W.
Lee, D. Kim, and P. Dubey. Fast sort on CPUs and
GPUs: a case for bandwidth oblivious SIMD sort. In
SIGMOD, 2010.

[26] J. F. Sequeda, M. Arenas, and D. P. Miranker.
OBDA: Query Rewriting or Materialization? In
Practice, Both! In ISWC 2014, pages 535–551. 2014.

[27] L. Sidirourgos, R. Goncalves, M. Kersten, N. Nes, and
S. Manegold. Column-store support for RDF data
management: not all swans are white. PVLDB, 2008.

[28] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a
core of semantic knowledge. In WWW, 2007.

[29] J. Urbani, S. Kotoulas, J. Maassen, F. Van Harmelen,
and H. Bal. OWL reasoning with WebPIE: calculating
the closure of 100 billion triples. In ESWC. 2009.

[30] J. Urbani, F. Van Harmelen, S. Schlobach, and
H. Bal. QueryPIE: Backward reasoning for OWL
Horst over very large knowledge bases. The Semantic

Web–ISWC 2011, pages 730–745, 2011.

[31] W3C. OWL 1.1 Tractable Fragments.
http://www.w3.org/Submission/owl11-tractable/,
Dec. 2006.

[32] W3C. OWL 2 Language Primer.
http://www.w3.org/TR/owl2-primer/, Dec. 2012.

[33] W3C. RDF Semantics.
http://www.w3.org/TR/rdf-mt/, 2014.

[34] J. Weaver and J. A. Hendler. Parallel materialization
of the finite rdfs closure for hundreds of millions of
triples. In ISWC. 2009.

[35] C. Weiss, P. Karras, and A. Bernstein. Hexastore:
sextuple indexing for semantic web data management.
PVLDB, 2008.

[36] P. Yuan, P. Liu, B. Wu, H. Jin, W. Zhang, and L. Liu.
TripleBit: a fast and compact system for large scale
RDF data. PVLDB, 2013.

15

RDFS ρDF RDFS+ Name Body Head Class

1 # # CAX-EQC1
c1 owl:equivalentClass c2 x rdf:type c2 α
x rdf:type c1

2 # # CAX-EQC2
c1 owl:equivalentClass c2 x rdf:type c1 α
x rdf:type c2

3 CAX-SCO
c1 rdfs:subClassOf c2 x rdf:type c2 α
x rdf:type c1

4 # # EQ-REP-O
o1 owl:sameAs o2 s p o2 –
s p o1

5 # # EQ-REP-P
p1 owl:sameAs p2 s p2 o –
s p1 o

6 # # EQ-REP-S
s1 owl:sameAs s2 s2 p o –
s1 p o

7 # # EQ-SYM
x owl:sameAs y y owl:sameAs x –

8 # # EQ-TRANS
x owl:sameAs y x owl:sameAs z θ
y owl:sameAs z

9 PRP-DOM
p rdfs:domain c x rdf:type c γ
x p y

10 # # PRP-EQP1
p1 owl:equivalentProperty p2 x p2 y δ
x p1 y

11 # # PRP-EQP2
p1 owl:equivalentProperty p2 x p1 y δ
x p2 y

12 # # PRP-FP

p rdf:type owl:FunctionalProperty

y1 owl:sameAs y2 –x p y1
x p y2
with (y1 6= y2)

13 # # PRP-IFP

p rdf:type owl:InverseFunctionalProperty

x1 owl:sameAs x2 –x1 p y

x2 p y

with (x1 6= x2)

14 # # PRP-INV1
p1 owl:inverseOf p2 y p2 x δ
x p1 y

15 # # PRP-INV2
p1 owl:inverseOf p2 y p1 x δ
x p2 y

16 PRP-RNG
p rdfs:range c y rdf:type c γ
x p y

17 PRP-SPO1
p1 rdfs:subPropertyOf p2 x p2 y γ
x p1 y

18 # # PRP-SYMP
p rdf:type owl:SymetricProperty y p x γ
x p y

19

PRP-TRP
p rdf:type owl:TransitiveProperty x p z

θ∗x p y

y p z

20 # SCM-DOM1
p rdfs:domain c1 p rdfs:domain c2 α
c1 rdfs:subClassOf c2

21 SCM-DOM2
p2 rdfs:domain c p1 rdfs:domain c α
p1 rdfs:subPropertyOf p2

22 # # SCM-EQC1
c1 owl:equivalentClass c2 c1 rdfs:subClassOf c2 –

c2 rdfs:subClassOf c1

23 # # SCM-EQP2
c1 rdfs:subClassOf c2 c1 owl:equivalentProperty c2 β
c2 rdfs:subClassOf c1

24 # # SCM-EQP1
p1 owl:equivalentProperty p2 p1 rdfs:subPropertyOf p2 –

p2 rdfs:subPropertyOf p1

25 # # SCM-EQP2
p1 rdfs:subPropertyOf p2 p1 owl:equivalentProperty p2 β
p2 rdfs:subPropertyOf p1

26 # SCM-RNG1
p rdfs:range c1 p rdfs:range c2 α
c1 rdfs:subClassOf c2

27 SCM-RNG2
p2 rdfs:range c p1 rdfs:range c α
p1 rdfs:subPropertyOf p2

28 SCM-SCO
c1 rdfs:subClassOf c2 c1 rdfs:subClassOf c3 θ
c2 rdfs:subClassOf c3

29 SCM-SPO
p1 rdfs:subPropertyOf p2 p1 rdfs:subPropertyOf p3 θ
p2 rdfs:subPropertyOf p3

30 # # G# SCM-CLS c rdf:type owl:Class

c rdfs:subClassOf c

–c owl:equivalentClass c

c rdfs:subClassOf owl:Thing
owl:Nothing rdfs:subClassOf c

31 # # G# SCM-DP
p rdf:type owl:DatatypeProperty p rdfs:subPropertyOf p –

p owl:equivalentProperty p

32 # # G# SCM-OP
p rdf:type owl:ObjectProperty p rdfs:subPropertyOf p –

p owl:equivalentProperty p

33 G# G# G# RDFS4
x p y x rdf:type rdfs:Ressource –
y rdf:type rdfs:Ressource

34 G# # # RDFS8 x rdf:type rdfs:Class x rdf:type rdfs:Ressource –
35 G# # # RDFS12 x rdf:type rdfs:ContainerMembershipProperty x rdfs:subPropertyOf rdfs:member –
36 G# # # RDFS13 x rdf:type rdfs:Datatype x rdfs:subClassOf rdfs:Literal –
37 G# # # RDFS6 x rdf:type rdf:Property x rdf:subPropertyOf x –
38 G# # # RDFS10 x rdf:type rdfs:Class x rdfs:subClassOf x –

Table 5: Composition of the rulesets supported by Inferray.
Half circle denotes rules that do not produce meaningful
triples and are used only in full versions of rulesets.

16

