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Abstract 

This paper proposes an advanced signal-processing technique to improve the condition monitoring of 
rotating machinery. The proposed method employs the results of a blind spectrum interpretation including 
harmonic and sideband series detection. The contribution of this paper is an algorithm for automatic 
association of harmonic and sideband series with the characteristic fault frequencies listed in the kinematic 
configuration of the monitored system. The proposed algorithm is efficient in inspection of real-world 
signals, which contain a vast number of detected spectral components. The proposed approach has the 
advantage of taking into account a possible slip of the rolling-element bearings. The performance of the 
proposed algorithm is illustrated on real-world data by investigating a shaft problem of an industrial wind 
turbine high-speed shaft. 
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METODA AUTOMATYCZNEGO ŁĄCZENIA SCHEMATÓW SPEKTRALNYCH Z 

CHARAKTERYSTYCZNYMI CZĘSTOTLIWOŚCIAMI 
 

Streszczenie 
W artykule zaproponowano zaawansowaną technikę przetwarzania sygnałów w celu poprawy 

monitorowania stanu maszyn wirujących. Przedstawiona metoda wykorzystuje wyniki ślepej interpretacji 
widma sygnału, m. in. detekcję serii harmonicznych i wstęg bocznych. Wkład zaprezentowany w tym 
artykule to algorytm do automatycznego łączenia serii harmonicznych oraz wstęg bocznych z 
charakterystycznymi częstotliwościami dostępnymi na podstawie konfiguracji kinematycznej 
monitorowanej maszyny. Zaproponowany algorytm jest skuteczny w badaniu sygnałów rzeczywistych, 
które zawierają dużą liczbę wykrytych elementów widmowych. Zaletą zaproponowanej metody jest 
uwzględnianie możliwego poślizgu łożyska tocznego. Działanie zaproponowanego algorytmu zostało 
zilustrowane na przykładzie rzeczywistych danych, który pokazuje problem wału wysokoobrotowego 
przemysłowej turbiny wiatrowej. 

 
Słowa kluczowe: monitorownie stanu, częstotliwości charakterystyczne uszkodzeń, diagnostyka wału turbin 

wiatrowych. 
 

1. INTRODUCTION 
 

Condition Monitoring Systems (CMSs) are 
widely used in industry and bring considerable 
benefits in mechanical component surveillance 
[1, 2]. CMSs are based on data acquisition and 
processing in order to reveal abnormalities in the 
state of the investigated system. There are several 
techniques to perform this task such as vibration, 
acoustic emission, and lubricant analysis. This paper 
focuses on a vibration-based condition monitoring, 
which is the key component of predictive 
maintenance technique since it provides indicators 
related to the evolution of potential faults and 
failures [3]. 

Wind energy sector is an example of an industry 
where CMSs are widely used to monitor the state of 
mechanical components of wind turbines due to their 
increasing number. The development of CMSs is an 
active research domain [4, 5, 6, 7]. As [8] points out, 
the usage of CMSs is particularly crucial for offshore 
wind farms due to restricted human accessibility. A 
robust CMS is very beneficial for the wind energy 
industry, particularly for offshore farms. The 
financial margins of this business are very low, so a 
prolonged down-time of a wind turbine generates 
high economical losses [9]. Those factors cause a 
need for an efficient surveillance of every wind 
turbine. This surveillance could be enhanced by an 
automatic and adaptive CMS. 

 



 

1.1. Shaft Problems 
 
A vast number of rotating machinery faults 

manifest themselves at frequencies corresponding to 
the speed of the investigated shaft or its low 
harmonics and sub-harmonics. The shaft rotational 
speed is usually expressed in revolutions per minute 
(RPM). According to [10] the most common 
vibration trouble sources are unbalance and 
misalignment. Each of them is identified to occur 
more than half the times when a problem with 
rotating machinery is investigated. Since, the 
misalignment problem is of interest in this paper a 
short description of this malfunction is given 
hereinafter. 

Misalignment occurs when the shaft axes of two 
mating parts create an angle or are offset to each 
other. The mixture of both types of misalignment is 
also possible. This fault is typical for couplings and 
bearing components and is the cause of higher radial 
or axial vibrations, depending on the misalignment 
type. Depending on the type and the design of the 
coupling as well as upon the share of angular versus 
offset misalignment problems a raise of amplitude 
can be observed at frequency corresponding to the 
fundamental frequency of shaft speed fr, its double 
value 2·fr, or both together. The time domain signals 
of vibrations measured on a machine with 
misalignment problems typically show periodic 
patterns with one or two cycles per revolution of the 
shaft. Moreover, in the case of a fundamental shaft 
frequency being the frequency with a raised 
amplitude due to a misalignment problem, the phase 
readings are necessary to distinguish it from an 
unbalance problem. 

 
1.2. Paper Scope 
 

This paper proposes an automatic fault detection 
and diagnosis method within a fully automatic tool, 
called AStrion, which consists of several steps to 
detect the most common drive train faults, like shaft, 
gear and bearing failures. Based on advanced signal-
processing techniques, AStrion includes a 
sophisticated data validation and a time-frequency 
analysis in order to track frequency structures over a 
time signal sequence. This diagnosis approach is 
particularly efficient in the processing of signals with 
a rich spectral composition. 

In this paper the spectrum analysis is based on an 
automatic peak detection and a classification method 
[11, 12, 13] which constitute a data-driven approach 
without any a-priori information on the data. The 
harmonic series and the sidebands around each 
harmonic are identified from the peaks according to 
their frequencies and classes [14]. The method 
presented in this paper, called a kinematic 
association method, links the previously detected 
spectral patters, both harmonic and sideband series, 
directly with the mechanical components of the 

monitored system. It is an exhaustive algorithm 
which takes into account all information available 
from the signal and considers all possible 
combinations of modulations arising from the 
kinematic configuration of the system. The core 
algorithm is a data-driven method for selecting one 
series among numerous proximate ones. This 
automatic process features in a new method for 
selecting the rolling-element bearing frequencies. 
This method has been presented in [15], but this 
paper focuses on a new application of the proposed 
method. 

The closest to the proposed method found in the 
literature [16] uses different amplitude and 
frequency estimation of the spectral content, and 
associates a single frequency and not a harmonic or 
sideband series, as well as does not precisely 
indicate the condition of decision making for 
harmonic frequency selection. Additionally, in this 
paper it is also considered a slippage phenomenon 
which occurs in rolling-element bearings (REBs). 

The proposed approach is validated on real-
world vibration measurements from a long period of 
time. It is shown that a misalignment problem clearly 
manifests itself on the proposed health indicator. 

The paper is organized as follows. Section 2 
presents the automatic characteristic fault 
frequencies association. Section 3 presents the 
results of the method applied on a wind turbine data. 
Section 4 draws conclusions and future perspectives. 

 
2. CHARACTERISTIC FAULT FREQUENCY 
ASSOCIATION 

 
Characteristic fault frequencies come from the 

geometry of the mechanical parts of an investigated 
system and help to find and identify the origin of a 
fault. These frequencies are easy to estimate for such 
components as gears, shafts, and REBs, which are 
important parts of wind turbine drive trains. An 
overview of the known fault frequencies of these 
major mechanical components is given in the 
following section. 

 
2.1. Characteristic Fault Frequencies 

 
The equations to calculate the values of the 

characteristic fault frequencies of a rotating 
machinery are presented in Table 1, where fr is the 
shaft speed expressed in Hz, z is the number of teeth 
of a gear, nr is the number of rolling elements in a 
bearing, dr is the diameter of the rolling elements, dp 
is the pitch diameter, and Ф is the angle of the load 
from the radial plane.  

Table 1 presents formulas based on theoretical 
models for calculating the characteristic frequencies 
of rotating machinery components and are referred to 
as theoretical values. It is important to notice that in 
the case of a REB the characteristic fault frequencies 
as BPFO, BPFI, FTF, BSF assume no slippage, 



 

whereas it must occur when the bearing is running. 
This is the reason why the actual characteristic 
frequencies may vary slightly in the real-world 
applications in comparison to the theoretical values. 
In practice, the measured frequency may vary up to 
2% of the theoretical REB characteristic fault 
frequencies [17]. This variation is taken into account 
in the proposed association method, while it has 
never been attempted before.  

 
Table 1. Selected formulas for calculating 

characteristic fault frequencies [18]. 
 

 
 

2.2. Proposed Method for the Association 
 
The proposed method for the kinematic 

information usage is a data-driven approach. It 
requires an a-priori interpretation of the spectral 
content of a signal. This interpretation is provided by 
the AStrion steps which include a spectral 
component identification [12] and a harmonic series 

and modulation sideband series detection [14]. The 
proposed algorithm associates the characteristic fault 
frequencies with the previously detected harmonic 
and sidebands series. It is an iterative method, which 
performs an association for each characteristic 
frequency provided by the list of kinematic 
information on the system. Figure 1 shows a 
flowchart of the proposed method. Further 
explanation gives details on a single iteration of the 
proposed method to associate one characteristic 
frequency. 

In the first step of this method the characteristic 
frequencies have to be calculated. As it is detailed in 
Figure 1, the measured rotational speed and the list 
of characteristic fault frequencies in orders is needed 
for this operation. 

The order values are popularly used as a 
reference, since they can be directly applied on a 
signal after angular resampling, which is also called 
order tracking. More details on the angular 
resampling can be found in [17, 19, 15]. In the case 
of a signal in order domain the rotational speed value 
is redundant and a list of characteristic fault 
frequencies in orders is used directly. 

In the case of more complex systems, the 
mechanical components are carried by several shafts. 
As a consequence, the speed of the other shafts has 
to be calculated from the gear ratios. This permits to 
measure the rotational speed of only one shaft, as it 
is popularly done in the case of wind turbines. 

 

 
Fig. 1. Flowchart of the characteristic fault frequency association algorithm. 



 

 
The association of the characteristic fault 

frequencies is performed in two steps. Firstly, the 
harmonic series which meet a criterion are identified 
as candidates for association. The second step is a 
selection of one candidate which gives an association 
of a single harmonic series with a characteristic fault 
frequency. These two steps are executed for 
harmonic series and afterwards the same set of 
operations is performed on modulation sidebands 
series. The difference is in the results of selecting 
one candidate. It is caused by the fact that for each 
carrier frequency of detected modulation one 
characteristic fault frequency can be associated, thus 
in the final result of modulation association it is 
possible to have multiple occurrences of one 
characteristic fault frequency. 

The selection step is based on a relative 
difference between the theoretical and the real value 
of the characteristic fault frequency, defined as 

 
             (1) 
 

where i is the index of a series, fd,i is the 
fundamental frequency of the detected series, ft,i is 
the theoretical frequency based on the system 
kinematic. Only series with a value of RFDi lower 
than a threshold η are kept 

 
                       (2) 
 

Moreover, due to a slippage phenomenon 
mentioned earlier the threshold for rolling-element 
bearings is proposed to be bigger than for all other 
mechanical component and equals to η + δη. We 
propose to use η equal to 1% and η + δη equal to 
2%. 

Usually, a real-world signal has so many peaks 
detected that even in a small range defined by the 
threshold η there are numerous candidates. The next 
step is to select only one series for the final 
association. The association of series with the 
characteristic fault frequencies corresponding to 
shafts and gearboxes is intuitive. The proper series is 
selected as the one with the lowest RFDi value. In 
the case of rolling-element bearings the lowest RFDi 
value is not a sufficient indicator because of the 
slippage phenomenon, which can be random. As a 
consequence, earlier computed RFDi is not used at 
all for the final selection of one candidate and an 
additional parameter is proposed. It is a bearing 
series indicator defined as 

 
 

          (3) 
 
where Ei is the energy of the series under 

investigation, Emax,i is the energy of the series with 
the highest energy among the series selected in the 
first step, and Deni is the density of the series, which 

is an indicator informing about gaps between 
fundamental frequency and the highest rank of 
series; the density varies from 0 to1 and the highest 
value is for ‘full’ series, which have all the possible 
peaks present [14]. BSIi can have a value from 0 to 
1, where the highest value describes a series with the 
highest energy among the selected candidates and 
without gaps within the peaks constituting a series. 
Therefore, series with the highest BSIi is selected to 
be associated to a REB characteristic fault 
frequency. 

 
3. CASE STUDY 

 
This section presents the results of the above-

proposed algorithm starting with a description of the 
wind turbine from which the vibration signals are 
acquired. In section 3.2. the results of the kinematic 
association are presented with a tracking over the 
entire year 2015 when a shaft problem occurred. 

 
3.1. Wind Turbine Description 

 
Data used in this section originate from a wind 

farm located near a small rural town in southern 
France, as presented in Figure 2. This wind farm is 
owned by VALOREM and maintained by 
VALEMO, a partner in the consortium of the 
European Innovation Project KAStrion 
(http://www.gipsa-lab.fr/projet/KASTRION/), which 
made the data available. At present, there are 11 
operating wind turbines in this wind farm. The below 
presented case uses data which originate from one 
vibration sensor placed on the front side of the wind 
turbine generator. 

 

 
Fig. 2. Location of the wind farm. 

 
In this wind farm all wind turbines designed by 

ALSTOM are of the same type Ecotècnia 80 2.0. 
Those wind turbines are 2 MW rated power, 80 m 
rotor diameter, 70 m hub height, and operate with 
the wind in range 3m/s – 25m/s wind speed at the 
height of hub. The gearbox of this wind turbine type 
consists of a planetary gearbox followed by two 



 

parallel stages. The main mechanical components of 
the drive train of the investigated machine are 
presented in Figure 3. 

 

 
Fig. 3. The main mechanical 

components of the monitored wind 
turbine drive train. 

 
For the purpose of this study, the focus is made 

on only one characteristic fault frequency, the high-
speed shaft one. The speed measurement is taken on 
the same shaft. Thus, for used configuration of 
acquisition system the theoretical value in order 
domain is equal to 1 order. 

All signals are registered by the KAStrion CMS 
according to Table 2. 

 
Table 2. Parameters of the investigated signals. 
 

Sampling frequency 25 000 Hz 
Signal duration 10 s 

Number of samples 250 000 
 

3.2. Characteristic Frequency Association Results 
 
There were 165 signals measured between 10th 

February and 31st December 2014. In the presented 
case the speed range is defined as 1780 RPM – 1795 
RPM. The mean speed values of all investigated 
signals are presented in Figure 4. One can note that 
the variations of the average speed with relation to 
the measurement time are less than 1%. 

Each of the signals is processed by the entire 
AStrion tool, details could be found in [20]. This 
includes order tracking, data validation, peak 
identification, harmonic and sideband detection, 
kinematic association, sideband demodulation, and 
tracking of the spectral components. Thanks to the 
tracking method explained in [21] it is possible to 
easily display the evolution of the computed features 
over multiple signals. 

In Figure 5 each presented sample indicates a 
successful association of the theoretical 
characteristic frequency of high-speed shaft to 
previously detected harmonic pattern in the signal. 
There are 161 points in Figure 5 which means that 
four signals were not associated and tracked. It could 
happen in the case of high non-stationarity of the 

signal or other problems which made a correct 
harmonic series detection and following kinematic 
association not possible. The used tracking algorithm 
is prepared for such a situation and in these 
occurrences the so-called ‘slip state’ is employed to 
keep record of a spectral component. Missing 
information of the value is depicted by dash lines. 
The lack of four points means that only few times the 
slip state of the tracking method has been used. All 
the harmonic series associated with high-speed shaft 
are presented in Figure 5. It shows the robustness of 
the whole proposed data-driven method for condition 
monitoring. 

Figure 6 presents another indicator computed by 
harmonic and sidebands detection algorithm, which 
is the energy of harmonic series associated with 
high-speed shaft. One can observe a significant 
change of its value between the beginning and the 
end of the year 2014. The lack of data in two spans, 
21st June – 31st July and 5th September – 30th 
October, corresponds to periods when the CMS did 
not record any vibration data. These periods were 
used for maintenance actions. Among others a 
realignment of gearbox and generator was executed 
on 16th July and the change in the system 
performance is noticeable by observing the indicator 
shown in Figure 6. Unfortunately, there is no 
vibration data recorded on this wind turbine prior to 
presented time thus it is not possible to observe the 
augmentation of shown indicator and the 
development of the problem. Nonetheless, the 
available pieces of information are sufficient to 
conclude about the origin of presented higher values 
of energy. Despite some visible spikes in Figure 6 
the trend of the presented value is clear and its 
significant drop in the second half of the year 2014 
could be caused by elimination of misalignment or 
unbalance problem of the high-speed shaft. 

AStrion does not have any specific indicator for 
this type of fault, since it is designed as a multiple 
purpose method to work with any type of signal. 
Besides this fact, the change of energy is enough to 
depict the investigated shaft problem. The presented 
example shows that the AStrion methodology is able 
to cope with real-world malfunction of a wind 
turbine and the proposed kinematic association 
technique facilitates the interpretation of such 
results. 

 
4. CONCLUSIONS 

 
This paper proposes an automatic method for 

spectral patterns association with characteristic 
frequencies. It features in a two-step approach and is 
also adapted to the random variation of rolling-
element bearings signature, which could vary due to 
a slippage phenomenon. 

 



 

 
Fig. 4. Speed of high-speed shaft displayed for every investigated vibration signal. 

 

 
Fig. 5. Tracking of fundamental order of series associated with high-speed shaft displayed for 

every investigated vibration signal. 
 

 
Fig. 6. Tracking of energy of harmonic series associated with high-speed shaft of the investigated 

wind turbine. 



 

 
The proposed method is automatic and is based 

on the results of a harmonic and sideband series 
detection which is performed without any a-priori 
information on the signal [14]. Thus, the presented 
signal-processing technique is suitable for automated 
and data-driven CMS. 

The results presented show that the kinematic 
frequency association algorithm can carry out an 
efficient research of the characteristic frequencies of 
the mechanical components within previously 
detected spectral patterns. It is necessary to provide 
the kinematic configuration of the machine and the 
rotational speed of a reference shaft to obtain an 
outcome being a list of labelled harmonic and 
sideband series. The proposed method is able to 
expose a high-speed shaft problem in an automatic 
way and by a data-driven approach. The value of the 
presented example lays in a wind turbine which 
operates in ordinary highly non-stationary 
conditions. 

In further work, and in the context of European 
Innovation Project KAStrion, the integration of the 
proposed algorithm into a commercial wind turbine 
CMS is scheduled. Moreover, next steps of AStrion 
methodology are under development in GIPSA-Lab, 
which includes an algorithm for automatic decision 
making. By proper fusion of all available 
information it will be possible to detect changes of 
tracked indicators and inform a user of a CMS about 
upcoming troubles at very early stage. 
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