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INTRODUCTION

Condition Monitoring Systems (CMSs) are widely used in industry and bring considerable benefits in mechanical component surveillance [START_REF] Márquez | Condition monitoring of wind turbines: Techniques and methods[END_REF]2]. CMSs are based on data acquisition and processing in order to reveal abnormalities in the state of the investigated system. There are several techniques to perform this task such as vibration, acoustic emission, and lubricant analysis. This paper focuses on a vibration-based condition monitoring, which is the key component of predictive maintenance technique since it provides indicators related to the evolution of potential faults and failures [3].

Wind energy sector is an example of an industry where CMSs are widely used to monitor the state of mechanical components of wind turbines due to their increasing number. The development of CMSs is an active research domain [4,5,6,7]. As [8] points out, the usage of CMSs is particularly crucial for offshore wind farms due to restricted human accessibility. A robust CMS is very beneficial for the wind energy industry, particularly for offshore farms. The financial margins of this business are very low, so a prolonged down-time of a wind turbine generates high economical losses [9]. Those factors cause a need for an efficient surveillance of every wind turbine. This surveillance could be enhanced by an automatic and adaptive CMS.

Shaft Problems

A vast number of rotating machinery faults manifest themselves at frequencies corresponding to the speed of the investigated shaft or its low harmonics and sub-harmonics. The shaft rotational speed is usually expressed in revolutions per minute (RPM). According to [10] the most common vibration trouble sources are unbalance and misalignment. Each of them is identified to occur more than half the times when a problem with rotating machinery is investigated. Since, the misalignment problem is of interest in this paper a short description of this malfunction is given hereinafter.

Misalignment occurs when the shaft axes of two mating parts create an angle or are offset to each other. The mixture of both types of misalignment is also possible. This fault is typical for couplings and bearing components and is the cause of higher radial or axial vibrations, depending on the misalignment type. Depending on the type and the design of the coupling as well as upon the share of angular versus offset misalignment problems a raise of amplitude can be observed at frequency corresponding to the fundamental frequency of shaft speed f r , its double value 2•f r , or both together. The time domain signals of vibrations measured on a machine with misalignment problems typically show periodic patterns with one or two cycles per revolution of the shaft. Moreover, in the case of a fundamental shaft frequency being the frequency with a raised amplitude due to a misalignment problem, the phase readings are necessary to distinguish it from an unbalance problem.

Paper Scope

This paper proposes an automatic fault detection and diagnosis method within a fully automatic tool, called AStrion, which consists of several steps to detect the most common drive train faults, like shaft, gear and bearing failures. Based on advanced signalprocessing techniques, AStrion includes a sophisticated data validation and a time-frequency analysis in order to track frequency structures over a time signal sequence. This diagnosis approach is particularly efficient in the processing of signals with a rich spectral composition.

In this paper the spectrum analysis is based on an automatic peak detection and a classification method [11,12,13] which constitute a data-driven approach without any a-priori information on the data. The harmonic series and the sidebands around each harmonic are identified from the peaks according to their frequencies and classes [14]. The method presented in this paper, called a kinematic association method, links the previously detected spectral patters, both harmonic and sideband series, directly with the mechanical components of the monitored system. It is an exhaustive algorithm which takes into account all information available from the signal and considers all possible combinations of modulations arising from the kinematic configuration of the system. The core algorithm is a data-driven method for selecting one series among numerous proximate ones. This automatic process features in a new method for selecting the rolling-element bearing frequencies. This method has been presented in [15], but this paper focuses on a new application of the proposed method.

The closest to the proposed method found in the literature [16] uses different amplitude and frequency estimation of the spectral content, and associates a single frequency and not a harmonic or sideband series, as well as does not precisely indicate the condition of decision making for harmonic frequency selection. Additionally, in this paper it is also considered a slippage phenomenon which occurs in rolling-element bearings (REBs).

The proposed approach is validated on realworld vibration measurements from a long period of time. It is shown that a misalignment problem clearly manifests itself on the proposed health indicator.

The paper is organized as follows. Section 2 presents the automatic characteristic fault frequencies association. Section 3 presents the results of the method applied on a wind turbine data. Section 4 draws conclusions and future perspectives.

CHARACTERISTIC FAULT FREQUENCY ASSOCIATION

Characteristic fault frequencies come from the geometry of the mechanical parts of an investigated system and help to find and identify the origin of a fault. These frequencies are easy to estimate for such components as gears, shafts, and REBs, which are important parts of wind turbine drive trains. An overview of the known fault frequencies of these major mechanical components is given in the following section.

Characteristic Fault Frequencies

The equations to calculate the values of the characteristic fault frequencies of a rotating machinery are presented in Table 1, where f r is the shaft speed expressed in Hz, z is the number of teeth of a gear, n r is the number of rolling elements in a bearing, d r is the diameter of the rolling elements, d p is the pitch diameter, and Ф is the angle of the load from the radial plane.

Table 1 presents formulas based on theoretical models for calculating the characteristic frequencies of rotating machinery components and are referred to as theoretical values. It is important to notice that in the case of a REB the characteristic fault frequencies as BPFO, BPFI, FTF, BSF assume no slippage, whereas it must occur when the bearing is running. This is the reason why the actual characteristic frequencies may vary slightly in the real-world applications in comparison to the theoretical values. In practice, the measured frequency may vary up to 2% of the theoretical REB characteristic fault frequencies [17]. This variation is taken into account in the proposed association method, while it has never been attempted before. 

Proposed Method for the Association

The proposed method for the kinematic information usage is a data-driven approach. It requires an a-priori interpretation of the spectral content of a signal. This interpretation is provided by the AStrion steps which include a spectral component identification [12] and a harmonic series and modulation sideband series detection [14]. The proposed algorithm associates the characteristic fault frequencies with the previously detected harmonic and sidebands series. It is an iterative method, which performs an association for each characteristic frequency provided by the list of kinematic information on the system. Figure 1 shows a flowchart of the proposed method. Further explanation gives details on a single iteration of the proposed method to associate one characteristic frequency.

In the first step of this method the characteristic frequencies have to be calculated. As it is detailed in Figure 1, the measured rotational speed and the list of characteristic fault frequencies in orders is needed for this operation.

The order values are popularly used as a reference, since they can be directly applied on a signal after angular resampling, which is also called order tracking. More details on the angular resampling can be found in [17,19,15]. In the case of a signal in order domain the rotational speed value is redundant and a list of characteristic fault frequencies in orders is used directly.

In the case of more complex systems, the mechanical components are carried by several shafts. As a consequence, the speed of the other shafts has to be calculated from the gear ratios. This permits to measure the rotational speed of only one shaft, as it is popularly done in the case of wind turbines. The association of the characteristic fault frequencies is performed in two steps. Firstly, the harmonic series which meet a criterion are identified as candidates for association. The second step is a selection of one candidate which gives an association of a single harmonic series with a characteristic fault frequency. These two steps are executed for harmonic series and afterwards the same set of operations is performed on modulation sidebands series. The difference is in the results of selecting one candidate. It is caused by the fact that for each carrier frequency of detected modulation one characteristic fault frequency can be associated, thus in the final result of modulation association it is possible to have multiple occurrences of one characteristic fault frequency.

The selection step is based on a relative difference between the theoretical and the real value of the characteristic fault frequency, defined as [START_REF] Márquez | Condition monitoring of wind turbines: Techniques and methods[END_REF] where i is the index of a series, f d,i is the fundamental frequency of the detected series, f t,i is the theoretical frequency based on the system kinematic. Only series with a value of RFD i lower than a threshold η are kept (2) Moreover, due to a slippage phenomenon mentioned earlier the threshold for rolling-element bearings is proposed to be bigger than for all other mechanical component and equals to η + δη. We propose to use η equal to 1% and η + δη equal to 2%.

Usually, a real-world signal has so many peaks detected that even in a small range defined by the threshold η there are numerous candidates. The next step is to select only one series for the final association. The association of series with the characteristic fault frequencies corresponding to shafts and gearboxes is intuitive. The proper series is selected as the one with the lowest RFD i value. In the case of rolling-element bearings the lowest RFD i value is not a sufficient indicator because of the slippage phenomenon, which can be random. As a consequence, earlier computed RFD i is not used at all for the final selection of one candidate and an additional parameter is proposed. It is a bearing series indicator defined as

(3)
where E i is the energy of the series under investigation, E max,i is the energy of the series with the highest energy among the series selected in the first step, and Den i is the density of the series, which is an indicator informing about gaps between fundamental frequency and the highest rank of series; the density varies from 0 to1 and the highest value is for 'full' series, which have all the possible peaks present [14]. BSI i can have a value from 0 to 1, where the highest value describes a series with the highest energy among the selected candidates and without gaps within the peaks constituting a series. Therefore, series with the highest BSI i is selected to be associated to a REB characteristic fault frequency.

CASE STUDY

This section presents the results of the aboveproposed algorithm starting with a description of the wind turbine from which the vibration signals are acquired. In section 3.2. the results of the kinematic association are presented with a tracking over the entire year 2015 when a shaft problem occurred.

Wind Turbine Description

Data used in this section originate from a wind farm located near a small rural town in southern France, as presented in Figure 2. This wind farm is owned by VALOREM and maintained by VALEMO, a partner in the consortium of the European Innovation Project KAStrion (http://www.gipsa-lab.fr/projet/KASTRION/), which made the data available. At present, there are 11 operating wind turbines in this wind farm. The below presented case uses data which originate from one vibration sensor placed on the front side of the wind turbine generator. In this wind farm all wind turbines designed by ALSTOM are of the same type Ecotècnia 80 2.0. Those wind turbines are 2 MW rated power, 80 m rotor diameter, 70 m hub height, and operate with the wind in range 3m/s -25m/s wind speed at the height of hub. The gearbox of this wind turbine type consists of a planetary gearbox followed by two parallel stages. The main mechanical components of the drive train of the investigated machine are presented in Figure 3. For the purpose of this study, the focus is made on only one characteristic fault frequency, the highspeed shaft one. The speed measurement is taken on the same shaft. Thus, for used configuration of acquisition system the theoretical value in order domain is equal to 1 order.

All signals are registered by the KAStrion CMS according to Table 2.

Table 2. Parameters of the investigated signals.

Sampling frequency

25 000 Hz Signal duration 10 s Number of samples 250 000

Characteristic Frequency Association Results

There were 165 signals measured between 10 th February and 31 st December 2014. In the presented case the speed range is defined as 1780 RPM -1795 RPM. The mean speed values of all investigated signals are presented in Figure 4. One can note that the variations of the average speed with relation to the measurement time are less than 1%.

Each of the signals is processed by the entire AStrion tool, details could be found in [20]. This includes order tracking, data validation, peak identification, harmonic and sideband detection, kinematic association, sideband demodulation, and tracking of the spectral components. Thanks to the tracking method explained in [21] it is possible to easily display the evolution of the computed features over multiple signals.

In Figure 5 each presented sample indicates a successful association of the theoretical characteristic frequency of high-speed shaft to previously detected harmonic pattern in the signal. There are 161 points in Figure 5 which means that four signals were not associated and tracked. It could happen in the case of high non-stationarity of the signal or other problems which made a correct harmonic series detection and following kinematic association not possible. The used tracking algorithm is prepared for such a situation and in these occurrences the so-called 'slip state' is employed to keep record of a spectral component. Missing information of the value is depicted by dash lines. The lack of four points means that only few times the slip state of the tracking method has been used. All the harmonic series associated with high-speed shaft are presented in Figure 5. It shows the robustness of the whole proposed data-driven method for condition monitoring.

Figure 6 presents another indicator computed by harmonic and sidebands detection algorithm, which is the energy of harmonic series associated with high-speed shaft. One can observe a significant change of its value between the beginning and the end of the year 2014. The lack of data in two spans, 21 st June -31 st July and 5 th September -30 th October, corresponds to periods when the CMS did not record any vibration data. These periods were used for maintenance actions. Among others a realignment of gearbox and generator was executed on 16 th July and the change in the system performance is noticeable by observing the indicator shown in Figure 6. Unfortunately, there is no vibration data recorded on this wind turbine prior to presented time thus it is not possible to observe the augmentation of shown indicator and the development of the problem. Nonetheless, the available pieces of information are sufficient to conclude about the origin of presented higher values of energy. Despite some visible spikes in Figure 6 the trend of the presented value is clear and its significant drop in the second half of the year 2014 could be caused by elimination of misalignment or unbalance problem of the high-speed shaft.

AStrion does not have any specific indicator for this type of fault, since it is designed as a multiple purpose method to work with any type of signal. Besides this fact, the change of energy is enough to depict the investigated shaft problem. The presented example shows that the AStrion methodology is able to cope with real-world malfunction of a wind turbine and the proposed kinematic association technique facilitates the interpretation of such results.

CONCLUSIONS

This paper proposes an automatic method for spectral patterns association with characteristic frequencies. It features in a two-step approach and is also adapted to the random variation of rollingelement bearings signature, which could vary due to a slippage phenomenon. The proposed method is automatic and is based on the results of a harmonic and sideband series detection which is performed without any a-priori information on the signal [14]. Thus, the presented signal-processing technique is suitable for automated and data-driven CMS.

The results presented show that the kinematic frequency association algorithm can carry out an efficient research of the characteristic frequencies of the mechanical components within previously detected spectral patterns. It is necessary to provide the kinematic configuration of the machine and the rotational speed of a reference shaft to obtain an outcome being a list of labelled harmonic and sideband series. The proposed method is able to expose a high-speed shaft problem in an automatic way and by a data-driven approach. The value of the presented example lays in a wind turbine which operates in ordinary highly non-stationary conditions.

In further work, and in the context of European Innovation Project KAStrion, the integration of the proposed algorithm into a commercial wind turbine CMS is scheduled. Moreover, next steps of AStrion methodology are under development in GIPSA-Lab, which includes an algorithm for automatic decision making. By proper fusion of all available information it will be possible to detect changes of tracked indicators and inform a user of a CMS about upcoming troubles at very early stage.
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