
HAL Id: hal-01245479
https://hal.science/hal-01245479v2

Preprint submitted on 20 Jun 2016 (v2), last revised 20 Nov 2017 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stability and Minimax Optimality of Tangential
Delaunay Complexes for Manifold Reconstruction

Eddie Aamari, Clément Levrard

To cite this version:
Eddie Aamari, Clément Levrard. Stability and Minimax Optimality of Tangential Delaunay Com-
plexes for Manifold Reconstruction. 2016. �hal-01245479v2�

https://hal.science/hal-01245479v2
https://hal.archives-ouvertes.fr


Stability and Minimax Optimality of Tangential Delaunay
Complexes for Manifold Reconstruction

Eddie Aamari and Clément Levrard

Abstract

In this paper we consider the problem of optimality in manifold reconstruction. A random
sample Xn = {X1, . . . , Xn} ⊂ RD composed of points lying on a d-dimensional submanifold
M , with or without outliers drawn in the ambient space, is observed. Based on the Tangential
Delaunay Complex [4], we construct an estimator M̂ that is ambient isotopic and Hausdorff-
close to M with high probability. The estimator M̂ is built from existing algorithms. In a
model without outliers, we show that this estimator is asymptotically minimax optimal for the
Hausdorff distance over a class of submanifolds defined with a reach constraint. Therefore, even
with no a priori information on the tangent spaces of M , our estimator based on Tangential
Delaunay Complexes is optimal. This shows that the optimal rate of convergence can be
achieved through existing algorithms. A similar result is also derived in a model with outliers.
A geometric interpolation result is derived, showing that the Tangential Delaunay Complex
is stable with respect to noise and perturbations of the tangent spaces. In the process, a
denoising procedure and a tangent space estimator both based on local principal component
analysis (PCA) are studied.

1 Introduction
Throughout many fields of applied science, data in RD can naturally be modeled as lying on a d-
dimensional submanifold M . As M may carry a lot of information about the studied phenomenon,
it is then natural to consider the problem of either approximating M geometrically, recovering it
topologically, or both from a point sample Xn = {X1, . . . , Xn}. It is of particular interest in high
codimension (d� D) where it can be used as a preliminary processing of the data for reducing its
dimension, and then avoiding the curse of dimensionality. This problem is usually referred to as
manifold reconstruction in the computational geometry community, and rather called set/support
estimation or manifold learning in the statistics literature.

The computational geometry community has now been active on manifold reconstruction for
many years, mainly in deterministic frameworks. In dimension 3, [16] provides a survey of the state
of the art. In higher dimension, the employed methods rely on variants of the ambient Delaunay
triangulation [12, 4]. The geometric and topological guarantees are derived under the assumption
that the point cloud — fixed and nonrandom — densely samples M at scale ε, with ε small enough
or going to 0.

In the statistics literature, most of the attention has been paid to approximation guarantees,
rather than topological ones. The approximation bounds are given in terms of the sample size n,
that is assumed to be large enough or going to infinity. To derive these bounds, a broad variety
of assumptions on M have been considered. For instance, if M is a bounded convex set and Xn
does not contain outliers, a natural idea is to consider the convex hull M̂ = Conv(Xn) to be the

1



estimator. Conv(Xn) provides optimal rates of approximation for several loss functions [28, 19].
These rates depend crudely on the regularity of the boundary of the convex set M . In addition,
Conv(Xn) is clearly ambient isotopic to M so that it has both good geometric and topological
properties. Generalisations of the notion of convexity based on rolling ball-type assumptions such
as r-convexity and reach bounds [14, 23] yield rich classes of sets with good geometric properties.
In particular, the reach, as introduced by Federer [21], appears to be a key regularity and scale
parameter [11, 23].

This paper mainly follows up the two articles [4, 23], both dealing with the case of a d-
dimensional manifold M ⊂ RD with a reach regularity condition and where the dimension d is
known.
On one hand, [4] focuses on a deterministic analysis and proposes a provably faithful reconstruction.
The authors introduce a weighted Delaunay triangulation restricted to tangent spaces, the so-called
Tangential Delaunay Complex. This paper gives a reconstruction up to ambient isotopy with ap-
proximation bounds for the Hausdorff distance along with computational complexity bounds. This
work provides a simplicial complex based on the input point cloud and tangent spaces. However, it
lacks stability up to now, in the sense that the assumptions used in the proofs of [4] do not resist
ambient perturbations. Indeed, it heavily relies on the knowledge of the tangent spaces at each
point and on the absence of noise.
On the other hand, [23] takes a statistical approach in a model possibly containing outlier points.
The authors derive an estimator that is proved to be minimax optimal for the Hausdorff distance
dH. Roughly speaking, minimax optimality of the proposed estimator means that it performs best
in the worst possible case up to numerical constants, when the sample size n is large enough.
Although theoretically optimal, the proposed estimator appears to be intractable in practice.

Our main contribution (Theorem 6) makes a two-way link between the approaches of [4] and
[23]. It shows that with an additional tangent space estimation procedure that we propose, the
Tangential Delaunay Complex of [4] achieves the optimal rate of convergence in the model without
outliers of [23]. Conversely, Theorem 6 points out that the rate of [23] can be achieved with a
tractable estimator M̂ that is a simplicial complex of which vertices are the data points and such
that M̂ is ambient isotopic to M with high probability. In the presence of outliers, an iterative
denoising procedure is proposed, and similar reconstruction results (Theorem 7 and Theorem 8)
are derived for a simplicial complex based on the denoised point cloud. Moreover, a stability result
for the Tangential Delaunay Complex (Theorem 13) is proved.

Outline
This paper deals with the case where a sample Xn = {X1, . . . , Xn} ⊂ RD of size n is randomly
drawn on/around M . First, the statistical framework is described (Section 2). Two models are
studied, one where Xn ⊂ M and the other where Xn contains outliers. We build a simplicial
complex M̂TDC(Xn) ambient isotopic to M and achieving a rate of approximation for the Hausdorff
distance dH(M,M̂TDC), with bounds holding uniformly over a class of submanifolds satisfying a reach
regularity condition. The derived rate of convergence is minimax optimal (Section 2) in the model
without outliers. With outliers,similar estimators M̂TDCδ and M̂TDC+ are built. M̂TDC, M̂TDCδ and
M̂TDC+ are based on the Tangential Delaunay Complex (Section 3), that is first proved to be stable
(Section 4) via an interpolation result. For this purpose, a method to estimate tangent spaces and
to remove outliers based on local Principal Component Analysis (PCA) is proposed (Section 5).
We conclude with general remarks and possible extensions (Section 6). For ease of exposition, all
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the proofs are placed in the appendix.

Notation
In what follows, we consider a smooth d-dimensional submanifold without boundary M ⊂ RD to
be reconstructed. For all p ∈M , TpM designates the tangent space of M at p. Tangent spaces will
either be considered vectorial or affine depending on the context. The standard inner product in
RD is denoted by 〈·, ·〉 and the Euclidean distance ‖·‖. We let B(p, r) denote the closed Euclidean
ball of radius r > 0 centered at p. As introduced in [21], the reach of M , denoted by reach(M)
is the maximal offset radius for which the projection πM onto M is well defined. Denoting by
d(·,M) the distance to M , the medial axis of M med(M) = {x ∈ RD|∃a 6= b ∈ M, ‖x− a‖ =
‖x− b‖ = d(x,M)} is the set of points which have at least two nearest neighbors on M . Then,
reach(M) = inf

p∈M
d(p,med(M)). We simply write π for πM when there is no possibility of confusion.

For any smooth function Φ : RD → RD, we let daΦ and d2
aΦ denote the first and second order

differentials of Φ at a ∈ RD. For a linear map A, At designates its transpose. Let ‖A‖op = supx
‖Ax‖
‖x‖

and ‖A‖F =
√

trace (AtA) denote respectively the operator norm induced by the Euclidean norm
and the Frobenius norm. The distance between two linear subspaces U, V ⊂ RD of the same

dimension is measured by the principal angle ∠(U, V ) = max
u∈U

max
v′∈V ⊥

〈u, v′〉
‖u‖ ‖v′‖

= ‖πU − πV ‖op . The

Hausdorff distance in RD is denoted by dH. We let ∼= denote the ambient isotopy relation in RD.
Throughout this paper, Cα will denote a generic constant depending on the parameter α. For
clarity’s sake, cα and Kα may also be used when several constants are involved.

2 Minimax Risk and Optimality

2.1 Statistical Model
Let us describe the general statistical setting we will use to define optimality for manifold recon-
struction. A statistical model D is a set of probability distributions on RD. In any statistical
experiment, D is fixed and known. We observe an independent and identically distributed sample
of size n (or i.i.d. n-sample) Xn = {X1, . . . , Xn} drawn according to some unknown distribution
P ∈ D. If no noise is allowed, the problem is to recover the support of P , that is, the smallest
closed set C ⊂ RD such that P (C) = 1. Let us give two examples of such models D by describing
those of interest in this paper.

LetMD,d,ρ be the set of all the d-dimensional connected submanifoldsM ⊂ RD without bound-
ary satisfying reach(M) ≥ ρ. The reach assumption is crucial to avoid arbitrarily curved and pinched
shapes [14]. From a reconstruction point of view, ρ gives a minimal feature size on M , and then
a minimal scale for geometric information. Every M ∈ MD,d,ρ inherits a measure induced by the
d-dimensional Hausdorff measure on RD ⊃ M . We denote this induced measure vM . Beyond the
geometric restrictions induced by the lower bound ρ on the reach, it also requires the natural mea-
sure vM to behave like a d-dimensional measure, up to uniform constants. Namely, vM satisfies the
(a, d)-standard property of [10], with a = ad,ρ. Denote by UM (fmin, fmax) the set of probability
distributions Q having a density f with respect to vM such that 0 < fmin ≤ f(x) ≤ fmax < ∞
for all x ∈ M . Roughly speaking, when Q ∈ UM (fmin, fmax), points are drawn almost uniformly

3



on M . This is to ensure that the sample visits all the areas of M with high probability. The
model without outliers GD,d,fmin,fmax,ρ consists of the set of all these almost uniform measures on
submanifolds of dimension d having reach greater than a fixed value ρ > 0.

Definition 1 (Model without outliers). GD,d,fmin,fmax,ρ =
⋃
M∈MD,d,ρ

UM (fmin, fmax).

We do not explicitly impose a bound on the diameter of M . Actually, a bound is implicitly
present in the model, as stated in the next lemma, the proof of which follows from a volume
argument.

Lemma 2. There exists Cd > 0 such that for all Q ∈ GD,d,fmin,fmax,ρ with associated M ,

diam(M) ≤ Cd
ρd−1fmin

=: Kd,fmin,ρ.

Eventually, we may include distributions contaminated with outliers uniformly drawn in a ball
B0 containing M , as illustrated in Figure 1. Up to translation, we can always assume that M 3 0.
To avoid boundary effects, B0 will be taken to contain M amply, so that the outlier distribution
surrounds M everywhere. Since M has at most diameter Kd,fmin,ρ from Lemma 2 we arbitrarily
fix B0 = B(0,K0), where K0 = Kd,fmin,ρ + ρ. Notice that the larger the radius of B0, the easier to
label the outlier points since they should be very far away from each other.
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(a) Circle with outliers: d = 1,D = 2.
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(b) Torus with outliers: d = 2,D = 3.

Figure 1: Point clouds Xn drawn from distributions of two instances of models OD,d,fmin,fmax,ρ,β
with different parameters and β < 1.

Definition 3 (Model with outliers/Clutter noise model). For 0 < fmin ≤ fmax < ∞, 0 < β ≤ 1,
and ρ > 0, we define OD,d,fmin,fmax,ρ,β to be the set of mixture distributions

P = βQ+ (1− β)UB0 ,

where Q ∈ GD,d,fmin,fmax,ρ has support M such that 0 ∈M , and UB0
is the uniform distribution on

B0 = B(0,K0).

Alternatively, a random variable X with distribution P ∈ OD,d,fmin,fmax,ρ,β can be represented
as X = V X ′ + (1 − V )X ′′ , where V ∈ {0, 1} is a Bernoulli random variable with parameter β,
X ′ has distribution in GD,d,fmin,fmax,ρ and X ′′ has a uniform distribution over B0, and such that
V,X ′, X ′′ are independent. In particular for β = 1, OD,d,fmin,fmax,ρ,β=1 = GD,d,fmin,fmax,ρ.
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2.2 Minimax Risk
For a probability measure P ∈ D, denote by EP — or simply E — the expectation with respect to
the product measure P (n). The quantity we will be interested in is the minimax risk associated to
the model D. For n ≥ 0,

Rn(D) = inf
M̂

sup
P∈D

EP
[
dH

(
M,M̂

)]
,

where the infimum is taken over all the estimators M̂ = M̂ (X1, . . . , Xn) computed over an n-sample.
Rn(D) is the best risk that an estimator based on an n-sample can achieve uniformly over the class
D. It is clear from the definition that if D′ ⊂ D then Rn(D′) ≤ Rn(D). It follows the intuition that
the broader the class of considered manifolds, the more difficult it is to estimate them uniformly
well. Studying Rn(D) for a fixed n is a difficult task that can rarely be carried out. We will focus on
the semi-asymptotic behavior of this risk. As Rn(D) cannot be surpassed, its rate of convergence
to 0 as n→∞ may be seen as the best rate of approximation that an estimator can achieve. More
precisely, we will say that two sequences (an)n and (bn)n are asymptotically comparable, denoted
by an � bn, if there exist c, C > 0 such that for n large enough, cbn ≤ an ≤ Cbn.

Definition 4. An estimator M̂ is said to be (asymptotically) minimax optimal over D if

sup
P∈D

EP
[
dH

(
M,M̂

)]
� Rn(D).

In other words, M̂ is (asymptotically) minimax optimal if it achieves, up to constants, the best
possible rate of convergence in the worst case.

Studying a minimax rate of convergence is twofold. On one hand, deriving an upper bound on
Rn boils down to give an estimator and to study its quality uniformly on D. On the other hand,
lower bounding Rn amounts to study the worst possible case in D. This part is usually achieved
with standard Bayesian techniques [26]. For the models considered in the present paper, the rates
were given in [23, 25].

Theorem 5 (Theorem 3 of [25]). Rn (GD,d,fmin,fmax,ρ) � Rn (OD,d,fmin,fmax,ρ,β) �
(

logn
βn

)2/d

.

Beyond this theoretical result, an interesting question is to know whether this minimax rate
can be achieved by a tractable algorithm. Indeed, that proposed in [23] especially relies on a
minimization problem over the class of submanifoldsMD,d,ρ, which seems computationally costly.
In addition, the proposed estimator is itself a manifold, that raises storage problems. Moreover, no
guarantee is given on the topology of the estimator.

Throughout the present paper, we will build an estimator M̂TDC that addresses these issues. M̂TDC

is based on the Tangential Delaunay Complex (Section 3), with a tangent space estimation using a
local PCA (Section 5). The result, derived in the model without outliers GD,d,fmin,fmax,ρ, is stated
as follows.

Theorem 6. M̂TDC = M̂TDC(Xn) is a simplicial complex of vertices Xn such that

lim
n→∞

P

(
dH(M,M̂TDC) ≤ Cd,fmin,fmax,ρ

(
log(n− 1)

n− 1

)2/d

and M ∼= M̂TDC

)
= 1.

Moreover, M̂TDC is minimax optimal over GD,d,fmin,fmax,ρ: for n large enough,
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sup
Q∈GD,d,fmin,fmax,ρ

EQdH(M,M̂TDC) ≤ C ′d,fmin,fmax,ρ
(

log(n− 1)

n− 1

)2/d

.

It is interesting to note that the constants appearing in Theorem 6 do not depend on the ambient
dimension D.

Furthermore, in the model with outliers OD,d,fmin,fmax,ρ,β , with the same procedure used to
derive Theorem 6 and an additional iterative preprocessing of the data based on local PCA to
remove outliers (Section 5), we can design an estimator of M that is as close as wanted to the
noise-free case estimator. Namely, for any positive δ < 1/(d(d + 1)), we build M̂TDCδ that satisfies
the following similar statement.

Theorem 7. M̂TDCδ = M̂TDCδ(Xn) is a simplicial complex of vertices contained in Xn such that

lim
n→∞

P

(
dH(M,M̂TDCδ) ≤ Cd,fmin,fmax,ρ

(
log(n− 1)

β(n− 1)

)2/d−2δ

and M ∼= M̂TDCδ

)
= 1.

Moreover, for n large enough,

sup
P∈OD,d,fmin,fmax,ρ,β

EQdH(M,M̂TDC+) ≤ C ′d,fmin,fmax,ρ
(

log(n− 1)

β(n− 1)

)2/d−2δ

.

M̂TDCδ converges at the rate at least
(

logn
n

)2/d−2δ

, which is not the minimax optimal rate according

to Theorem 5 but can be set as close as desired to it. To our knowledge, M̂TDCδ is the first explicit
estimator to provably achieve such a rate in the presence of outliers. Again, it is worth noting that
the constants involved in Theorem 7 do not depend on the ambient dimension D.

In fact, M̂TDCδ is based on a finite number of iterations of a denoising process. From a theoretical
point of view, there exists a (random) number of iterations from which an estimator M̂TDC+ can be
built to satisfy the following.

Theorem 8. M̂TDC+ = M̂TDC+(Xn) is a simplicial complex of vertices contained in Xn such that

lim
n→∞

P

(
dH(M,M̂TDC+) ≤ Cd,fmin,fmax,ρ

(
log(n− 1)

β(n− 1)

)2/d

and M ∼= M̂TDC+

)
= 1.

Moreover, for n large enough,

sup
P∈OD,d,fmin,fmax,ρ,β

EQdH(M,M̂TDC+) ≤ C ′d,fmin,fmax,ρ
(

log(n− 1)

β(n− 1)

)2/d

.

M̂TDC+ may be thought of as a limit of M̂TDCδ when δ goes to 0. As it will be proved in Section 5,
this limit will be reached for δ close enough to 0. Unfortunately this convergence threshold is also
random, hence unknown.

The statistical analysis of the reconstruction problem is postponed to Section 5. Beforehand,
let us describe the Tangential Delaunay Complex in a deterministic and idealized framework where
the tangent spaces are known and no outliers are present.

6



3 Tangential Delaunay Complex
Let P = {p1, . . . , pn} ⊂ M . In this section, we denote the point cloud P to emphasize the fact
that it is considered nonrandom. For ε, δ > 0, P is said to be ε-dense in M if dH(M,P) ≤ ε, and
δ-sparse if d(p,P \{p}) ≥ δ for all p ∈ P. A (δ, ε)-net (of M) is a δ-sparse and ε-dense point cloud.

3.1 Restricted Weighted Delaunay Triangulations
A weight assignment to P is a function ω : P −→ [0,∞). The weighted Voronoi diagram is defined
to be the Voronoi diagram associated to the weighted distance d(x, pω)2 = ‖x− p‖2−ω(p)2. Every
p ∈ P is associated to its weighted Voronoi cell Vorω(p). For τ ⊂ P, let

Vorω(τ) =
⋂
p∈τ

Vorω(p)

be the common face of the weighted Voronoi cells of the points of τ . The weighted Delaunay
triangulation Delω(P) is the dual triangulation to the decomposition given by the weighted Voronoi
diagram. In other words, for τ ⊂ P, the simplex with vertices τ , also denoted by τ , satisfies

τ ∈ Delω(P)⇔ Vorω(τ) 6= ∅.

Note that for a constant weight assignment ω(p) = ω0, Delω(P) is the usual Delaunay triangulation
of P. Under genericity assumptions on P and bounds on ω, Delω(P) is an embedded triangulation
with vertex set P [4]. The reconstruction method proposed in this paper is based on Delω(P) for
some weights ω to be chosen later. As it is a triangulation of the whole convex hull of P and fails
to recover the geometric structure of M , we take restrictions of it in the following manner.

Given a family R = {Rp}p∈P of subsets Rp ⊂ RD indexed by P, the weighted Delaunay complex
restricted to R is the sub-complex of Delω(P) defined by

τ ∈ Delω(P, R)⇔ Vorω(τ) ∩

(⋃
p∈τ

Rp

)
6= ∅.

In particular, we define the Tangential Delaunay Complex Delω(P, T ) by takingR = T = {TpM}p∈P ,
the family of tangent spaces taken at the points of P ⊂ M [4]. Delω(P, T ) is a pruned version of
Delω(P) where only the simplices with directions close to the tangent spaces are kept. Indeed,
TpM being the best linear approximation of M at p, it is very unlikely for a reconstruction of M
to have components in directions normal to TpM — see Figure 2. As pointed out in [4], comput-
ing Delω(P, T ) only requires to compute Delaunay triangulations in the tangent spaces that have
dimension d. This reduces the computational complexity dependency on the ambient dimension
D > d. The weight assignment ω gives degrees of freedom for the reconstruction. The extra degree
of freedom ω permits to stabilize the triangulation and to remove the so-called inconsistencies, the
points remaining fixed. For further details, see [5, 4].

3.2 Guarantees
The following result sums up the reconstruction properties of the Tangential Delaunay Complex
that we will use. For more details about it, the reader is referred to [4].
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p

TpM

Figure 2: Construction of Delω(P, T ) at p for ω ≡ 0.

Theorem 9 (Theorem 5.3 in [4]). There exists ε0 such that for all ε ≤ ε0 and all M ∈ MD,d,ρ,
if P ⊂ M is an (ε, 2ε)-net, there exists a weight assignment ω∗ = ω∗P,T, depending on P and
T = {TpM}p∈P such that

• dH (M,Delω∗(P, T )) ≤ Cd,ρε2,

• M and Delω∗(P, T ) are ambient isotopic.

Computing Delω∗(P, T ) requires to determine the weight function ω∗ = ω∗P,T . In [4], a greedy
algorithm is designed for this purpose and has a time complexity O

(
Dn2 +D2O(d2)n

)
.

Given an (ε, 2ε)-net P for ε small enough, Delω∗(P, T ) recovers M up to ambient isotopy and
approximates it at the scale ε2. The order of magnitude ε2 with an input P of scale ε is remarkable.
Another instance of this phenomenon is present in [13] in codimension 1. We will show that this
ε2 provides the minimax rate of approximation when dealing with random samples. Therefore, it
can be thought of as optimal. Theorem 9 suffers two major imperfections. First, it requires the
knowledge of the tangent spaces at each sample point — since ω∗ = ω∗P,T — and no guarantee
remains if only approximate tangent spaces are known. Second, the points are assumed to lie exactly
on the manifoldM , and no noise is allowed. The analysis of Delω∗(P, T ) is sophisticated [4]. Rather
than redo the whole study with milder assumptions, we tackle this question with an approximation
theory approach (Theorem 10). Instead of studying if Delω∗(P ′, T ′) is stable when P ′ lies close to
M and T ′ close to T , we examine what Delω∗(P ′, T ′) actually reconstructs, as detailed in Section
4.

3.3 On the Sparsity Assumption
In Theorem 9, P is assumed to be dense enough so that it covers all the areas of M . It is also
supposed to be sparse at the same scale as the density parameter ε. Indeed, arbitrarily accumulated
points would generate non-uniformity and instability for Delω∗(P, T ) [5, 4]. At this stage, we
emphasize that the construction of a (ε, 2ε)-net can be carried out with an ε-dense sample with
the following procedure. Given an ε-dense sample P, the farthest point sampling algorithm prunes
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P and outputs an (ε, 2ε)-net Q ⊂ P of M as follows. Initialize at Q = {p1} ⊂ P, and while
max
p∈P

d(p,Q) > ε, add to Q the farthest point to Q in P, i.e., Q ← Q ∪ {argmax
p∈P

d(p,Q)}. The

output Q is ε-sparse and satisfies dH(P,Q) ≤ ε, so it is a (ε, 2ε)-net of M . Therefore, up to the
multiplicative constant 2, sparsifying P at scale ε will not deteriorate its density property. Then,
we can run the farthest point sampling algorithm to preprocess the data, so that the obtained point
cloud is a net.

4 Stability Result

4.1 Interpolation Theorem
As mentioned above, if the data do not lie exactly on M and if we do not have the exact knowledge
of the tangent spaces, Theorem 9 does not apply. To bypass this issue, we interpolate the data with
another manifold M ′ satisfying good properties, as stated in the following result.

Theorem 10 (Interpolation). Let M ∈MD,d,ρ. Let P = {p1, . . . , pq} ⊂ RD be a finite point cloud
and T̃ =

{
T̃1, . . . , T̃q

}
be a family of d-dimensional linear subspaces of RD. For θ ≤ π/64 and

18η < δ ≤ ρ, assume that

• P is δ-sparse: min
i6=j
‖pj − pi‖ ≥ δ,

• the pj’s are η-close to M : max
1≤j≤q

d(pj ,M) ≤ η,

• max
1≤j≤q

∠(Tπ(pj)M, T̃j) ≤ θ.

Then, there exist universal constants c1 ≤ 11, c2 ≤ 252 and a smooth submanifold M ′ ⊂ RD such
that

1. P ⊂M ′,

2. reach
(
M ′
)
≥

ρ ·
(
1− c1

(
η
δ + θ

))2
1 + c1

(
η
δ + θ

)
+ c2

(
η
δ2 + θ

δ

)
ρ
,

3. TpjM ′ = T̃j for all 1 ≤ j ≤ q,

4. dH(M,M ′) ≤ δθ + η,

5. M and M ′ are ambient isotopic.

Theorem 10 fits a manifold M ′ to noisy points and perturbed tangent spaces with no change of
topology and a controlled reach loss. We will use M ′ as a proxy for M . Indeed, if T̃1, . . . , T̃q are
estimated tangent spaces at the noisy base points p1, . . . , pq,M ′ has the virtue of being reconstructed
by Delω∗(P, T̃ ) from Theorem 9. SinceM ′ is topologically and geometrically close toM , we conclude
that M is reconstructed as well by transitivity. In other words, Theorem 10 allows one to consider
a noisy sample with estimated tangent spaces as an exact sample with exact tangent spaces. M ′ is
built pushing and rotating M towards the pj ’s locally along the vector (pj − π(pj)), as illustrated
in Figure 3. Since the construction is quite general and may be applied in various settings, let us
provide an outline of the construction.

Let φ(x) = exp
( ‖x‖2
‖x‖2−1

)
1‖x‖2<1. φ is smooth and satisfies φ(0) = 1, ‖φ‖∞ ≤ 1 and d0φ = 0.

For j = 1, . . . , q, it follows easily from the definition of ∠(Tπ(pj)M, T̃j) — e.g. by induction on
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Tπ(pj)M

pj

M ′

TpjM
′

π(pj)

Figure 3: An instance of the interpolating manifold M ′. Dashed lines correspond to the image of
vertical lines by the ambient diffeomorphism Φ defining M ′ = Φ(M).

the dimension — that there exists a rotation Rj of RD mapping Tπ(pj)M onto T̃j that satisfies
‖Rj − ID‖op ≤ θ. For ` > 0 to be chosen later, and all a ∈ RD, let us define Φ : RD → RD by

Φ(a) = a+

q∑
j=1

φ

(
a− π(pj)

`

)[
(Rj − ID)(a− π(pj)) + (pj − π(pj))︸ ︷︷ ︸

ψj(a)

]
.

Φ is designed to map π(pj) onto pj with dπ(pj)Φ = Rj . Roughly speaking, in balls of radii ` around
each π(pj), Φ shifts the points in the direction pj−π(pj) and rotates it around π(pj). Off these balls,
Φ is the identity map. To guarantee smoothness, the shifting and the rotation are modulated by the
kernel φ, as ‖a− π(pj)‖ increases. Notice that daψj = (Rj − ID) and ‖ψj(a)‖ ≤ `θ + η whenever
φ
(
a−π(pj)

`

)
6= 0. Defining M ′ = Φ(M), the facts that M ′ fits to P and T̃ and is Hausdorff-close

to M follow by construction. Moreover, Theorem 4.19 of [21] ( reproduced as Lemma 23 in this
paper) states that the reach is stable with respect to C2-diffeomorphisms of the ambient space. The
estimate on reach(M ′) relies on the following lemma stating differentials estimates on Φ.

Lemma 11. There exist universal constants C1 ≤ 7/2 and C2 ≤ 28 such that if 6η < ` ≤ δ/3 and
θ ≤ π/64, Φ : RD −→ RD is a global C∞-diffeomorphism. In addition, Φ satisfies for all a in RD,

‖daΦ‖op ≤ 1 + C1

(η
`

+ θ
)
,
∥∥daΦ−1

∥∥
op
≤ 1

1− C1

(
η
` + θ

) , ∥∥d2
aΦ
∥∥

op
≤ C2

(
η

`2
+
θ

`

)
.

The ambient isotopy follows easily by considering the weighted version Φ(t)(a) = a+t (Φ(a)− a)
for 0 ≤ t ≤ 1 and the same differential estimates. We then take the maximum possible value ` = δ/3
and M ′ = Φ(M).

Remark 12. Changing slightly the construction of M ′, one can also build it such that the curvature
tensor at each pj corresponds to that of M at π(pj). For this purpose it suffices to take a localizing
function φ identically equal to 1 in a neighborhood of 0. This additional condition would impact the
universal constants appearing in Theorem 10.
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4.2 Stability of the Tangential Delaunay Complex
Theorem 10 shows that even in the presence of outliers at distance η from M , and with the knowl-
edge of the tangent spaces up to some angle θ, it is still possible to apply Theorem 9 to some
virtual manifold M ′. Denoting M̃ = Delω∗(P, T̃ ), since dH(M,M̃) ≤ dH(M,M ′) + dH(M ′, M̃) and
since the ambient isotopy relation is transitive, M ∼= M ′ ∼= M̃ . We get the following result as a
straightforward combination of Theorem 9 and Theorem 10.

Theorem 13 (Stability of the Tangential Delaunay Complex). There exists εd,ρ,τ1,τ2 > 0 such that
for all ε ≤ εd,ρ,τ1,τ2 and all M ∈MD,d,ρ, the following holds. Given any finite point cloud P ⊂ RD

and a family T̃ =
{
T̃p

}
p∈P

of d-dimensional linear subspaces of RD such that

• max
p∈P

d(p,M) ≤ τ1ε2,

• max
p∈P

∠(Tπ(p)M, T̃p) ≤ τ2ε,

• P is ε-sparse,

• max
x∈M

d(x,P) ≤ 2ε,

then,

• dH

(
M,Delω∗(P, T̃ )

)
≤
(
Cd,ρ′ρ,τ1,τ2 + τ1 + τ2

)
ε2,

• M and Delω∗(P, T̃ ) are ambient isotopic.

Indeed, applying the reconstruction algorithm of Theorem 9 even in the presence of noise and
uncertainty on the tangent spaces actually recovers the manifold M ′ built in Theorem 10. M ′

is isotopic to M and the quality of the approximation of M is at most impacted by the term
dH(M,M ′) ≤ (τ1 + τ2)ε2. The lower bound on reach(M ′) is crucial, as constants appearing in
Theorem 9 are not bounded for arbitrarily small reach ρ′. It is worth noting that no extra analysis
of the Tangential Delaunay Complex was needed to derive its stability. The argument is global,
constructive, and may be applied to other reconstruction methods taking tangent spaces as input.

5 Tangent Space Estimation and Denoising Procedure

5.1 Noise-Free Case
We now focus on the estimation of tangent spaces in the model without outliers GD,d,fmin,fmax,ρ.
The proposed method is similar to that of [2]. A point p ∈ M being fixed, TpM is the best local
d-dimensional linear approximation of M at p. Performing a Local Principal Component Analysis
(PCA) in a neighborhood of p would recover the main directions spanned by M at p, and therefore
yield a good approximation of TpM . For j = 1, . . . , n and h > 0 to be chosen later, define the local
covariance matrix at Xj by

Σ̂j(h) =
1

n− 1

∑
i 6=j

(
Xi − X̄j

) (
Xi − X̄j

)t
1B(Xj ,h)(Xi),

where Nj = |B(Xj , h) ∩ Xn| is the number of sample points contained in the ball B(Xj , h), and
X̄j = 1

Nj

∑
i 6=j Xi1B(Xj ,h)(Xi) is their barycenter. Set T̂j(h) to be the linear space spanned by the
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d eigenvectors associated with the d largest eigenvalues of Σ̂j(h). Computing a basis of T̂j(h) can
be performed naively using a singular value decomposition of the full matrix Σ̂j(h), although fast
PCA algorithms [30] may lessen the computational dependence on the ambient dimension. We also
denote by TSE(., h) the function which maps any vector of points to the vector of their estimated
tangent spaces, with

T̂j(h) = TSE(Xn, h)j .

Proposition 14. Set h =
(
cd,fmin,fmax

logn
n−1

)1/d

. Then, for all Q ∈ GD,d,fmin,fmax,ρ, and n large
enough, we have

max
1≤j≤n

∠(TXjM, T̂j(h)) ≤ Cd,fmin,fmax
h

ρ
,

with probability larger than 1− 6
(

1
n−1

) 2
d

.

Furthermore, it is shown in Lemma 30, based on the results of [10], that for cd,fmin,fmax large
enough, Xn is cd,fmin,fmaxh-dense in M with probability larger than 1−

(
1
n

)2/d. Since Xn may not
be sparse at the scale cd,fmin,fmaxh, and for the stability reasons described in Section 3, we sparsify
it with the farthest point sampling algorithm (Section 3.3) with scale parameter ε = cd,fmin,fmaxh.
Let Yn denote the output of the algorithm.

Corollary 15. With the above notation, for n large enough, with probability at least 1−7
(

1
n−1

)2/d

,

• max
Xj∈Yn

∠(TXjM, T̂j(h)) ≤ Cd,fmin,fmax ερ ,

• Yn is ε-sparse,

• max
x∈M

d(x,Yn) ≤ 2ε.

In other words, the previous result shows that Yn satisfies the assumptions of Theorem 13. We
may then define M̂TDC to be the Tangential Delaunay Complex computed on Yn and the collection
of estimated tangent spaces TSE(Xn, h)Yn , that is elements of TSE(Xn, h) corresponding to elements
of Yn, where h is the bandwidth defined in Proposition 14.

Definition 16. With the above notation, define M̂TDC = Delω∗ (Yn, TSE(Xn, h)Yn).

Combining Theorem 13 and Corollary 15, it is clear that M̂TDC satisfies Theorem 6.

5.2 Clutter Noise Case
We now address the denoising problem, following ideas from [23]. To distinguish whether Xj is
an outlier or belongs to M , we notice again that points drawn from M approximately lie on a
low dimensional structure. On the other hand, the neighborhood points of an outlier drawn far
away from M should typically be distributed in an isotropic way. Let k1, k2, h > 0, x ∈ RD and
T ⊂ RD a d-dimensional linear subspace. The slab at x in the direction T is the set S(x, T, h) =
{x}⊕BT (0, k1h)⊕BT⊥

(
0, k2h

2
)
⊂ RD, where ⊕ denotes the Minkovski sum, and BT ,BT⊥ are the

Euclidean balls in T and T⊥ respectively.
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M

Xj

h

π(Xj)

T̂j

Tπ(Xj)M

Figure 4: Local PCA at an outlier point Xj ∈ Xn.

Using the notation of Section 2.1, for all P ∈ OD,d,fmin,fmax,ρ,β , Figure 5 indicates that

P
(
S(x, Tπ(x)M,h)

)
� hd if d(x,M) ≤ h2,

P
(
S(x, Tπ(x), h)

)
� h2D−d if d(x,M) > h2,

as h goes to 0, for k1 and k2 small enough. Since h2D−d � hd, the measure of the slabs P (S(x, T, h))
clearly is discriminatory for denoising, provided that tangent spaces are known.

Based on this intuition, we define the elementary step of our denoising procedure as the following
map SDt(., ., h), that sends a vector P = (p1, . . . , pr) ⊂ RD and a corresponding vector of (estimated)
tangent spaces TP = (T1, . . . , Tr) onto a subvector of P according to the rule

pj ∈ SDt(P, TP , h) ⇔ |S(pj , Tj , h) ∩ P | ≥ t log(n− 1),

where t is a threshold to be fixed. This procedure relies on counting how many sample points lie
in the slabs of direction the estimated tangent spaces (see Figure 5).

Since tangent spaces are unknown, the following Lemma gives some insight on the relation
between the accuracy of the tangent space estimation and the denoising performance that can be
reached.

Lemma 17. Let K > 0 be fixed. There exists constants k1(K, d) and k2(d,D, ρ) such that, for
every h ≤ h+ ∧ 1 and x we have

d(x,M) ≥ h/
√

2 ⇒ S(x, T, h) ∩M = ∅,
d(x,M) ≥ h2/ρ and ∠

(
Tπ(x)M,T

)
≤ Kh/ρ ⇒ S(x, T, h) ∩M = ∅.

Furthermore, if x and y are in M , then there exists a constant k3 such that

‖x− y‖ ≤ k3h ⇒ y ∈ S(x, Tπ(x)M,h)(x).

Possible values for k1 and k2 are, respectively, 3
4d+8K

√
d
and 1

4
√
D−d(ρ∨1)

. Then k3 may be chosen

as k2ρ
2K ∧

k1
2 ∧
√
ρk1 ∧

√
ρk2.
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k1h

k2h
2

Tπ(Xj)M

M

T̂j

π(Xj)

Sj

Xj

Xj′

Sj′

T̂j′

Figure 5: The slab Sj is centered at Xj and has size k1h in the d directions spanned by T̂j , and
size k2h

2 in the D − d directions normal to T̂j .

The proof of Lemma 17, mentioned in [23], follows from elementary geometry, combined with
the definition of the reach and Proposition 26.

Roughly, Lemma 17 states that the denoising performance is of order the square of the tangent
space precision, hence will be closely related to the performance of the tangent space estimation
procedure TSE. Unfortunately, a direct application of TSE to the corrupted sample Xn leads to
slightly worse precision bounds, in terms of angle deviation. Typically, the angle deviation would be
of order n−1/(d+1). However, this precision is enough to remove outliers points which are at distance
at least n−2/(d+1) fromM . Then running our TSE on this refined sample SDt(Xn, TSE(Xn), n−1/(d+1))
leads to better angle deviation rates, hence better denoising performance, and so on.

Let us now introduce the iterative denoising procedure in a more formal way. We choose the
initial bandwidth h0 =

(
cd,fmin,fmax,ρ

logn
β(n−1)

)γ0
, with γ0 = 1/(d+1), and define the first set X(−1) =

Xn as the whole sample. We then proceed recursively, setting hk+1 =
(
cd,fmin,fmax,ρ

logn
β(n−1)

)γk+1

,
with γk+1 satisfying γk+1 = (2γk + 1)/(d+ 2), and defining

X(k+1) = SDt(X(k), TSE(X(k), hk+1), hk+1).

In other words, at step k + 1 we use a smaller bandwidth hk+1 in the tangent space estimation
procedure TSE. Then we use this better estimation of tangent spaces to run the elementary denoising
step SD. The performance of this procedure is guaranteed by the next Proposition. With a slight
abuse of notation, if Xj is in X(k), TSE(X(k), h)j will denote the corresponding tangent space of
TSE(X(k), h).

Proposition 18. In the clutter noise model, for t, cd,fmin,fmax and n large enough, k1 and k2 small

enough, the following properties hold with probability larger than 1− 6
(

1
n−1

)2/d

.

Initialization:

• For all Xj ∈ X(−1) such that d(Xj ,M) ≤ h0/
√

2,

∠(TSE(X(−1), h0)j , Tπ(Xj)M) ≤ Cd,fmin,fmaxh0/ρ.

14



• For every Xj ∈ M ∩ X(−1), Xj ∈ X(0).

• For every Xj ∈ X(−1), if d(Xj ,M) > h2
0/ρ, then Xj /∈ X(0).

Iteration:

• For all Xj ∈ X(k) such that d(Xj ,M) ≤ hk+1/
√

2,

∠(TSE(X(k), hk+1)j , Tπ(Xj)M) ≤ Cd,fmin,fmaxhk+1/ρ.

• For every Xj ∈ M ∩ X(k), Xj ∈ X(k+1).

• For every Xj ∈ X(k), if d(Xj ,M) > h2
k+1/ρ, then Xj /∈ X(k+1).

This result is threefold. Not only can we distinguish data and outliers within a decreasing
sequence of offsets of radii h2

k/ρ around M , but we can also ensure that no points of M is removed
during the process, with high probability. Moreover, it also provides a convergence rate for the
estimated tangent spaces TSE(Xk, hk+1).

Now fix a precision level δ. An elementary calculation shows that if k is larger than (log(1/δ)−
log(d(d+ 1))/(log(d+ 2)− log(2)), then 1/d > γk ≥ 1/d− δ. Let us then define kδ as the smallest
integer satisfying γk ≥ 1/d−δ, and denote by Yδn the output of the farthest point sampling algorithm
applied to X(kδ) with parameter ε = cd,fminfmaxhkδ (for cd,fminfmax large enough). Define also T δ
as the restriction of TSE(X(kδ), hkδ) to the elements of Yδn.

According to Proposition 18, the denoising procedure removes no data point on M with high
probability. In other words, X(kδ) ∩ M = Xn ∩ M , and as a consequence, max

x∈M
d(x,X(kδ)) ≤

cd,fmin

(
logn
βn

)1/d

� hkδ with high probability, using the same result of [10] as in the noise-free case
(see Lemma 30 at Section C).

Corollary 19. With the above notation, for n large enough, with probability larger than 1 −

7
(

1
n−1

)2/d

,

• max
Xj∈Yδn

d(Xj ,M) ≤ ε2,

• max
Xj∈Yδn

∠(T δj , Tπ(Xj)M) ≤ Cd,fmin,fmax,ρε,

• Yδn is ε-sparse,

• max
x∈M

d(x,Yδn) ≤ 2ε.

We are now able to define the estimator M̂TDCδ.

Definition 20. With the above notation, define M̂TDCδ = Delω∗
(
Yδn, T δ

)
.

Combining Theorem 13 and Corollary 19, it is clear that M̂TDCδ satisfies Theorem 7.

Finally, we turn to the asymptotic estimator M̂TDC+. Set h∞ =
(
cd,fmin,fmax,ρ

logn
β(n−1)

)1/d

, and

let k̂ denote the smallest integer such that min{d(Xj ,M)|d(Xj ,M) > h2
∞/ρ} > h2

k̂
/ρ. Since Xn is

a (random) finite set, we can always find such a random integer k̂ that provides a sufficient number
of iterations to obtain the asymptotic denoising rate. For this random iteration k̂, we can state the
following result.
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Proposition 21. Under the Assumptions of Proposition 19, for every Xj ∈ X(k̂+1), we have

∠(TSE(X(k̂+1), h∞)j , Tπ(Xj)M) ≤ Cd,fmin,fmaxh∞/ρ.

As before, taking Y+
n as the result of the farthest point sampling algorithm based on X(k̂+1),

and T+ the vector of tangent spaces TSE(X(k̂+1), h∞)j such that X(k̂+1)
j ∈ Y+

n , we can construct
our last estimator.

Definition 22. With the above notation, define M̂TDC+ = Delω∗ (Y+
n , T

+) .

In turn, Proposition 21 implies that M̂TDC+ satisfies Theorem 8.

6 Conclusion
In this work, we gave results on explicit manifold reconstruction with simplicial complexes. We
built estimators M̂TDC, M̂TDCδ and M̂TDC+ in two statistical models. We proved minimax rates of
convergence for the Hausdorff distance and consistency results for ambient isotopic reconstruction.
Since M̂TDC is minimax optimal and uses the Tangential Delaunay Complex of [4], the latter is
proved to be optimal. Moreover, rates of [23] are proved to be achievable with simplicial complexes
that are computable using existing algorithms. To prove the stability of the Tangential Delaunay
Complex, a generic interpolation result was derived. In the process, a tangent space estimation
procedure and a denoising method both based on local PCA were studied.

In the model with outliers, the proposed reconstruction method achieves a rate of convergence
that can be as close as desired to the minimax rate of convergence, depending on the number of
iterations of our denoising procedure. Though this procedure seems to be well adapted to our
reconstuction scheme which is based on tangent spaces estimation, we believe that it could be of
interest in the context of other applications. Also, further investigation may be carried out to
compare this denoising procedure to the existing ones (see, e.g., [9], [18]).

The effective construction of M̂TDCδ can be performed using existing algorithms. Namely,
Tangential Delaunay Complex, farthest point sampling, local PCA and point-to-linear subspace
distance computation for slab counting. A crude upper bound on the time complexity of a naive
step-by-step implementation is

O
(
nD

[
2O(d2) + log(1/δ)D(D + n)

])
,

since the precision δ necessitates no more than log (1/δ) iterations of the denoising procedure.
It is likely that better complexity bounds may be obtained using more refined algorithms, such
as fast PCA (see, e.g., [30]). An interesting development would be to investigate this suggested
precision/complexity tradeoff, as done in [3] for community detection in graphs for instance.

Even though Theorem 10 is applied to manifold estimation, the authors believe it may be
applied in various settings. Beyond its statement, the way that it is used is quite general. When
intermediate objects (here, tangent spaces) are used in a procedure, this kind of proxy method can
provide extensions of existing results to the case where these objects are only approximated.

As local PCA is performed throughout the paper, the knowledge of the bandwidth h is needed
for actual implementation. In practice its choice is a difficult question and adaptive selection of h
remains to be considered.

In the process, we derived rates of convergence for tangent space estimation. The optimality of
the method will be the object of a future paper.
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A Interpolation Theorem
This section is devoted to prove the interpolation results of Section 4.1. For sake of completeness,
let us state a stability result for the reach with respect to C2 diffeomorphisms.

Lemma 23 (Theorem 4.19 in [21]). Let A ⊂ RD with reach(A) ≥ ρ > 0 and Φ : RD −→ RD is
a C1-diffeomorphism such that Φ,Φ−1, and dΦ are Lipschitz with Lipschitz constants K,N and R
respectively, then

reach(Φ(A)) ≥ 1

(Kρ−1 +R)N2
.

Writing φ`(·) = φ(·/`), we recall that ψj(a) = (Rj − ID)(a− π(pj)) + (pj − π(pj)) and

Φ(a) = a+

q∑
j=1

φ` (a− π(pj))ψj(a). (1)

Let us denote b1 = supx ‖dxφ‖, b2 = supx
∥∥d2

xφ
∥∥

op
, and write C1 = 1 + b1, C2 = b2 + 2b1.

Straightforward computation yields C1 ≤ 7/2 and C2 ≤ 28.

Proof of Lemma 11. First notice that the sum appearing in (1) consists of at most one term. Indeed,
since φ ≡ 0 outside B(0, 1), if φ` (a− π(pj)) 6= 0 for some j ∈ {1, . . . , q}, then ‖a− π(pj)‖ ≤ `.
Consequently, for all i 6= j,

‖a− π(pi)‖ ≥ ‖pj − pi‖ − ‖pj − π(pj)‖ − ‖π(pj)− a‖ − ‖π(pi)− pi‖
≥ δ − η − `− η
≥ δ − 2` ≥ `,

where we used that 6η ≤ ` ≤ δ/3. Therefore, φ` (a− π(pi)) = 0 for all i 6= j. In other words, if a
pj actually appears in Φ(a) then the others do not.

Global diffeomorphism: As the sum in (1) is at most composed of one term, chain rule yields

‖daΦ− Id‖op = max
1≤j≤q

‖da [φ` (a− π(pj))ψj(a)]‖op

= max
1≤j≤q

∥∥∥∥∥ψj(a)
dbφ

`

∣∣∣∣
b=

a−π(pj)

`

+ φ` (a− π(pj)) (Rj − ID)

∥∥∥∥∥
op

≤
(
b1 + 1

)
θ + b1

η

`
< 1,

where the last line follows from b1 ≤ 5/2, 6η ≤ ` and θ ≤ π/64.
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Therefore, daΦ is invertible for all a ∈ RD, and (daΦ)
−1

=
∑∞
i=0 (ID − daΦ)

i. Φ is a local
diffeomorphism according to the local inverse function theorem. Moreover, ‖Φ(a)‖ → ∞ as ‖a‖ →
∞, so that Φ is a global C∞-diffeomorphism by Hadamard-Cacciopoli theorem [15].

Differentials estimates: (i) First order: From the estimates above,

‖daΦ‖op ≤ ‖ID‖op + ‖daΦ− ID‖op ≤ 1 +
(
b1 + 1

)
θ + b1

η

`
.

(ii) Inverse: Write for all a ∈ RD,

∥∥dΦ(a)Φ
−1
∥∥

op
=
∥∥(daΦ)−1

∥∥
op

=

∥∥∥∥∥
∞∑
i=0

(ID − daΦ)
i

∥∥∥∥∥
op

≤ 1

1− ‖Id− daΦ‖op

≤ 1

1−
(
b1 + 1

)
θ − b1 η`

,

where the first inequality holds since ‖daΦ− Id‖op < 1, and ‖·‖op is sub-multiplicative.
(iii) Second order: Again, since the sum (1) includes at most one term,∥∥d2

aΦ
∥∥

op
= max

1≤j≤q

∥∥d2
a [φ` (a− π(pj))ψj(a)]

∥∥
op

≤ max
1≤j≤q

{∥∥d2φ
∥∥

op

`2
‖ψj(a)‖+ 2

‖dφ‖op

`
‖Rj − ID‖op

}

≤ b2
η

`2
+ (b2 + 2b1)

θ

`
.

Proof of Theorem 10. Set ` = δ/3 and M ′ = Φ(M).

• Interpolation: For all j, pj = Φ(π(pj)) ∈M ′ by construction since φ`(0) = 1.

• Tangent spaces: Since dxφl|x=0 = 0, for all j ∈
{

1, . . . , q
}
, daΦ|a=π(pj)

= Rj . Thus,

TpjM
′ = TΦ(π(pj))Φ(M)

= daΦ|a=π(pj)

(
Tπ(pj)M

)
= Rj

(
Tπ(pj)M

)
= Tj ,

by definition of Rj .

• Proximity to M : It follows from the correspondence

‖Φ(a)− a‖ ≤ sup
a∈RD

max
1≤j≤q

φ` (a− π(pj)) ‖ψj(a)‖

≤ `θ + η ≤ δθ + η.

• Isotopy: Consider the continuous family of maps

Φ(t)(a) = a+ t

 q∑
j=1

φ` (a− π(pj))ψj(a)

 ,
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for 0 ≤ t ≤ 1. Since Φ(t) − Id = t
(
Φ − Id

)
, the arguments above show that Φ(t) is a

global diffeomorphism of RD for all t ∈ [0, 1]. Moreover Φ(0) = Id, and Φ(1) = Φ. Thus,
M = Φ(0)(M) and M ′ = Φ(1)(M) are ambient isotopic.

• Reach lower bound: The differentials estimates of order 1 and 2 of Φ translate into estimates
on Lipschitz constants of Φ,Φ−1 and dΦ. Applying Lemma 23 leads to

reach (M ′) ≥
(
1− C1

(
η
` + θ

))2
1 + C1

(
η
` + θ

)
ρ

+ C2

(
η
`2 + θ

`

) = ρ ·
(
1− C1

(
η
` + θ

))2
1 + C1

(
η
` + θ

)
+ C2

(
η
`2 + θ

`

)
ρ
.

The desired lower bound follows by replacing ` by its value δ/3, and setting c1 = 3C1 ≤
21/2 ≤ 11 and c2 = 32C2 ≤ 252.

B Some Geometric Properties under Reach Regularity Con-
dition

In this section we state intermediate results that connect Euclidean an geodesic quantities under
reach regularity condition. We begin with a result connecting reach and principal curvatures.

Proposition 24 (Proposition 2.1 in [17]). For all x ∈M , writing IIx for the second fundamental
form of M at x, for all unitary w ∈ TxM , we have ‖IIx(w,w)‖ ≤ 1/ρ.

For all x ∈M and v ∈ TxM , let us denote by expx(v) the exponential map at x of direction v.
According to the following Proposition, this exponential map turns out to be a diffeomorphism on
balls of radius at most πρ.

Proposition 25 (Corollary 1.4 in [1]). The injectivity radius of M is at least πρ.

Denoting by dM (·, ·) the geodesic distance on M , we are in position to connect geodesic and
Euclidean distance. In what follows, we fix the constant α = 1 + 1

4
√

2
.

Proposition 26. For all x, y ∈M such that ‖x− y‖ ≤ ρ/4,

‖x− y‖ ≤ dM (x, y) ≤ α ‖x− y‖ .

Moreover, writing y = expx(rv) for v ∈ TxM with ‖v‖ = 1 and r ≤ ρ/4,

y = x+ rv +R(r, v)

with ‖R(r, v‖ ≤ r2

2ρ . As a consequence,

‖x− y‖ ≤ dM (x, y) ≤ ‖x− y‖+
α2 ‖x− y‖2

2ρ
.

21



Proof of Proposition 26. The first statement is a direct consequence of Proposition 6.3 in [29]. Let
us define u(t) = expx(tv) − expx(0) − tv and w(t) = expx(tv) for all 0 ≤ t ≤ r. It is clear that
u(0) = 0 and u′(0) = 0. Moreover, ‖u′′(t)‖ =

∥∥IIw(t) (w′(t), w′(t))
∥∥ ≤ 1/ρ. Therefore, a Taylor

expansion at order two gives ‖R(r, v)‖ = u(r) ≤ r2/(2ρ). Applying the first statement of the
proposition gives r ≤ α ‖x− y‖. Therefore,

‖x− y‖ ≤ dM (x, y) ≤ r ≤ ‖x− y‖+ ‖R(r, v)‖ ≤ ‖x− y‖+
α2 ‖x− y‖2

2ρ
.

The next proposition gives bounds on the volume form expressed in polar coordinates in a
neighborhood of points of M .

Proposition 27. Let x ∈M be fixed. Denote by J(r, v) the Jacobian of the volume form expressed
in polar coordinates around x, for r ≤ ρ

4 and v a unit vector in TxM . In other words, if y =
expx(rv), dVy = J(r, v)drdv. Then

cdr
d−1 ≤ J(r, v) ≤ Cdrd−1,

where cd = 2−d and Cd = 2d.

Proof of Proposition 27. Denoting Ar,v = drv expx, the Area Formula (see, e.g., Section 3.2.5 in

[22]) asserts that J(r, v) = rd−1
√

det
(
Atr,vAr,v

)
. Note that from Proposition 2.1 in [17], the

sectional curvatures in M are bounded by |κ| ≤ 2/ρ2. Therefore, the Rauch theorem (see, e.g.,
Lemma 5 of [20]) states that(

1− r2

3ρ2

)
‖w‖ ≤ ‖Ar,vw‖ ≤

(
1 +

r2

ρ2

)
‖w‖ ,

for all w ∈ TxM . As a consequence,

2−d ≤
(

1− r2

3ρ2

)d
≤
√

det
(
Atr,vAr,v

)
≤
(

1 +
r2

ρ2

)d
≤ 2d.

We will also need the following result giving an estimate of the size of projections of Euclidean
balls onto M , when the center is close to M .

Proposition 28. Let x ∈ RD be such that d(x,M) = ∆ ≤ h ≤ ρ
8 , and let y denote π(x). Then,

B
(
y, r−h

)
∩M ⊂ B(x, h) ∩M ⊂ B

(
y, r+

h

)
∩M,

where r2
h + ∆2 = h2, r−h =

(
1− α2∆

ρ

)
rh, and r+

h =
(

1 + α2∆
ρ

)
rh.
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Proof of Proposition 28. Let z be in M ∩ B(x, h), and denote by δ the quantity ‖z − y‖. Since
δ ≤ 2h, according to proposition 26, we may write

δ2 = ‖z − x‖2 − ‖y − x‖2 − 2 〈z − y, y − x〉

≤ r2
h +

∆α2

ρ
δ2,

hence δ ≤
(

1 + 4∆α2

ρ

)
rh.

On the other hand, the same inequality ensures that, for any z ∈ B(y, ρ/4) ∩M ,

‖z − x‖2 ≤ δ2 + ∆2 +
α2∆

ρ
δ2.

Hence δ ≤
(

1− α2∆
ρ

)
rh ensures that ‖z − x‖ ≤ h.

At last, the following consequence of Proposition 26 will be of particular use in the denoising
procedure.

Proposition 29. Let h and hk be bandwidths satisfying h2
k/ρ ≤ h ≤ hk ≤ ρ/(12α). Let x be such

that d(x,M) ≤ h/
√

2 and πM (x) = 0, and let z be such that d(z, x) ≤ h and d(z,M) ≤ h2
k/ρ. Then

‖z⊥‖ ≤
10h2

k

ρ
,

where z⊥ denotes the projection of z onto T0M
⊥.

Proof of Proposition 29. Let y denote πM (z). A triangle inequality yields ‖y‖ ≤ ‖y − z‖ + ‖z −
x‖+ ‖x‖ ≤ h2

k/ρ+ (1 + 1/
√

2)h ≤ ρ/4. Proposition 26 ensures that ‖y⊥‖ ≤ α2‖y‖2/(2ρ), hence the
result, noting that ‖z⊥‖ ≤ ‖y⊥‖+ h2

k/ρ.

C Some Technical Properties of the Statistical Model
Lemma 30. Let P ∈ UM (fmin, fmax). Then for all p ∈M and r ≤ ρ/4,

P (B(p, r)) ≥ adfminrd.

As a consequence, for n large enough and for all Q ∈ OD,d,fmin,fmax,ρ,β, with probability larger that
1−

(
1
n

)2/d,
dH(M,Xn ∩M) ≤ Cd,fmin

(
log n

βn

)1/d

.

Since the function x 7→ log x/x is a decreasing function on [3,∞), the bound dH(M,Xn ∩M) ≤

Cd,fmin

(
log(n−1)
β(n−1)

)1/d

also holds with probability at least 1−
(

1
n

)2/d.
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Proof of Lemma 30. The first statement is a direct corollary of Proposition 27. Denoting a =
adfmin, it corresponds to the (a, d)-standardness condition of [10] for small radii r. For all k =
0, . . . , n, conditionally on the event {|Xn ∩M | = k}, Xn∩M has the distribution of a k-sample of P .
But from the previous point, P fulfils the (a, d)-standard assumption of [10] for r ≤ ρ/4. Looking
carefully at the proof of Theorem 3.3 in [10] shows that its conclusion still holds for measures
satisfying the (a, d)-standard assumption for small radii only. Therefore, for r ≤ ρ/8,

P (dH(M,Xn ∩M) > r||Xn ∩M | = k) ≤ 4d

ard
exp

(
−k a

2d
rd
)
.

Hence,

P (dH(M,Xn ∩M) > r) =

n∑
k=0

P (dH(M,Xn ∩M) > r| |Xn ∩M | = k)P(Xn ∩M | = k)

≤
n∑
k=0

4d

ard
exp

(
−k a

2d
rd
)(n

k

)
βk(1− β)n−k

=
4d

ard

[
1− β

(
1− exp

(
− a

2d
rd
))]n

≤ 4d

ard
exp

[
−nβ

(
1− exp

(
− a

2d
rd
))]

≤ 4d

ard
exp

[
−nβ a

2d+1
rd
]
,

whenever r ≤ ρ/8 and ard ≤ 2d. Taking r = Cd,fmin,β

(
logn
n

)1/d

with Cdd,fmin,β
βa

2d+1 ≥ 1 + 2/d

yields the result.

We are now able to prove Lemma 2.

Proof of Lemma 2. For ε ≤ ρ/4, let cvM (ε) be the geodesic covering number of M . cvM (ε) is the
minimal number k of geodesic balls BM (x1, ε) , . . . , BM (xk, ε) of radius ε needed to coverM . Notice
that according to Lemma 30 and Proposition 26,

P (BM (xk, ε)) ≥
fminε

d

cd
.

Therefore, a packing argument (see Section B.1 of [10]) yields

cvM (ε) ≤ 2dcd
fminεd

.

Now, take p, q ∈ M such that ‖p− q‖ = diam(M). Let γ be a minimal geodesic joining p and q.
Since γ is minimal, it intersects each BM (xk, ε) at most once. Reorder the centers of the balls of the
covering that intersect γ successively: x(1), . . . , x(N). Taking ε = ρ/4 and using triangle inequality,
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we may write

diam(M) = ‖p− q‖

≤
∥∥p− x(1)

∥∥+

N−1∑
k=1

∥∥x(k) − x(k+1)

∥∥+
∥∥x(K) − q

∥∥
≤ 2εN ≤ 2εcvM (ε)

≤ 2
ρ

4

2dcd

fmin
(
ρ
4

)d :=
Cd

fminρd−1
.

D Matrix Decomposition and Principal Angles
This section states results on the connections between matrix decomposition and principal angles
between linear spans of eigenvectors. For symmetric matrices, we let λi(·) denote their i-th largest
eigenvalue and λmin(·) the smallest one.

Proposition 31. Let O ∈ RD×D, B ∈ Rd×d be symmetric matrices such that

O =

(
B 0
0 0

)
+ E,

λmin(B) ≥ 1 − e1 and ‖E‖F ≤ e2. Let T0 (resp. T ) be the vector space spanned by the first d
vectors of the canonical basis, (resp. by the first d eigenvectors of O). If e1 + e2 ≤ 1/2, then
∠ (T0, T ) ≤ 2de2.

The proof of Proposition 31 relies on the application of Wielandt-Hoffmann Theorem, which is
recalled below.

Theorem 32 (Wielandt-Hoffmann, Theorem 8.1.4 in [24]). Let A,E ∈ RD×D be symmetric ma-
trices. Then,

D∑
i=1

(λi(A+ E)− λi(A))
2 ≤ ‖E‖2F .

Proof of Proposition 31. Denoting λi = λi(O) and bi = λi(B), Theorem 32 yields

d∑
i=1

(λi − bi)2 +

D∑
i=d+1

λ2
i ≤ e2

2.

Let u1, . . . , ud denote the first d eigenvectors of O (that span T ). Moreover, denote by π1 the
orthogonal projection onto T0 and by π2 the orthogonal projection onto its orthogonal complement
T⊥0 . Then O takes the form π̃1 + E, where π̃1 has the same range as π1. Let k be in {1, . . . , d},
then, by definition

(π̃1 + E)uk = λkuk.
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Therefore

π2Euk = λkπ2uk.

According to Theorem 32, |λk − bk| ≤ e1, hence λk ≥ 1− e1 − e2. We deduce that

‖π2uk‖ ≤
e2

1− e1 − e2
≤ 2e2.

As a consequence, for all u ∈ T , ‖π2u‖ ≤ 2de2 ‖u‖. Hence,

∠(T0, T ) = max
u∈T

max
v′∈T⊥0

|〈u, v′〉|
‖u‖‖v′‖

≤ 2de2.

E Local PCA for Tangent Space Estimation
This section is dedicated to the proofs of Section 5. The models with and without outliers are
considered jointly as often as possible. ∧ and ∨ denote respectively the minimum and the maximum
of real numbers. We first state elementary results which will be combined to prove our main results.

E.1 Preliminary results
We will restrict our attention to points Xj that are close enough to M so that B(Xj , h) ∩ M
has enough probability mass. To this aim, we adopt the following notation. For a fixed point
x, let p(x, h) denote P (B(x, h)). We decompose it as p(x, h) = βq(x, h) + (1 − β)q′(x, h), where
q(x, h) = Q(B(x, h)), and q′(x, h) = (h/K0)D.

Lemma 33. There exists h+(ρ, β, fmin, fmax, d) such that, if h ≤ h+, for every x such that
d(x,M) ≤ h, we have

• B(x, h) ∩M ⊂ B(πM (x), 2h) ∩M,

• q(x, h) ≤ Cdfmaxhd.

Moreover, if d(x,M) ≤ h/
√

2, we have

• B(πM (x), h/(2
√

2)) ∩M ⊂ B(x, h),

• cdfminhd ≤ q(x, h),

• p(x, h) ≤ 2βq(x, h).

At last, we may choose h+ ≤ ρ/
√

3d.
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Proof of Lemma 33. Set h1(ρ) = ρ/(12α), and let x be such that d(x,M) ≤ h, and h ≤ h1.
According to Proposition 26 and Proposition 28, B(x, h) ∩M ⊂ B(πM (x), r+

h ) ∩M , with r+
h =

(1 + 4α2∆/ρ)rh ≤ 2rh. According to Proposition 27, we also have q(x, h) ≤ Cdfmaxhd.
Now if d(x,M) ≤ h/

√
2, B(πM (x), r−h ) ∩ M ⊂ M according to Proposition 28, with r−h =

(1− α2∆/ρ)rh ≥ rh/2 ≥ h/(2
√

2). According to Proposition 27, we may write cdfminhd ≤ q(x, h).
Applying Proposition 27 again , there exists h2(fmin, d,D, β, ρ) such that if h ≤ h1∧h2, then for

any x such that d(x,M) ≤ h/
√

2 we have (1−β)q′(x, h) ≤ βCd,fmin,ρhd, along with p(x) ≤ 2βq(x).
Taking h+ = h1 ∧ h2 ∧ ρ/

√
3d leads to the result.

Without loss of generality, the local PCA analysis will be conducted for X1 ∈ X(k), for some
fixed k ≥ −1, the results on the whole sample then follow from a standard union bound. For
convenience, we assume that πM (X1) = 0 and that T0M is spanned by the d first vectors of the
canonical basis of RD. In what follows, denote by t̂ the map from RD to {0, 1} such that t̂(Xi) = 1
if and only if Xi is in X(k).

Let U(Xi, h), i = 2, . . . , n, denote 1B(X1,h)(Xi), and let V2:n denote the vector such that Vi = 1
if Xi is drawn from the noise distribution. It is immediate that the (Ui(h), Vi)’s are independent
and identically distributed, with common law (U(h), V ).

With a slight abuse of notation, we will denote by P and E conditional probability and expec-
tation with respect to X1. The following expectations will be of particular interest.

m(h) = E(XU(X,h)V )/E(V U(X,h)),
Σ(h) = E(X −m(h))>(X −m(h))t>U(X,h)V,

where for any x in RD x> and x⊥ denote respectively the projection of x onto T0M and T0M
⊥.

The following Lemma gives useful results on both m(h) and Σ(h), provided that X1 is close
enough to M .

Lemma 34. If d(X1,M) ≤ h/
√

2, for h ≤ h+, then

Σ(h) =

(
A(h) 0

0 0

)
,

with
λmin(A(h)) ≥ βcd,fmin,fmaxhd+2.

Furthermore,

‖m>(h)‖ ≤ 2h,

‖m⊥(h)‖ ≤ 2h2

ρ
.

Proof of Lemma 34. According to Proposition 25 combined with Proposition 26 and Proposition
27, we may write, for h ≤ h+ and y in B(X1, h) ∩M ,

y = rv +R(r, v),

in local polar coordinates. According to Lemma 33, we have B(πM (X1), r−h ) ∩M ⊂ B(X1, h) ∩M .
Let u be a unit vector in T0M . Then 〈u, rv +R(r, v)−m>(h)〉2 ≥ 〈u, rv −m>(h)〉2 /2− 3R(r, v)2.
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Hence we may write

〈Au, u〉 = β

∫
B(X1,h)∩M

〈u, rv +R(r, v)−m>(h)〉2 J(r, v)f(r, v)drdv

≥ βfmincd
∫ r−h

r=0

[
〈u, rv −m>(h)〉2 rd−1/2− 3r4/(4ρ2)

]
drdv

≥ βfmincd
(

(r−h )d+2

2d(d+ 2)
−

3(r−h )d+4

4ρ2(d+ 4)

)
≥ βcd,fminhd+2,

according to Lemma 33. Since B(X1, h)∩M ⊂ B(πM (X1), 2h)∩M , Proposition 26 combined with
Jensen’s inequality gives the upper bounds on ‖m⊥(h)‖ and ‖m>(h)‖.

We adopt the following notation for the local covariance matrix based on X(k).

Σ̂(k)(h) = 1
n−1

∑
j≥2(Xj − X̄(k))(Xj − X̄(k))tU(Xi, h)t̂(Xi),

X̄(k) = 1
N(k)

∑
i≥2XiU(Xi, h)t̂(Xi)

N (k) =
∑
i≥2 U(Xi, h)t̂(Xi).

Note that the tangent space estimator TSE(X(k), h)1 is the space spanned by the first d eigenvectors
of Σ̂(k). At last we define N0(h) and N1(h) as the number of points drawn from respectively noise
and signal in B(X1, h) ∩M , namely

N1(h) =
∑
i≥2

U(Xi, h)Vi,

N0(h) =
∑
i≥2

U(Xi, h)(1− Vi).

To quantify the deviations of empirical means and covariances from their expectations, we need the
following Lemma.

Lemma 35. Recall that h0 =
(
κ log(n−1)
β(n−1)

)1/(d+1)

and h∞ = h
(d+1)/d
0 , for κ to be fixed later.

If h0 ≤ h+ and d(X1,M) ≤ h+/
√

2, then, with probability larger than 1 − 6
(

1
n−1

)2/d+1

, the
following inequalities hold, for all h ≤ h0 and every possible slab ST .

N0(h)
n−1 ≤ 2(1− β)q′(h) + 10(2+2/d) log(n−1)

n−1 ,
N1(h)
n−1 ≤ 2βq(h) + 10(2+2/d) log(n−1)

n−1 ,

|ST ∩ {X2, . . . , Xn}|/(n− 1) ≤ 2PST + (10DV C+5(1+1/d)) log(n−1)
n−1 ,

|ST ∩ {X2, . . . , Xn}|/(n− 1) ≥ PST − (2DV C+1+2/d) log(n−1)
n−1 ,

where DV C is the Vapnik-Chervonenkis dimension of slabs in RD, and is therefore a fixed constant
depending on D.
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Moreover, for all (h∞ ∨
√

2d(X1,M)) ≤ h ≤ h0, and n large enough,∥∥∥∥∥∥ 1

n− 1

∑
i≥2

(Xi −m(h))>(Xi −m(h))t>U(Xi, h)Vi − Σ(h)

∥∥∥∥∥∥
F

≤ Cd
fmax
fmin

√
κ
βq(h)h2,

1

n− 1

∥∥∥∥∥∥
∑
i≥2

(Xi −m(h))>U(Xi, h)Vi

∥∥∥∥∥∥
F

≤ Cd
fmax
fmin

√
κ
βq(h)h.

Proof of Lemma 35. The first two inequalities follows from Theorem 5.1 in [6]. The third and
fourth inequalities proceed from the same result, as done in Lemma 7 of [23]. The two last results
are derived from Talagrand-Bousquet’s inequality (see, e.g., Theorem 2.3 in [8]) combined with the
so-called peeling device.

Define h− = (h∞ ∨
√

2d(X1,M)), where we recall that in this analysis X1 is fixed, and let fT,h
denote the function

fT,h(x, v) =
〈
T, (x−m(h))>(x−m(h))t>U(x, h)v

〉
,

for h− ≤ h ≤ h0, T a d × d matrix such that ‖T‖F = 1, x in RD and v in {0, 1}. Now we define
the weighted empirical process

Z = sup
T,h

∑
i≥2

fT,h(Xi, Vi)− EfT,h(X,V )

r(h)
,

with r(h) = βq(h)h2, along with the constrained empirical processes

Z(u) = sup
T,h≤u

∑
i≥2

fT,h(Xi, Vi)− EfT,h(X,V ),

for h− ≤ u ≤ h0. Since ‖fT,h‖∞ ≤ 4h2 et V ar(fT,h(X,V )) ≤ 16βq(h)h4, a direct application of
Theorem 2.3 in [8] yields, with probability larger than 1− e−x,

Z(u) ≤ 3EZ(u) +

√
32βq(u)u4x

n− 1
+

20u2x

3(n− 1)
.

To get a bound on EZ(u), we introduce some independent Rademacher random variables σ2, . . . , σn,
i.e. P(σj = 1) = P(σj = −1) = 1/2, so that, according to the symmetrization principle (see, e.g.,
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[27]), we have

(n− 1)EZ(u) ≤ 2E(X,V )2:nEσ sup
h≤u,T

∑
i≥2

〈
T, σiViU(Xi, h)((Xi −m(h))>(Xi −m(h))t>)

〉
≤ 2E(X,V )2:nEσ sup

h≤u,T

∑
i≥2

σi
〈
ViU(Xi, h)XiX

t
i , T

〉
+ 2E(X,V )2:nEσ sup

h≤u,T

∑
i≥2

σi
〈
ViU(Xi, h)Xim(h)t, T

〉
+ 2E(X,V )2:nEσ sup

h≤u,T

∑
i≥2

σi
〈
ViU(Xi, h)m(h)Xt

i , T
〉

+ 2E(X,V )2:nEσ sup
h≤u,T

∑
i≥2

σi
〈
ViU(Xi, h)m(h)m(h)t, T

〉
:= 2E(X,V )2:n(E1 + E2 + E3 + E4).

where EY denotes expectations with respect to the random variable Y . For a fixed (X,V )2:n, we
may write

E1 ≤ Eσ sup
h≤u

∥∥∥∥∥∥
∑
i≥2

σiViU(Xi, h)XiX
t
i

∥∥∥∥∥∥
F

− Eσ

∥∥∥∥∥∥
∑
i≥2

σiViU(Xi, h)XiX
t
i

∥∥∥∥∥∥
F


+ sup
h≤u

Eσ

∥∥∥∥∥∥
∑
i≥2

σiViU(Xi, h)XiX
t
i

∥∥∥∥∥∥
F

:= E11 + E12.

Jensen’s inequality ensures that

E12 ≤ sup
h≤u

√√√√√Eσ

∥∥∥∥∥∥
∑
i≥2

σiViU(Xi, h)XiXt
i

∥∥∥∥∥∥
2

F

≤ 4u2
√
N1(u),

hence
EX2:n

E12 ≤ 4u2
√
β(n− 1)q(u).

For the remaining term E11, note that, when (X,V )2:n is fixed,

sup
h≤u

∥∥∥∥∥∥
∑
i≥2

σiViU(Xi, h)XiX
t
i

∥∥∥∥∥∥
F

− Eσ

∥∥∥∥∥∥
∑
i≥2

σiViU(Xi, h)XiX
t
i

∥∥∥∥∥∥
F


is in fact a supremum of at most N1(u) processes, each of them being subGaussian with variance
bounded by 16h4N1(u), according to a bounded difference inequality (see, e.g., Theorem 6.2 of [7]
along with Section 2.3 of [7]). Hence a maximal inequality for subGaussian random variables (see
Section 2.5 of [7]) ensures that
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E11 ≤ 4h2
√

2N1(u) log(N1(u)) ≤ 4h2
√

2N1(u) log(n− 1).

Hence E(X,V )2:nE11 ≤ 4h2
√

2β(n− 1)q(u) log(n− 1).
E2 may also be decomposed as

E2 = Eσ sup
h≤u

∥∥∥∥∥∥
∑
i≥2

σiViU(Xi, h)Xi

m(h)t

∥∥∥∥∥∥
F

≤ 2uEσ sup
h≤u

∥∥∥∥∥∥
∑
i≥2

σiViU(Xi, h)Xi

∥∥∥∥∥∥
≤ 2u

Eσ sup
h≤u

∥∥∥∥∥∥
∑
i≥2

σiViU(Xi, h)Xi

∥∥∥∥∥∥− Eσ

∥∥∥∥∥∥
∑
i≥2

σiViU(Xi, h)Xi

∥∥∥∥∥∥
+ sup

h≤u
Eσ

∥∥∥∥∥∥
∑
i≥2

σiViU(Xi, h)Xi

∥∥∥∥∥∥


:= 2u(E21 + E22).

Jensen’s inequality yields that E22 ≤ 2u
√
N1(u), and the same argument as for E11 (expectation

of a supremum of n − 1 subGaussian processes with variance bounded by 4u2N1(u)) gives E22 ≤
2u
√

2N1(u) log(n− 1). Hence

E(X,V )2:nE2 ≤ 4u2
√
β(n− 1)q(u)

(√
2 log(n− 1) + 1

)
.

Similarly, we may write

E(X,V )2:nE3 ≤ 4u2
√
β(n− 1)q(u)

(√
2 log(n− 1) + 1

)
.

At last, we may decompose E4 as

E4 ≤ Eσ4u2 sup
h≤u

∣∣∣∣∣∣
∑
i≥2

ViU(Xi, h)

∣∣∣∣∣∣
≤ 4u2

Eσ sup
h≤u

∣∣∣∣∣∣
∑
i≥2

ViU(Xi, h)

∣∣∣∣∣∣− Eσ

∣∣∣∣∣∣
∑
i≥2

ViU(Xi, h)

∣∣∣∣∣∣
+ sup

h≤u
Eσ

∣∣∣∣∣∣
∑
i≥2

ViU(Xi, h)

∣∣∣∣∣∣


≤ 4u2
√
N1(u)

(√
2 log(n− 1) + 1

)
,

using the same argument. Combining all these terms leads to

EZ(u) ≤
32
√
βq(u)√
n− 1

(√
2 log(n− 1) + 1

)
,

hence we get

P

(
Zu ≥

192
√

2u2
√
βq(u) log(n− 1)√
n− 1

(
1 +

1

48

√
x

log(n− 1)

)
+

20u2x

n− 1

)
≤ e−x.
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To derive a bound on the weighted process Z, we make use of the so-called peeling device (see,
e.g., Section 5.3 of [31]). Set p = dlog(h0/h∞)e ≤ 1 + log(h0/h∞), so that e−ph0 ≤ h−. According
to Lemma 33, if Ij denotes the slice [e−jh0, e

−(j−1)h0] ∩ [h−, h0], then, for every h in Ij , we have

r(h) ≥ r(hj−1)cd
fmin
fmax

,

where cd depends only on the dimension, provided that h0 ≤ h+. Now we may write

P

(
Z ≥ 192fmax

√
2

fmincd
√
βq(h−)(n− 1)

(
1 +

1

48

√
x+ log(p)

n− 1

)
+

20fmax(x+ log(p))

(n− 1)βcdfminq(h−)

)

≤
p∑
j=1

P

(
sup
T,h∈Ij

∑
i≥2 fT,h(Xi, Vi)− EfT,h(X,V )

r(h)
≥ 192fmax

√
2

fmincd
√
βq(h−)(n− 1)

[
1 +

1

48

√
x+ log(p)

n− 1

]

+
20fmax(x+ log(p))

(n− 1)fmincdβq(h−)

)

≤
p∑
j=1

P

(
Z(hj−1) ≥ 192

√
2r(hj−1)√

βq(h−)(n− 1)

(
1 +

1

48

√
x+ log(p)

n− 1

)
+

20r(hj−1)(x+ log(p))

(n− 1)βq(h−)

)

Since q(hj−1) ≥ q(h−), we deduce that

P

(
Z ≥ 192fmax

√
2

fmincd
√
βq(h−)(n− 1)

(
1 +

1

48

√
x+ log(p)

n− 1

)
+

20fmax(x+ log(p))

(n− 1)cdfminβq(h−)

)
≤ pe−(x+log(p))

≤ e−x.

Now, according to Lemma 33, βq(h−) ≥ cdκ log(n − 1)/(n − 1). On the other hand, p ≤ 1 +
log(h0/h∞) ≤ log(β(n − 1)/κ)/d ≤ log(n − 1)/d, for κ ≥ 1. Now, for n large enough, taking
x = (1 + 2/d) log(n− 1) in the previous inequality, we get

P(Z ≥ Cd
fmax
fmin

√
κ

) ≤
(

1

n− 1

)1+2/d

.

The last concentration inequality of Lemma 35 may be derived the same way, considering the
functions

gT,h(x, v)) = 〈(x−m(h))U(x, h)v, T 〉 ,

where T is an element of Rd satisfying ‖T‖ ≤ 1.

E.2 Rates of convergence for tangent space estimation
From now on we suppose that all the inequalities of Lemma 35 are satisfied, defining then a global

event of probability larger than 1− 6
(

1
n−1

)1/d+1

.
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We recall that we consider h−(X1) ≤ h ≤ hk, k ≥ −1 (with h−1 = h0), and X1 in X(k) such
that d(X1,M) ≤ h/

√
2. We may then decompose the local covariance matrix as follows.

Σ̂(k) =
1

n− 1

∑
i≥2

(Xi −m(h))(Xi −m(h))tU(Xi, h)t̂(Xi)−
N (k)

n− 1
(X̄(k) −m(h))(X̄(k) −m(h))t

=
1

n− 1

∑
i≥2

(Xi −m(h))(Xi −m(h))tU(Xi, h)t̂(Xi)Vi(Xi)

+
1

n− 1

∑
i≥2

(Xi −m(h))(Xi −m(h))tUi(1− Vi)t̂(Xi)

− N (k)

n− 1
(X̄(k) −m(h))(X̄(k) −m(h))t,

:= Σ̂
(k)
1 + Σ̂

(k)
2 + Σ̂

(k)
3 . (2)

Now assume that Vi = 1 implies t̂(Xi) = 1. This is true for k = −1, since in this case t̂ is always
equal to 1. For k ≥ 0 this is part of the induction hypothesis. Then the first term may be written
as

1

n− 1

∑
i≥2

(Xi −m(h))(Xi −m(h))tU(Xi, h)Vi =
1

n− 1

∑
i≥2

(Xi −m(h))>(Xi −m(h))t>U(Xi, h)Vi +R1

= Σ(h) +R1 +R2,

where
Σ(h) =

(
A(h) 0

0 0

)
.

According to Lemma 34, λmin(A(h)) ≥ cdfminβh
d+2, and ‖R1‖F ≤ 3N1(h)h3

ρ(n−1) according to Propo-
sition 26. Moreover, we can write

R2 =

(
R2 0
0 0

)
,

with ‖R2‖F ≤ Cd fmax
fmin

√
κ
βq(h)h2 according to Lemma 35.

Noise-Free Case In this section X(k) = Xn and hk = h0. Moreover, we can set β = 1, t̂ = 1,
and Vi = 1 for all i in equation (2) to get Σ̂

(k)
2 = 0. The third term Σ̂

(k)
3 may also be written as

Σ̂
(k)
3 =

(
R6 0
0 0

)
+R5,

with

‖R6‖F ≤
N (k)

n− 1
‖(X̄(k) −m(h))>‖‖(X̄(k) −m(h))‖

≤ 2h

n− 1

∥∥∥∥∥∥
∑
i≥2

(Xi −m)>U(Xi, h)

∥∥∥∥∥∥
≤ 2Cdq(h)h2fmax

fmin
√
κ

,
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according to Lemma 35. A similar bound on R5 may be derived,

‖R5‖F ≤
N (k)

n− 1
‖(X̄(k) −m(h))⊥‖(X̄(k) −m(h))‖

≤ 2h

n− 1

∥∥∥∥∥∥
∑
i≥2

(Xi −m)⊥U(Xi, h)

∥∥∥∥∥∥
≤ 16N1(h)h3

(n− 1)ρ
,

according to Proposition 26. If we choose h =
(
κ log(n−1)

n−1

)1/d

, for κ large enough (depending on d,
fmin and fmax), we have

‖R2 +R6‖F
λmin(A(h))

≤ 1/4.

Now, provided that κ ≥ 1, according to Lemma 35, we may write

‖R1 +R5‖F
λmin(A(h))

≤ Kfmax,fmin,dh/ρ,

which, for n large enough, leads to

∠(T0M, T̂X1
M) ≤ Kfmax,fmin,dh/ρ,

according to Theorem 32.
Clutter noise, Initialization step Now we set k = −1, X(k) = Xn, t̂ = 1, h = h0 and

d(X1,M) ≤ h0/
√

2. Term Σ̂
(k)
2 in inequality (2) may be bounded by

‖Σ̂(k)
2 ‖F ≤

16h2N0(h)

n− 1
.

In turn, term Σ̂
(k)
3 may be decomposed as

N (k)

n− 1
(X̄(k) −m(h))(X̄(k) −m(h))t =

(
R6 0
0 0

)
+R5,

with

‖R6‖F ≤
N (k)

n− 1
‖(X̄(k) −m(h))>‖‖(X̄(k) −m(h))‖

≤ 2h

n− 1

‖∑
i≥2

(Xi −m(h))>U(Xi, h)Vi‖+ ‖
∑
i≥2

(Xi −m(h))>U(Xi, h)(1− Vi)‖


≤ 2Cdβq(h)h2fmax

fmin
√
κ

+
4h2N0(h)

n− 1
,
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according to Proposition 35. We may also write

‖R5‖F ≤
N (k)

n− 1
‖(X̄(k) −m(h))⊥‖‖(X̄(k) −m(h))‖

≤ 2h

n− 1

‖∑
i≥2

(Xi −m(h))⊥Uh(Xi)Vi‖+ ‖
∑
i≥2

(Xi −m(h))⊥Uh(Xi)(1− Vi)‖


≤ N1(h)h3

(n− 1)ρ
+

10N0(h)h2

(n− 1)
,

according to Proposition 26. As in the noise-free case, provided that κ is large enough (depending
on d fmin and dmax), we have

‖R2 +R6‖F
λmin(A(h))

≤ 1/4.

Since (n− 1)hd0 = κ log(n−1)
βh , if we ask κ ≥ ρ, then for n large enough we eventually get

‖Σ̂(k)
2 +R1 +R5‖F
λmin(A(h))

≤ Kd,fmin,fmax,β
h0

ρ
,

according to Proposition 35. Then, for n large enough such that Kd,fmin,fmax,β
h0

ρ ≤ 1/4, Theorem
32 can be applied.

Clutter noise, Iteration step Now we assume that k ≥ 0, and that d(Xi,M) ≥ h2
k/ρ implies

t̂(Xi) = 0, with hk =
(
κ log(n−1)
β(n−1)

)γk
, γk being between 1/(d + 1) and 1/d. Let h∞ ≤ h ≤ hk, and

suppose that d(X1,M) ≤ h/
√

2. We can decompose II as

1

n− 1

∑
i≥2

(Xi −m(h))(Xi −m(h))tU(Xi, h)(1− Vi)t̂(Xi)

=
1

n− 1

∑
i≥2

(Xi −m(h))>(Xi −m(h))t>U(Xi, h)(1− Vi)t̂(Xi) +R3

=

(
R4 0
0 0

)
+R3,

with ‖R4‖F ≤ 4N0(h)h2

n−1 and ‖R3‖ ≤ 40N0(h)hh2
k

(n−1)ρ , according to Proposition 29, for n large enough so

that h2
0/ρ ≤ h∞. Term Σ̂

(k)
3 may also be written as

N (k)

n− 1
(X̄(k) −m(h))(X̄(k) −m(h))t =

(
R6 0
0 0

)
+R5,
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with

‖R6‖F ≤
N (k)

n− 1
‖(X̄(k) −m(h))>‖‖(X̄(k) −m(h))‖

≤ 2h

n− 1

‖∑
i≥2

(Xi −m(h))>U(Xi, h)Vi‖+ ‖
∑
i≥2

(Xi −m(h))>U(Xi, h)(1− Vi)t̂(Xi)‖


≤ 2Cdβq(h)h2fmax

fmin
√
κ

+
4h2N0(h)

(n− 1)
,

according to Proposition 35 and Proposition 29. We may also write

‖R5‖F ≤
N (k)

n− 1
‖(X̄(k) −m(h))⊥‖‖(X̄(k) −m(h))‖

≤ 2h

n− 1

‖∑
i≥2

(Xi −m(h))⊥Uh(Xi)Vi‖+ ‖
∑
i≥2

(Xi −m(h))⊥Uh(Xi)(1− Vi)t̂(Xi)‖


≤ N1(h)h3

(n− 1)ρ
+

20N0(h)hh2
k

ρ(n− 1)
,

according to Proposition 26 and 29. As done before, we may choose κ large enough (depending on
d, fmin and fmax, but not on k) such that

‖R2 +R4 +R6‖F
λmin(A(h))

≤ 1/4.

Now choose h = hk+1 =
(
κ log(n−1)
β(n−1)

)(2γk+1)/(d+2)

, with κ ≥ 1, then we get, according to Proposition
35,

‖R1 +R3 +R5‖F
λmin(A)(hk+1)

≤ Cd
fmaxhk+1

ρfmin
+

C ′d
βρfmin

(
κ

log(n− 1)

β(n− 1)

)γk+1+2γk−(2γk+1)+1

≤ K(fmax, fmin, d, β)
hk+1

ρ
,

where K(fmax, fmin, d, β) does not depend on k either. At last, since K(fmax, fmin, d, β)hk+1

ρ ≤
K(fmax, fmin, d, β)h0

ρ ≤ 1/4, for n large enough (not depending on k), we may apply Theorem 32.
Clutter Noise, random iteration k̂

In this case, we have d(Xj ,M) ≤ h2
∞/ρ, for every Xj in X(k̂). The proof of Proposition 21

follows from the same calculation as above, replacing h2
k/ρ by its upper bound h2

∞/ρ and taking
hk+1 = h∞.

E.3 Denoising rates
We recall that the slab S(x, T, h) is the set of points y such that ‖πT (y − x)‖ ≤ k1h and ‖πT⊥(y −
x)‖ ≤ k2h

2, k1 and k2 defined in Lemma 17, and where πT denotes the orthogonal projection onto
T . The proof of the denoising performance of one iteration is derived from the following Lemma.
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Lemma 36. For κ and n large enough, there exists a threshold t such that, for all h∞ ≤ h ≤ h0,
and under the assumptions of Lemma 35, we have

X1 ∈M and ∠ (T, TX1
M) ≤ Kh/ρ ⇒ |S(X1, T, h) ∩ {X2, . . . , Xn}| ≥ t log(n− 1),

d(X1,M) ≥ h2/ρ and ∠
(
T, Tπ(X1)

)
M ≤ Kh/ρ ⇒ |S(X1, T, h) ∩ {X2, . . . , Xn}| < t log(n− 1)

d(X1,M) ≥ h/
√

2 ⇒ |S(X1, T, h) ∩ {X2, . . . , Xn}| < t log(n− 1)

Proof. If d(X1,M) ≥ h/
√

2 or d(X1,M) ≥ h2/ρ and ∠
(
Tπ(X1)M,T

)
≤ Kh/ρ, then, according to

Lemma 17,

PS(X1, T, h) =
(1− β)

KD
0

(k1h)dkD−d2 h2(D−d)) =
(1− β)kd1k

D−d
2

KD
0

h2D−d.

According to Lemma 35, since h ≤ h0, we may write

|S(X1, T, h) ∩ {X2, . . . , Xn}|/(n− 1) ≤2(1− β)kd1k
D−d
2 κ(d+2)/d

MD

(
log(n− 1)

β(n− 1)

)1+1/(d+1)

+
(20DV C + 10(1 + 1/d)) log(n− 1)

n− 1
.

On the other hand, if X1 ∈ M , we have PS(X1, T, h) ≥ q(k3h), according to Lemma 17. Using
concentration bounds again yields that

|S(X1, T, h) ∩ {X2, . . . , Xn}|/(n− 1) ≥ (cdfminκ− (4DV C + 2(1 + 1/d))
log(n− 1)

n− 1
.

The result follows easily.

Now if we choose K = K(fmax, fmin, d, β) and the sequence of bandwidths hk mentioned in the
last section to construct the slabs, Proposition 18 follows straightforwardly, with a union bound on
the sample {X1, . . . , Xn}.

F Proof of the Main Reconstruction Results
We now prove main results Theorem 6 in the noise-free model, and Theorems 7 and 8 in the clutter
noise model.

F.1 Noise-Free Case

Proof of Corollary 15. Let Q ∈ GD,d,fmin,fmax,ρ. Write ε = cd,fmin,fmax

(
logn
n−1

)1/d

. Consider the
event A defined by

A =

{
max
Xj∈Yn

∠(TXjM, T̂j) ≤ Cd,fmin,fmax
ε

ρ

}
∩ {dH(M,Yn) ≤ 2ε} ∩ {Yn is ε-sparse} .

The construction of Yn from the farthest point sampling algorithm and a straightforward combi-
nation of Proposition 14 and Lemma 30 yields, for n large enough,

PQ (Ac) ≤ 7

(
1

n− 1

)1/d

.
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Proof of Theorem 6. Following the above notation, we observe that on the event A, Theorem 13
holds with parameters τ1 = 0 and τ2 = Cd,fmin,fmax/ρ, so that the first part of Theorem 6 is proved.
Furthermore, for n large enough,

EQ
[
dH

(
M,M̂TDC

)]
≤ EQ

[
dH

(
M,M̂TDC

)
1A

]
+ EQ

[
dH

(
M,M̂TDC

)
1Ac

]
≤ (Cd,ρ′ρ,τ1,τ2

+ τ2)ε2 + diam(M)PQ(Ac)

≤ C ′d,fmin,fmax,ρε
2,

where for the last line we used the diameter bound of Proposition 2.

F.2 Clutter Noise Case
Proof of Corollary 19. Let P ∈ OD,d,fmin,fmax,ρ,β . For n large enough, Denote by ε the quantity

cd,fmin,fmax,ρ

(
log(n−1)
β(n−1)

)γk
. Consider the event

Aδ =

{
max
Xj∈Yδn

∠(Tπ(Xj)M, T̂j) ≤ Cd,fmin,fmax,ρε
}
∩
{

max
Xj∈Yδn

d(Xj ,M) ≤ ε2

}
∩
{

dH(M,Yδn) ≤ 2ε
}
∩
{
Yδn is ε-sparse

}
.

From Lemma 30, Proposition 18 and the construction of Y+
n with the farthest point sampling

algorithm, it is clear that for n large enough,

PP
((
Aδ
)c) ≤ 6

(
1

n− 1

)2/d

+

(
1

n

)2/d

≤ 7

(
1

n− 1

)2/d

.

Proof of Theorem 7. Following the above notation, we observe that on the event A+, Theorem 13
holds with parameters τ1 = 1 and τ2 = Cd,fmin,fmax,ρ, so that the first part of Theorem 7 is proved.
Furthermore, for n large enough,

EP
[
dH

(
M,M̂TDCδ

)]
≤ EP

[
dH

(
M,M̂TDCδ

)
1Aδ

]
+ EP

[
dH

(
M, M̂TDCδ

)
1(Aδ)c

]
≤ (Cd,ρ′ρ,τ1,τ2 + τ1 + τ2)ε2 + 2K0PP

((
Aδ
)c)

≤ C ′d,fmin,fmax,ρ,βε
2,

where for the second line we used Theorem 13 and the fact that M ∪ M̂TDCδ ⊂ B0, a ball of radius
K0.

Theorem 8 is obtained similarly, using Proposition 21.
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