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Stability and Minimax Optimality of Tangential Delaunay
Complexes for Manifold Reconstruction

Eddie Aamari and Clément Levrard

Abstract

In this paper we consider the problem of optimality in manifold reconstruction. A random
sample Xn = {X1, . . . , Xn} ⊂ RD composed of points lying on a d-dimensional submanifold
M , with or without outliers drawn in the ambient space, is observed. Based on the tangential
Delaunay complex [3], we construct an estimator M̂ that is ambient isotopic and Hausdorff-
close to M with high probability. M̂ is built from existing algorithms. In a model without
outliers, we show that this estimator is asymptotically minimax optimal for the Hausdorff
distance over a class of submanifolds with reach condition. Therefore, even with no a priori
information on the tangent spaces of M , our estimator based on tangential Delaunay complexes
is optimal. This shows that the optimal rate of convergence can be achieved through existing
algorithms. A similar result is also derived in a model with outliers. A geometric interpolation
result is derived, showing that the tangential Delaunay complex is stable with respect to noise
and perturbations of the tangent spaces. In the process, a denoising procedure and a tangent
space estimator both based on local principal component analysis (PCA) are studied.

1 Introduction
In various settings coming from experimental science, it is usual to manipulate point samples
that can be modelled as lying on a d-dimensional submanifold M ⊂ RD. As M may carry a
lot of information about the studied phenomenon, it is then natural to consider the problem of
either approximating M geometrically, recovering it topologically, or both from a point sample
Xn = {X1, . . . , Xn}. It is of particular interest in high codimension (d� D) where it can be used
as a preliminary processing of the data for reducing its dimension, and then avoiding the curse of
dimensionality. This problem is usually referred to as manifold reconstruction in the computational
geometry community, and rather called set/support estimation or manifold learning in the statistics
literature.

The computational geometry community has now been active on manifold reconstruction for
many years, mainly in deterministic frameworks. In dimension 3, [12] provides a survey of the state
of the art. In higher dimension, the employed methods rely on variants of the ambient Delaunay
triangulation [8, 3]. The geometric and topological guarantees are derived under the assumption
that the point cloud - fixed and non random - densely samples M at scale ε, with ε small enough
or going to 0.

In the statistics literature, most of the attention has been paid to approximation guarantees,
rather than topological ones. The approximation bounds are given in terms of the sample size n,
that is assumed to be large enough or in the asymptotic n→∞. To derive these bounds, a broad
scope of assumptions on M have been considered. For instance, if M is a bounded convex set and
Xn does not contain outliers, a natural idea is to consider the convex hull M̂ = Conv(Xn) to be the
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estimator. Conv(Xn) provides optimal rates of approximation for several loss functions [22, 14].
These rates depend crudely on the regularity of the boundary of the convex M . In addition,
Conv(Xn) is clearly ambient isotopic to M so that it has both good geometric and topological
properties. Generalisations of the notion of convexity based on rolling ball-type assumptions such
as r-convexity and reach conditions [10, 18] yield rich classes of sets with good geometric properties.
In particular, the reach, as introduced by H. Federer [16], has been proved to be a key regularity
and scale parameter [7, 18].

This paper mainly follows up the two articles [3, 18], both dealing with the case of a d-
dimensional manifold M ⊂ RD under reach condition and where the dimension d is known.
On one hand, [3] focuses on a deterministic analysis and proposes a provably faithful reconstruc-
tion. These authors introduce a weighted Delaunay triangulation restricted to tangent spaces, the
so-called Tangential Delaunay Complex. They give ambient isotopy guarantee and approximation
bounds for the Hausdorff distance along with computational complexity bounds. This work pro-
vides a simplicial complex based on the input point cloud and tangent spaces. However, it lacks
stability up to now, in the sense that the assumptions used in the proofs of [3] do not resist ambient
perturbations. Indeed, it intensively uses the knowledge of the tangent spaces at each point and
the absence of noise.
On the other hand, [18] takes a statistical approach in a model containing possibly outlier points.
The authors derive an estimator that is proved to be minimax optimal for the Hausdorff loss dH.
Although theoretically optimal, the proposed estimator appears to be intractable in practice.

Our main contribution (Theorem 6) makes a two-way link between the approaches of [3] and
[18]. It shows that with an additional tangent space estimation procedure that we propose, the
tangential complex of [3] achieves the optimal rate of convergence in the model without outliers
of [18]. Conversely, Theorem 6 points out that the rate of [18] can be achieved with a tractable
estimator M̂ that is a simplicial complex of which vertices are the data points and such that M̂ is
ambient isotopic to M with high probability. In the presence of outliers, a similar result (Theorem
7) is also provided. Moreover, a stability result for the tangential Delaunay complex (Theorem 12)
is proved.

Outline
This paper deals with the case where a sample Xn = {X1, . . . , Xn} ⊂ RD of size n is randomly drawn
on/aroundM . First, the statistical framework is described (Section 2). Two models are studied, one
where Xn ⊂M and the other where Xn contains outliers. We build a simplicial complex M̂TDC(Xn)
ambient isotopic to M and achieving a rate of approximation for the Hausdorff loss dH(M,M̂TDC),
with bounds holding uniformly over a class of submanifolds satisfying a reach condition. The derived
rate of convergence is minimax optimal (Section 2) in the model without outliers. With outliers, a
similar estimator M̂TDC+ is built. M̂TDC and M̂TDC+ are based on the tangential Delaunay complex
(Section 3), that is first proved to be stable (Section 4) via an interpolation result. For this purpose,
a method to estimate tangent spaces and to remove outliers based on local Principal Component
Analysis (PCA) is proposed (Section 5). We conclude with general remarks and possible extensions
(Section 6).
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Notation
In what follows, we consider a smooth d-dimensional submanifold without boundary M ⊂ RD to
be reconstructed. For all p ∈M , TpM designates the tangent space of M at p. Tangent spaces will
either be considered vectorial or affine depending on the context. The standard inner product in
RD is denoted by 〈·, ·〉 and the Euclidean distance ‖·‖. We let B(p, r) denote the closed Euclidean
ball of radius r > 0 centered at p. As introduced in [16], the reach of M , denoted by reach(M)
is the maximal offset radius for which the projection πM onto M is well defined. Denoting by
d(·,M) the distance to M , the medial axis of M med(M) = {x ∈ RD|∃a 6= b ∈ M, ‖x− a‖ =
‖x− b‖ = d(x,M)} is the set of points which have at least two nearest neighbors on M . Then,
reach(M) = inf

p∈M
d(p,med(M)). We simply write π for πM when there is no possibility of confusion.

For any smooth function Φ : RD → RD, we let daΦ and d2
aΦ denote the first and second order

differentials of Φ at a ∈ RD. For a linear map A, At designates its transpose. Let ‖A‖op = supx
‖Ax‖
‖x‖

and ‖A‖F =
√

trace (AtA) denote respectively the operator norm induced by the Euclidean norm
and the Frobenius norm. The distance between two linear subspaces U, V ⊂ RD of same dimension

is measured by the principal angle ∠(U, V ) = max
u∈U

max
v′∈V ⊥

〈u, v′〉
‖u‖ ‖v′‖

= ‖πU − πV ‖op . The Hausdorff

distance in RD is denoted by dH. We let ∼= denote the ambient isotopy relation in RD.
Throughout this paper, Cα will denote a generic constant depending on the parameter α. For
clarity sakeness, cα and Kα may also be used when several constants are involved.

2 Minimax Risk and Optimality

2.1 Statistical Model
Let us describe the general statistical setting we will use to define optimality for manifold recon-
struction. A statistical model D is a set of probability distributions on RD. In any statistical
experiment, D is fixed and known. We observe an independent and identically distributed sample
of size n (or i.i.d. n-sample) Xn = {X1, . . . , Xn} drawn according to some unknown distribution
P ∈ D. If no noise is allowed, the problem is to recover the support of P , that is, the smallest
closed set C ⊂ RD such that P (C) = 1. Let us give two examples of such models D by describing
those of interest in this paper.

LetMD,d,ρ be the set of all the d-dimensional connected submanifoldsM ⊂ RD without bound-
ary satisfying reach(M) ≥ ρ. The reach assumption is crucial to avoid arbitrarily curved and
pinched shapes [10]. From a reconstruction point of view, ρ gives a minimal feature size on M ,
and then a minimal scale for geometric information. Every M ∈ MD,d,ρ inherits a measure in-
duced by the d-dimensional Hausdorff measure dHd(x) on RD ⊃ M . We denote this induced
measure dvM (x). Beyond the geometric restrictions induced by the lower bound ρ on the reach,
it also requires the natural measure vM to behave like a d-dimensional measure, up to uniform
constants. Namely, vM satisfies the (a, d)-standard property of [6], with a = ad,ρ. Denote by
UM (fmin, fmax) the set of probability distributions Q having a density f with respect to vM such
that 0 < fmin ≤ f(x) ≤ fmax < ∞ for all x ∈ M . Roughly speaking, when Q ∈ UM (fmin, fmax),
points are drawn almost uniformly on M since f is bounded away from 0 and ∞. This is to
ensure that the sample visits all the areas of M with high probability. The model without out-
liers GD,d,fmin,fmax,ρ consists of the set of all these almost uniform measures on submanifolds of
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dimension d having reach greater than a fixed value ρ > 0.

Definition 1 (Model without outliers). GD,d,fmin,fmax,ρ =
⋃
M∈MD,d,ρ

UM (fmin, fmax).

We do not explicitly impose a bound on the diameter of M . Actually, a bound is implicitly
present in the model, as stated in the next lemma, the proof of which follows from a volume
argument.

Lemma 2. There exists Cd > 0 such that for all Q ∈ GD,d,fmin,fmax,ρ with associated M ,

diam(M) ≤ Cd
ρd−1fmin

=: Kd,fmin,ρ.

Eventually, we may include distributions contaminated with outliers uniformly drawn in a ball
B0 containing M , as illustrated in Figure 1. Up to translation, we can always assume that M 3 0.
To avoid boundary effects, we will take B0 to contain widely M so that the outlier distribution
surrounds M everywhere. Since M has at most diameter Kd,fmin,ρ from Lemma 2 we arbitrarily
fix B0 = B(0,K0), where K0 = Kd,fmin,ρ + ρ. Notice that the larger the radius of B0, the easier to
label the outlier points since they should be very far away from each other.
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(a) Circle with outliers: d = 1,D = 2.

-4

-3

-2

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

(b) Torus with outliers: d = 2,D = 3.

Figure 1: Point clouds Xn drawn from distributions of two instances of models OD,d,fmin,fmax,ρ,β
with different parameters and β < 1.

Definition 3 (Model with outliers/Clutter noise model). For 0 < fmin ≤ fmax < ∞, 0 < β ≤ 1,
and ρ > 0, we define OD,d,fmin,fmax,ρ,β to be the set of mixture distributions

P = βQ+ (1− β)UB0
,

where Q ∈ GD,d,fmin,fmax,ρ has support M such that 0 ∈M , and UB0 is the uniform distribution on
B0 = B(0,K0).

Alternatively, a random variable X with distribution P ∈ OD,d,fmin,fmax,ρ,β can be represented
as X = V X ′ + (1 − V )X ′′ , where V ∈ {0, 1} is a Bernoulli random variable with parameter β,
X ′ has distribution in GD,d,fmin,fmax,ρ and X ′′ has a uniform distribution over B0, and such that
V,X ′, X ′′ are independent. In particular for β = 1, OD,d,fmin,fmax,ρ,β=1 = GD,d,fmin,fmax,ρ.
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2.2 Minimax Risk
For a probability measure P ∈ D, denote by EP - or simply E - the expectation with respect to the
product measure P (n). The quantity we will be interested in is the minimax risk associated to the
model D. For n ≥ 0,

Rn(D) = inf
M̂

sup
P∈D

EP
[
dH

(
M,M̂

)]
,

where the infimum is taken over all the estimators M̂ = M̂ (X1, . . . , Xn) computed over a n-sample.
Rn(D) is the best risk that an estimator based on a n sample can achieve uniformly over the class
D. It is clear from the definition that if D′ ⊂ D then Rn(D′) ≤ Rn(D). It follows the intuition that
the broader the class of considered manifolds, the more difficult it is to estimate them uniformly
well. Studying Rn(D) for a fixed n is a difficult task that can rarely be carried out. We will focus
on the semi-asymptotic behaviour of this risk. For this purpose, we will say that two sequences
(an)n and (bn)n are asymptotically comparable, denoted by an � bn, if there exist c, C > 0 such
that for n large enough, cbn ≤ an ≤ Cbn.

Definition 4. An estimator M̂ is said to be (asymptotically) minimax optimal over D if

sup
P∈D

EP
[
dH

(
M,M̂

)]
� Rn(D).

In other words, M̂ is (asymptotically) minimax optimal if it achieves, up to constants, the best
possible rate of convergence in the worst case.

Studying a minimax rate of convergence is twofold. On one hand, deriving an upper bound on
Rn boils down to propose an estimator and to study its quality uniformly on D. On the other hand,
lower bounding Rn amounts to analyse the worst possible case in D. This part is usually achieved
with standard Bayesian techniques [21]. For the models considered in the present paper, the rates
were given in [18, 20].

Theorem 5 (Theorem 3 of [20]). Rn (GD,d,fmin,fmax,ρ) � Rn (OD,d,fmin,fmax,ρ,β) �
(

logn
n

)2/d

.

Beyond this theoretical result, an interesting question is to know whether this minimax rate
can be achieved by a tractable algorithm. Indeed, that proposed in [18] especially relies on a
minimization problem over the class of submanifoldsMD,d,ρ, which seems computationally costly.
In addition, the proposed estimator is itself a manifold, that raises storage problems. Moreover, no
guarantee is given on the topology of the estimator.

Throughout the present paper, we will build an estimator M̂TDC that addresses these issues. M̂TDC

is based on the tangential Delaunay complex (Section 3), with a tangent space estimation using a
local PCA (Section 5). The result, derived in the model without outliers GD,d,fmin,fmax,ρ, is stated
as follows.

Theorem 6. M̂TDC = M̂TDC(Xn) is a simplicial complex of vertices Xn such that

lim
n→∞

P

(
dH(M,M̂TDC) ≤ Cd,fmin,fmax,ρ

(
log n

n

)2/d

and M ∼= M̂TDC

)
= 1.

Moreover, M̂TDC is minimax optimal over GD,d,fmin,fmax,ρ: for n large enough,
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sup
Q∈GD,d,fmin,fmax,ρ

EQdH(M,M̂TDC) ≤ C ′d,fmin,fmax,ρ
(

log n

n

)2/d

.

It is interesting to note that the constants appearing in Theorem 6 do not depend on the ambient
dimension D.

Furthermore, in the model with outliers OD,d,fmin,fmax,ρ,β , with the same procedure used to
derive Theorem 6 and an additional preprocessing of the data based on local PCA to remove
outliers (Section 5), we get an estimator M̂TDC+ satisfying the following similar statement.

Theorem 7. M̂TDC+ = M̂TDC+(Xn) is a simplicial complex of vertices contained in Xn such that

lim
n→∞

P

(
dH(M,M̂TDC+) ≤ Cd,fmin,fmax,ρ

(
log n

βn

)2/(d+1)

and M ∼= M̂TDC+

)
= 1.

Moreover, for n large enough,

sup
P∈OD,d,fmin,fmax,ρ,β

EQdH(M,M̂TDC+) ≤ C ′d,fmin,fmax,ρ
(

log n

βn

)2/(d+1)

.

M̂TDC+ converges at the rate at least
(

logn
n

)2/(d+1)

, which is not the minimax optimal rate according

to Theorem 5. However, to our knowledge, M̂TDC+ is the first explicit estimator to provably achieve
such a rate in the presence of outliers. Again, it is worth noting that the constants involved in
Theorem 7 do not depend on the ambient dimension D.

The statistical analysis of the problem is postponed to Section 5. Beforehand, let us describe the
tangential Delaunay complex in a deterministic and idealized framework where the tangent spaces
are known and no outliers are present.

3 Tangential Delaunay Complex
Let P = {p1, . . . , pn} ⊂ M . In this section, we denote the point cloud P to emphasize the fact
that it is considered non random. For ε, δ > 0, P is said to be ε-dense in M if dH(M,P) ≤ ε, and
δ-sparse if d(p,P \{p}) ≥ δ for all p ∈ P. A (δ, ε)-net (of M) is a δ-sparse and ε-dense point cloud.

3.1 Restricted Weighted Delaunay Triangulations
A weight assignment to P is a function ω : P −→ [0,∞). The weighted Voronoi diagram is defined
to be the Voronoi diagram associated to the weighted distance d(x, pω)2 = ‖x− p‖2−ω(p)2. Every
p ∈ P is associated to its weighted Voronoi cell Vorω(p). For τ ⊂ P, let

Vorω(τ) =
⋂
p∈τ

Vorω(p)

be the common face of the Voronoi cells of the points of τ . The weighted Delaunay triangulation
Delω(P) is the dual triangulation to the decomposition given by the Voronoi diagram. In other
words, for τ ⊂ P, the simplex with vertices τ , denoted by [τ ], satisfies

[τ ] ∈ Delω(P)⇔ Vorω(τ) 6= ∅.
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Note that for a constant weight assignment ω(p) = ω0, Delω(P) is the usual Delaunay triangulation
of P. Under mild assumptions on P and ω, Delω(P) is an embedded triangulation with vertex set
P [3]. The proposed reconstruction is based on Delω(P) for some weights ω to be chosen later. As
it is a triangulation of the whole convex hull of P and may fail to recover the geometric structure
of M , we take restrictions of it.

Given a family R = {Rp}p∈P of subsets Rp ⊂ RD indexed by P, the weighted Delaunay complex
restricted to R is the sub-complex of Delω(P) defined by

[τ ] ∈ Delω(P, R)⇔ Vorω(τ) ∩

(⋃
p∈τ

Rp

)
6= ∅.

In particular, we define the Tangential Delaunay Complex Delω(P, T ) by takingR = T = {TpM}p∈P ,
the family of tangent spaces taken at the points of P ⊂ M [3]. Delω(P, T ) is a pruned version of
Delω(P) where only the simplices with directions close to the tangent spaces are kept. Indeed,
TpM being the best linear approximation of M at p, it is very unlikely for a reconstruction of M
to have components in directions normal to TpM - see Figure 2. As pointed out in [3], computing
Delω(P, T ) only requires to compute Delaunay triangulations in the tangent spaces of dimension
d. This reduces the computational complexity dependency on the ambient dimension D > d. The

p

TpM

Figure 2: Construction of Delω(P, T ) at p for ω ≡ 0.

weight assignment ω gives degrees of freedom for the reconstruction. It allows to stabilize the tri-
angulation and enables to remove the so-called inconsistencies, letting the points fixed. For further
details, see e.g. [4, 3].

3.2 Guarantees
The following result sums up the reconstruction properties of the tangential Delaunay complex that
we will use. For more details about it, the reader is referred to [3].

Theorem 8 (Adapted from Theorem 5.3 in [3]). There exists ε0 such that for all ε ≤ ε0 and all
M ∈ MD,d,ρ, if P ⊂ M is an (ε, 2ε)-net, there exists a weight assignment ω∗ = ω∗P,T, depending
on P and T = {TpM}p∈P such that
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• dH (M,Delω∗(P, T )) ≤ Cd,ρε2,

• M and Delω∗(P, T ) are ambient isotopic.

Moreover, a greedy algorithm to compute ω∗ is given in [3].

Given an (ε, 2ε)-net P for ε small enough, Delω∗(P, T ) recovers M up to ambient isotopy and
approximates it at the scale ε2. The order of magnitude ε2 with an input P of scale ε is remarkable.
Another instance of this phenomenon is present in [9] in codimension 1. We will show that this ε2

provides the minimax rate of approximation when dealing with random samples. Therefore, it can
be thought of as optimal.

Theorem 8 suffers two major imperfections. First, it requires the knowledge of the tangent
spaces at each sample point - since ω∗ = ω∗P,T - and no guarantee remains if only approximate
tangent spaces are known. Second, the points are assumed to lie exactly on the manifold M , and
no noise is allowed. The analysis of Delω∗(P, T ) is sophisticated [3]. Rather than redo the whole
study with milder assumptions, we tackle this question with an approximation theory approach
(Theorem 9). Instead of studying if Delω∗(P ′, T ′) is stable when P ′ lies close to M and T ′ close to
T , we examine what Delω∗(P ′, T ′) actually reconstructs, as detailed in Section 4.

3.3 On the Sparsity Assumption
In Theorem 8, P is assumed to be dense enough so that it covers all the areas of M . It is also
supposed to be sparse at the same scale as the density parameter ε. Indeed, arbitrarily accumulated
points would generate non-uniformity and instability for Delω∗(P, T ) [4, 3]. At this stage, an
important remark consists in the fact that the construction of a (ε, 2ε)-net can be carried out
with an ε-dense sample with the following procedure. Given an ε-dense sample P, the farthest
point sampling algorithm prunes P and outputs an (ε, 2ε)-net Q ⊂ P of M as follows. Initialize
at Q = {p1} ⊂ P, and while max

p∈P
d(p,Q) > ε, add to Q the farthest point to Q in P, i.e.

Q ← Q∪ {argmax
p∈P

d(p,Q)}. The output Q is ε-sparse and satisfies dH(P,Q) ≤ ε, so it is a (ε, 2ε)-

net ofM . Therefore, up to the multiplicative constant 2, sparsifying P at scale ε will not deteriorate
its density property. Then, we can run the farthest point sampling algorithm to preprocess the data,
so that the obtained point cloud is a net.

4 Stability Result

4.1 Interpolation Theorem
As mentioned above, if the data do not lie exactly on M and if we do not have the exact knowledge
of the tangent spaces, Theorem 8 does not apply. To bypass this issue, we interpolate the data with
another manifold M ′ satisfying good properties, as stated in the following result.

Theorem 9 (Interpolation). Let M ∈ MD,d,ρ. Let P = {p1, . . . , pq} ⊂ RD be a finite point cloud
and T̃ =

{
T̃1, . . . , T̃q

}
be a family of d-dimensional linear subspaces of RD. For θ ≤ π/64 and

18η < δ ≤ ρ, assume that

• P is δ-sparse: min
i 6=j
‖pj − pi‖ ≥ δ,

8



• the pj’s are η-close to M : max
1≤j≤q

d(pj ,M) ≤ η,

• max
1≤j≤q

∠(Tπ(pj)M, T̃j) ≤ θ.

Then, there exist universal constants c1 ≤ 11, c2 ≤ 252 and a smooth submanifold M ′ ⊂ RD such
that

1. P ⊂M ′,

2. reach
(
M ′
)
≥

ρ ·
(
1− c1

(
η
δ + θ

))2
1 + c1

(
η
δ + θ

)
+ c2

(
η
δ2 + θ

δ

)
ρ
,

3. TpjM ′ = T̃j for all 1 ≤ j ≤ q,

4. dH(M,M ′) ≤ δθ + η,

5. M and M ′ are ambient isotopic.

Tπ(pj)M

pj

M ′

TpjM
′

π(pj)

Figure 3: An instance of the interpolating manifold M ′. Dashed lines correspond to the image of
vertical lines by the ambient diffeomorphism Φ defining M ′ = Φ(M).

Theorem 9 fits a manifold M ′ to noisy points and perturbed tangent spaces with no change of
topology and a controlled reach loss. We will use M ′ as a proxy of M . Indeed, if T̃1, . . . , T̃q are
estimated tangent spaces at the noisy base points p1, . . . , pq, M ′ has the major advantage to be
reconstructed by Delω∗(P, T̃ ) from Theorem 8. Since M ′ is topologically and geometrically close to
M , we conclude that M is reconstructed as well by transitivity. In other words, Theorem 9 allows
to consider a noisy sample with estimated tangent spaces as an exact sample with exact tangent
spaces. M ′ is built pushing and rotating M towards the pj ’s locally along the vector (pj − π(pj)),
as illustrated in Figure 3. Since the construction is quite general and may be applied in various
settings, we provide an outline of the construction.

Let φ(x) = exp
( ‖x‖2
‖x‖2−1

)
1‖x‖2<1. φ is smooth and satisfies φ(0) = 1, ‖φ‖∞ ≤ 1 and d0φ = 0.

For j = 1, . . . , q, it follows easily from the definition of ∠(Tπ(pj)M, T̃j) - e.g. by induction on
the dimension - that there exists a rotation Rj of RD mapping Tπ(pj)M onto T̃j that satisfies
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‖Rj − ID‖op ≤ θ. For ` > 0 to be chosen later, and all a ∈ RD, let us define Φ : RD → RD by

Φ(a) = a+

q∑
j=1

φ

(
a− π(pj)

`

)[
(Rj − ID)(a− π(pj)) + (pj − π(pj))︸ ︷︷ ︸

ψj(a)

]
.

Φ is designed to map π(pj) onto pj with dπ(pj)Φ = Rj . Roughly speaking, in balls of radii ` around
each π(pj), Φ shifts the points in the direction pj − π(pj) and rotates it around π(pj). Off these
balls, Φ is the identity map. To guarantee smoothness, the shifting and the rotation are modulated
by the kernel φ, as ‖a− π(pj)‖ increases. Notice that daψj = (Rj − ID) and ‖ψj(a)‖ ≤ `θ + η

whenever φ
(
a−π(pj)

`

)
6= 0. Defining M ′ = Φ(M), the facts that M ′ fits to P and T̃ and is

Hausdorff-close to M follow by construction. Moreover, Theorem 4.19 of [16] states that the reach
is stable with respect to C2-diffeomorphisms of the ambient space. The estimate on reach(M ′) relies
on the following lemma stating differentials estimates on Φ.

Lemma 10. There exist universal constants C1 ≤ 7/2 and C2 ≤ 28 such that if 6η < ` ≤ δ/3 and
θ ≤ π/64, Φ : RD −→ RD is a global C∞-diffeomorphism. In addition, Φ satisfies for all a in RD,

‖daΦ‖op ≤ 1 + C1

(η
`

+ θ
)
,
∥∥daΦ−1

∥∥
op
≤ 1

1− C1

(
η
` + θ

) , ∥∥d2
aΦ
∥∥

op
≤ C2

(
η

`2
+
θ

`

)
.

The ambient isotopy follows easily by considering the weighted version Φ(t)(a) = a+t (Φ(a)− a)
for 0 ≤ t ≤ 1 and the same differential estimates. We then take the maximum possible value ` = δ/3
and M ′ = Φ(M).

Remark 11. Changing slightly the construction of M ′, one can also build it such that the curvature
tensor at each pj corresponds to that of M at π(pj). For this purpose it suffices to take a localizing
function φ identically equal to 1 in a neighborhood of 0. This additional condition would impact the
universal constants appearing in Theorem 9.

4.2 Stability of the Tangential Delaunay Complex
Theorem 9 shows that even in the presence of outliers at distance η fromM , and with the knowledge
of the tangent spaces up to some angle θ, it is still possible to apply Theorem 8 to some virtual
manifoldM ′. Denoting M̃ = Delω∗(P, T̃ ), since dH(M,M̃) ≤ dH(M,M ′)+dH(M ′, M̃) and since the
ambient isotopy relation is transitiveM ∼= M ′ ∼= M̃ , we get the following result as a straightforward
combination of Theorem 8 and Theorem 9.

Theorem 12 (Stability of the Tangential Delaunay Complex). There exists εd,ρ,τ1,τ2 such that for
all ε ≤ εd,ρ,τ1,τ2 and all M ∈ MD,d,ρ, the following holds. Given any finite point cloud P ⊂ RD

and a family T̃ =
{
T̃p

}
p∈P

of d-dimensional linear subspaces of RD such that

• max
p∈P

d(p,M) ≤ τ1ε2,

• max
p∈P

∠(Tπ(p)M, T̃p) ≤ τ2ε,

• P is ε-sparse,

• max
x∈M

d(x,P) ≤ 2ε,
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then,

• dH

(
M,Delω∗(P, T̃ )

)
≤
(
Cd,ρ′ρ,τ1,τ2 + τ1 + τ2

)
ε2,

• M and Delω∗(P, T̃ ) are ambient isotopic.

Indeed, applying the reconstruction algorithm of Theorem 8 even in the presence of noise and
uncertainty on the tangent spaces actually recovers the manifold M ′ built in Theorem 9. M ′

is isotopic to M and the quality of the approximation of M is at most impacted by the term
dH(M,M ′) ≤ (τ1 + τ2)ε2. The control on reach(M ′) from below is crucial, as constants appearing
in Theorem 8 are not bounded for arbitrarily small reach ρ′. It is worth noting that no extra
analysis of the tangential Delaunay complex was needed to derive its stability. The argument is
global, constructive, and may be applied to other reconstruction methods taking tangent spaces as
input.

5 Tangent Space Estimation and Denoising Procedure

5.1 Noise-Free Case
We now focus on the estimation of tangent spaces in the model without outliers, namely Q ∈
GD,d,fmin,fmax,ρ. The proposed method is similar to that of [2]. A point p ∈ M being fixed, TpM
is the best local d-dimensional linear approximation of M at p. Performing a Local Principal
Component Analysis (PCA) in a neighborhood of p would recover the main directions spanned by
M at p, and therefore yield a good approximation of TpM . For j = 1, . . . , n and h > 0 to be chosen
later, define the local covariance matrix at Xj by

Σ̂j =
1

Nj

∑
i 6=j

(
Xi − X̄j

) (
Xi − X̄j

)t
1B(Xj ,h)(Xi),

where Nj = |B(Xj , h) ∩ Xn| is the number of sample points contained in B(Xj , h), and X̄j =
1
Nj

∑
i 6=j Xi1B(Xj ,h)(Xi) is their barycenter. Set T̂j to be the linear space spanned by the d eigen-

vectors associated with the d largest eigenvalues of Σ̂j . Computing a basis of T̂j can be performed
naively using a singular value decomposition of the full matrix Σ̂j , although fast PCA algorithms
[25] may lessen the computational dependence on the ambient dimension.

Proposition 13. Set h =
(
cd,fmin,fmax

logn
n−1

)1/d

. Then, for all Q ∈ GD,d,fmin,fmax,ρ, and n large
enough, we have

max
1≤j≤n

∠(TXjM, T̂j) ≤ Cd,fmin,fmax
h

ρ
,

with probability larger than 1−
(

1
n

) 2
d .

Furthermore, it is shown in [6] that for cd,fmin,fmax large enough, Xn is cd,fmin,fmaxh-dense in
M with probability larger than 1−

(
1
n

)2/d. Since Xn may not be sparse at the scale cd,fmin,fmaxh,
and for the stability reasons described Section 3, we sparsify it with the farthest point sampling
algorithm (Section 3.3) with scale parameter ε = cd,fmin,fmaxh. Let Yn denote the output of the
algorithm.

11



Corollary 14. With the above notation, for n large enough, with probability at least 1− 2
(

1
n

)2/d,
• max
Xj∈Yn

∠(TXjM, T̂j) ≤ Cd,fmin,fmax ερ ,

• Yn is ε-sparse,

• max
x∈M

d(x,Yn) ≤ 2ε.

In other words, the previous result shows that Yn satisfies the assumptions of Theorem 12. As a
consequence, taking the notation T̂Yn =

{
T̂j

}
Xj∈Yn

, we define M̂TDC to be the tangential Delaunay

complex computed on Yn and the collection of estimated tangent spaces T̂Yn .

Definition 15. With the notation above, define M̂TDC = Delω∗
(
Yn, T̂Yn

)
.

Combining Theorem 12 and Corollary 14, it is clear that M̂TDC satisfies Theorem 6.

5.2 Clutter Noise Case
We now address the denoising problem, following ideas from [18]. To distinguish whether Xj is
an outlier or belongs to M , we notice again that points drawn from M approximately lie on a
low dimensional structure. On the other hand, the neighborhood points of an outlier drawn far
away from M should typically be distributed in an isotropic way. Let k1, k2, h > 0, x ∈ RD and
T ⊂ RD a d-dimensional linear subspace. The slab at x in the direction T is the set S(x, T ) =
{x}⊕BT (0, k1h)⊕BT⊥

(
0, k2h

2
)
⊂ RD, where ⊕ denotes the Minkovski sum, and BT ,BT⊥ are the

Euclidean balls in T and T⊥ respectively.

M

Xj

h

π(Xj)

T̂j

Tπ(Xj)M

Figure 4: Local PCA at an outlier point Xj ∈ Xn.

Using the notation of Section 2.1, we roughly argue that for all P ∈ OD,d,fmin,fmax,ρ,β , Figure
5 indicates that

P (S(x, Tπ(x)M)) � hd if d(x,M) ≤ h2,
P (S(x, T )) � h2D−d for all T, if d(x,M) > h2,

12



as h goes to 0, for k1 and k2 small enough. Since h2D−d � hd, the measure of the slabs P (S(x, T ))
clearly is discriminative for denoising. The empirical counterpart of the above observation relies on
counting how many sample points lie in the slabs of direction T̂j . For all j = 1, . . . , n define the
empirical slab Sj = S(Xj , T̂j) (see Figure 5) and let |Sj ∩ Xn| denote the number of sample points
it contains.

k1h

k2h
2

Tπ(Xj)M

M

T̂j

π(Xj)

Sj

Xj

Xj′

Sj′

T̂j′

Figure 5: The slab Sj is centered at Xj and has size k1h in the d directions spanned by T̂j , and
size k2h

2 in the D − d directions normal to T̂j .

Proposition 16. In the clutter noise model, fix m > 1, k1 and k2 small enough, and set h =(
cd,fmin,fmax

logn
β(n−1)

) 1
d+1

. Then, for n large enough, with probability larger than 1−8
(

1
n

) 2
d −
(

1
n

)2D,
we have

•
√
h n

log(n) |Sj ∩ Xn| ≥ m if Xj ∈M ,

•
√
h n

log(n) |Sj ∩ Xn| ≤ 1/m if d(Xj ,M) > h2,

• for all Xj such that d(Xj ,M) ≤ h/
√

2, ∠(T̂j , Tπ(Xj)M) ≤ Cd,fmin,fmax,ρh.

This result is twofold. Not only can we distinguish data and outliers within an offset of size
h2 around M , but we also provide a rate of convergence of the estimated tangent spaces for these
points. Filtering the data set Xn by only keeping points Xj such that

√
h n

log(n) |Sj ∩ Xn| ≥ m,
Proposition 16 states that: (i) no data point Xj ∈ M is removed, (ii) any undetected outlier
satisfies d(Xj ,M) < h2, (iii) all the kept points have good estimated tangent spaces. In what
follows, we will denote the filtered point cloud by

Zn =

{
Xj ∈ Xn|

√
h

n

log(n)
|Sj ∩ Xn| ≥ m

}
.

According to Proposition 16, the denoising procedure removes no data point onM with high proba-

bility. In other words, Xn∩M = Zn∩M , and as a consequence, max
x∈M

d(x,Zn) ≤ cd,fmin,β
(

logn
n

)1/d

�
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h with high probability, using the same result of [6] as in the noise-free case. As in the previous
section, Zn is itself pruned to ensure a good density-sparsity ratio using the farthest point sampling
algorithm (Section 3.3), with scale parameter ε = h. Let Y+

n denote the output of the algorithm.

Corollary 17. With the above notation, for n large enough, with probability larger than 1 −
10
(

1
n

)2/d,
• max
Xj∈Y+

n

d(Xj ,M) ≤ ε2,

• max
Xj∈Y+

n

∠(T̂j , Tπ(Xj)M) ≤ Cd,fmin,fmax,ρε,

• Y+
n is ε-sparse,

• max
x∈M

d(x,Y+
n ) ≤ 2ε.

Taking the notation T̂Y+
n

=
{
T̂j

}
Xj∈Y+

n

, we are now able to define the estimator M̂TDC+.

Definition 18. With the notation above, define M̂TDC+ = Delω∗
(
Y+
n , T̂Y+

n

)
.

Combining Theorem 12 and Corollary 17 it is clear that M̂TDC+ satisfies Theorem 7.

6 Conclusion
In this work, we gave results on explicit manifold reconstruction with simplicial complexes. We built
estimators M̂TDC and M̂TDC+ in two statistical models. We proved minimax rates of convergence for
the Hausdorff distance and consistency results for ambient isotopic reconstruction. Since M̂TDC

is minimax optimal and uses the tangential Delaunay complex of [3], the latter is proved to be
optimal. Moreover, rates of [18] are proved to be achievable with simplicial complexes that are
computable using existing algorithms. To prove the stability of the tangential Delaunay complex, a
generic interpolation result was derived. In the process, a tangent space estimation procedure and
a denoising method both based on local PCA were studied.

In the model with outliers, the proposed method does not provably achieve the minimax rate
of convergence (Theorem 7). This sub-optimality comes from a deficiency in the denoising part.

Indeed, we can prove that the procedure detects each outlier point that is at distance
(

logn
n

)2/d

with high probability, but not all of them simultaneously. We wonder whether this is only a artefact
in the proof, or that it is impossible under computational constraints. Extensions of this method
to other models remain to be studied, especially the additive noise model [18] where a challenging
question consists in studying how deconvolution behaves with tangent spaces estimation.

Even though Theorem 9 is applied to manifold estimation, the authors believe it may be applied
in various settings. Beyond its statement, the way that it is used is quite general. When intermediate
objects (here, tangent spaces) are used in a procedure, this kind of proxy method can provide
extensions of existing results to the case where these objects are only approximated.

As local PCA is performed throughout the paper, the knowledge of the bandwidth h is needed
for actual implementation. In practice its choice is a difficult question and adaptive selection of h
remains to be considered.

In the process, we derived rates of convergence for tangent space estimation. The optimality of
the method will be the object of a further paper.
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A Interpolation Theorem
This section is devoted to prove the interpolation results of Section 4.1. For sake of completeness,
let us state a stability result for the reach with respect to C2 diffeomorphisms.

Lemma 19 (Theorem 4.19 in [16]). Let A ⊂ RD with reach(A) ≥ ρ > 0 and Φ : RD −→ RD is
a C1-diffeomorphism such that Φ,Φ−1, and dΦ are Lipschitz with Lipschitz constants K,N and R
respectively, then

reach(Φ(A)) ≥ 1

(Kρ−1 +R)N2
.

Writing φ`(·) = φ(·/`), we recall that ψj(a) = (Rj − ID)(a− π(pj)) + (pj − π(pj)) and

Φ(a) = a+

q∑
j=1

φ` (a− π(pj))ψj(a). (1)

Let us denote b1 = supx ‖dxφ‖, b2 = supx
∥∥d2

xφ
∥∥

op
, and write C1 = 1 + b1, C2 = b2 + 2b1.

Straightforward computation yields C1 ≤ 7/2 and C2 ≤ 28.

Proof of Lemma 10. First notice that the sum appearing in (1) consists of at most one term. Indeed,
since φ ≡ 0 outside B(0, 1), if φ` (a− π(pj)) 6= 0 for some j ∈ {1, . . . , q}, then ‖a− π(pj)‖ ≤ `.
Consequently, for all i 6= j,

‖a− π(pi)‖ ≥ ‖pj − pi‖ − ‖pj − π(pj)‖ − ‖π(pj)− a‖ − ‖π(pi)− pi‖
≥ δ − η − `− η
≥ δ − 2` ≥ `,

where we used that 6η ≤ ` ≤ δ/3. Therefore, φ` (a− π(pi)) = 0 for all i 6= j. In other words, if a
pj actually appears in Φ(a) then the others do not.

Global diffeomorphism: As the sum in (1) is at most composed of one term, chain rule yields

‖daΦ− Id‖op = max
1≤j≤q

‖da [φ` (a− π(pj))ψj(a)]‖op

= max
1≤j≤q

∥∥∥∥∥ψj(a)
dbφ

`

∣∣∣∣
b=

a−π(pj)

`

+ φ` (a− π(pj)) (Rj − ID)

∥∥∥∥∥
op

≤
(
b1 + 1

)
θ + b1

η

`
< 1,

where the last line follows from b1 ≤ 5/2, 6η ≤ ` and θ ≤ π/64.
Therefore, daΦ is invertible for all a ∈ RD, and (daΦ)

−1
=
∑∞
i=0 (ID − daΦ)

i. Φ is a local
diffeomorphism according to the local inverse function theorem. Moreover, ‖Φ(a)‖ → ∞ as ‖a‖ →
∞, so that Φ is a global C∞-diffeomorphism by Hadamard-Cacciopoli theorem [11].

Differentials estimates: (i) First order: From the estimates above,

‖daΦ‖op ≤ ‖ID‖op + ‖daΦ− ID‖op ≤ 1 +
(
b1 + 1

)
θ + b1

η

`
.
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(ii) Inverse: Write for all a ∈ RD,

∥∥dΦ(a)Φ
−1
∥∥

op
=
∥∥(daΦ)−1

∥∥
op

=

∥∥∥∥∥
∞∑
i=0

(ID − daΦ)
i

∥∥∥∥∥
op

≤ 1

1− ‖Id− daΦ‖op

≤ 1

1−
(
b1 + 1

)
θ − b1 η`

,

where the third line holds since ‖daΦ− Id‖op < 1, and ‖·‖op is sub-multiplicative.
(iii) Second order: Again, since the sum (1) includes at most one term,∥∥d2

aΦ
∥∥

op
= max

1≤j≤q

∥∥d2
a [φ` (a− π(pj))ψj(a)]

∥∥
op

≤ max
1≤j≤q

{∥∥d2φ
∥∥

op

`2
‖ψj(a)‖+ 2

‖dφ‖op

`
‖Rj − ID‖op

}

≤ b2
η

`2
+ (b2 + 2b1)

θ

`
.

Proof of Theorem 9. Set ` = δ/3 and M ′ = Φ(M).

• Interpolation: For all j, pj = Φ(π(pj)) ∈M ′ by construction since φ`(0) = 1.

• Tangent spaces: Since dxφl|x=0 = 0, for all j ∈
{

1, . . . , q
}
, daΦ|a=π(pj)

= Rj . Thus,

TpjM
′ = TΦ(π(pj))Φ(M)

= daΦ|a=π(pj)

(
Tπ(pj)M

)
= Rj

(
Tπ(pj)M

)
= Tj ,

by definition of Rj .

• Proximity to M : It follows from the correspondence

‖Φ(a)− a‖ ≤ sup
a∈RD

max
1≤j≤q

φ` (a− π(pj)) ‖ψj(a)‖

≤ `θ + η ≤ δθ + η.

• Isotopy: Consider the continuous family of maps

Φ(t)(a) = a+ t

 q∑
j=1

φ` (a− π(pj))ψj(a)

 ,

for 0 ≤ t ≤ 1. Since Φ(t) − Id = t
(
Φ − Id

)
, the arguments above show that Φ(t) is a

global diffeomorphism of RD for all t ∈ [0, 1]. Moreover Φ(0) = Id, and Φ(1) = Φ. Thus,
M = Φ(0)(M) and M ′ = Φ(1)(M) are ambient isotopic.
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• Reach lower bound: The differentials estimates of order 1 and 2 of Φ translate into estimates
on Lipschitz constants of Φ,Φ−1 and dΦ. Applying Lemma 19 leads to

reach (M ′) ≥
(
1− C1

(
η
` + θ

))2
1 + C1

(
η
` + θ

)
ρ

+ C2

(
η
`2 + θ

`

) = ρ ·
(
1− C1

(
η
` + θ

))2
1 + C1

(
η
` + θ

)
+ C2

(
η
`2 + θ

`

)
ρ
.

The desired lower bound follows by replacing ` by its value δ/3, and setting c1 = 3C1 ≤
21/2 ≤ 11 and c2 = 9C2 ≤ 252.

B Some Geometric Properties Under Reach Condition
In this section we state intermediate results that connect Euclidean an geodesic quantities under
reach condition. We begin with a result connecting reach and principal curvatures.

Proposition 20 (Proposition 2.1 in [13]). For all x ∈M , writing IIx for the second fundamental
form of M at x, for all unitary w ∈ TxM , we have ‖IIx(w,w)‖ ≤ 1/ρ.

For all x ∈M and v ∈ TxM , let us denote by expx(v) the exponential map at x of direction v.
According to the following Proposition, this exponential map turns out to be a diffeomorphism on
balls of radius at most πρ.

Proposition 21 (Corollary 1.4 in [1]). The injectivity radius of M is at least πρ.

Denoting by dM (·, ·) the geodesic distance on M , we are in position to connect geodesic and
Euclidean distance. In what follows, we fix the constant α = 1 + 1

4
√

2
.

Proposition 22. For all x, y ∈M such that ‖x− y‖ ≤ ρ/4,

‖x− y‖ ≤ dM (x, y) ≤ α ‖x− y‖ .

Moreover, writing y = expx(rv) for v ∈ TxM with ‖v‖ = 1 and r ≤ ρ/4,

y = x+ rv +R(r, v)

with ‖R(r, v‖ ≤ r2

2ρ . As a consequence,

‖x− y‖ ≤ dM (x, y) ≤ ‖x− y‖+
α2 ‖x− y‖2

2ρ
.

Proof of Proposition 22. The first statement is a direct consequence of Proposition 6.3 in [24]. Let
us define u(t) = expx(tv) − expx(0) − tv and w(t) = expx(tv) for all 0 ≤ t ≤ r. It is clear that
u(0) = 0 and u′(0) = 0. Moreover, ‖u′′(t)‖ =

∥∥IIw(t) (w′(t), w′(t))
∥∥ ≤ 1/ρ. Therefore, a Taylor

expansion at order two gives ‖R(r, v)‖ = u(r) ≤ r2/(2ρ). Applying the first statement of the
proposition gives r ≤ α ‖x− y‖. Therefore,

‖x− y‖ ≤ dM (x, y) ≤ r ≤ ‖x− y‖+ ‖R(r, v)‖ ≤ ‖x− y‖+
α2 ‖x− y‖2

2ρ
.
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The next proposition gives bounds on the volume form expressed in polar coordinates in a
neighborhood of points of M .

Proposition 23. Let x ∈M be fixed. Denote by J(r, v) the Jacobian of the volume form expressed
in polar coordinates around x, for r ≤ ρ

4 and v a unit vector in TxM . In other words, if y =
expx(rv), dVy = J(r, v)drdv. Then

cdr
d−1 ≤ J(r, v) ≤ Cdrd−1,

where cd = 2−d and Cd = 2d.

Proof of Proposition 23. Denoting Ar,v = drv expx, the Area Formula (see, e.g., Section 3.2.5 in

[17]) gives J(r, v) = rd−1
√

det
(
Atr,vAr,v

)
. Note that from Proposition 2.1 in [13], the sectional

curvatures in M are bounded by |κ| ≤ 2/ρ2. Therefore, the Rauch theorem (see, e.g., Lemma 5 of
[15]) states that (

1− r2

3ρ2

)
‖w‖ ≤ ‖Ar,vw‖ ≤

(
1 +

r2

ρ2

)
‖w‖ ,

for all w ∈ TxM . As a consequence,

2−d ≤
(

1− r2

3ρ2

)d
≤
√

det
(
Atr,vAr,v

)
≤
(

1 +
r2

ρ2

)d
≤ 2d.

We will also need the following result giving an estimate of the size of projections of Euclidean
balls onto M , when the center is close to M .

Proposition 24. Let x ∈ RD be such that d(x,M) = ∆ ≤ h ≤ ρ
8 , and let y denote π(x). Then,

B
(
y,

(
1− α2∆

ρ

)
rh

)
∩M ⊂ B(x, h) ∩M ⊂ B

(
y,

(
1 +

4α2∆

ρ

)
rh

)
∩M,

where r2
h + ∆2 = h2.

Proof of Proposition 24. Let z be in M ∩ B(x, h), and denote by δ the quantity ‖z − y‖. Since
δ ≤ 2h, according to proposition 22, we may write

δ2 = ‖z − x‖2 − ‖y − x‖2 − 2 〈z − y, y − x〉

≤ r2
h +

∆α2

ρ
δ2,

hence δ ≤
(

1 + 4∆α2

ρ

)
rh.

On the other hand, the same inequality ensures that, for any z ∈ B(y, ρ/4) ∩M ,

‖z − x‖2 ≤ δ2 + ∆2 +
α2∆

ρ
δ2.

Hence δ ≤
(

1− α2∆
ρ

)
rh ensures that ‖z − x‖ ≤ h.
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C Some Technical Properties of the Statistical Model
Lemma 25. Let P ∈ UM (fmin, fmax). Then for all p ∈M and r ≤ ρ/4,

P (B(p, r)) ≥ adfminrd.

As a consequence, for n large enough and for all Q ∈ OD,d,fmin,fmax,ρ,β, with probability larger that
1−

(
1
n

)2/d,
dH(M,Xn ∩M) ≤ Cd,fmin,β

(
log n

n

)1/d

.

Proof of Lemma 25. The first statement is a direct corollary of Proposition 23. Denoting a =
adfmin, it corresponds to the (a, d)-standardness condition of [6] for small radii r. For all k =
0, . . . , n, conditionally on the event {|Xn ∩M | = k}, Xn ∩M has the distribution of a k-sample of
P . But from the previous point, P fulfils the (a, d)-standard assumption of [6] for r ≤ ρ/4. Looking
carefully at the proof of Theorem 3.3 in [6] shows that its conclusion still holds for measures
satisfying the (a, d)-standard assumption for small radii only. Therefore, for r ≤ ρ/8,

P (dH(M,Xn ∩M) > r||Xn ∩M | = k) ≤ 4d

ard
exp

(
−k a

2d
rd
)
.

Hence,

P (dH(M,Xn ∩M) > r)

=

n∑
k=0

P (dH(M,Xn ∩M) > r| |Xn ∩M | = k)P(Xn ∩M | = k)

≤
n∑
k=0

4d

ard
exp

(
−k a

2d
rd
)(n

k

)
βk(1− β)n−k

=
4d

ard

[
1− β

(
1− exp

(
− a

2d
rd
))]n

≤ 4d

ard
exp

[
−nβ

(
1− exp

(
− a

2d
rd
))]

≤ 4d

ard
exp

[
−nβ a

2d+1
rd
]
,

whenever r ≤ ρ/8 and ard ≤ 2d. Taking r = Cd,fmin,β

(
logn
n

)1/d

with Cdd,fmin,β
βa

2d+1 ≥ 1 + 2/d

yields the result.

We are now able to prove Lemma 2.

Proof of Lemma 2. For ε ≤ ρ/4, let cvM (ε) be the geodesic covering number of M . cvM (ε) is the
minimal number k of geodesic balls BM (x1, ε) , . . . , BM (xk, ε) of radius ε needed to coverM . Notice
that according to Lemma 25 and Proposition 22,

P (BM (xk, ε)) ≥
fminε

d

cd
.
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Therefore, a packing argument (see Section B.1 of [6]) yields

cvM (ε) ≤ 2dcd
fminεd

.

Now, take p, q ∈ M such that ‖p− q‖ = diam(M). Let γ be a minimal geodesic joining p and q.
Since γ is minimal, it intersects each BM (xk, ε) at most once. Reorder the centers of the balls of the
covering that intersect γ successively: x(1), . . . , x(N). Taking ε = ρ/4 and using triangle inequality,
we may write

diam(M) = ‖p− q‖

≤
∥∥p− x(1)

∥∥+

N−1∑
k=1

∥∥x(k) − x(k+1)

∥∥+
∥∥x(K) − q

∥∥
≤ 2εN ≤ 2εcvM (ε)

≤ 2
ρ

4

2dcd

fmin
(
ρ
4

)d :=
Cd

fminρd−1
.

D Matrix Decomposition and Principal Angles
This section is devoted to show the following proposition linking matrix decomposition and principal
angles between linear spans of main eigenvectors. For symmetric matrices, we let λi(·) denote their
i-th largest eigenvalue and λmin(·) the smallest one.

Proposition 26. Let O ∈ RD×D, B ∈ Rd×d be symmetric matrices such that

O =

(
B 0
0 0

)
+ E,

λmin(B) ≥ 1 − e1 and ‖E‖F ≤ e2. Let T0 (resp. T ) be the vector space spanned by the first d
vectors of the canonical basis, (resp. by the first d eigenvectors of O). If e1 + e2 ≤ 1/2, then
∠ (T0, T ) ≤ 2de2.

The proof of Proposition 26 relies on the application of Wielandt-Hoffmann Theorem, which is
recalled below.

Theorem 27 (Wielandt-Hoffmann, Theorem 8.1.4 in [19]). Let A,E ∈ RD×D be symmetric ma-
trices. Then,

D∑
i=1

(λi(A+ E)− λi(A))
2 ≤ ‖E‖2F .

Proof of Proposition 26. Denoting λi = λi(O) and bi = λi(B), Theorem 27 yields

d∑
i=1

(λi − bi)2 +

D∑
i=d+1

λ2
i ≤ e2

2.
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Let u1, . . . , ud denote the first d eigenvectors of O (that span T ). Moreover, denote by π1 the
orthogonal projection onto T0 and by π2 the orthogonal projection onto its orthogonal complement
T⊥0 . Then O takes the form π̃1 + E, where π̃1 has the same range as π1. Let k be in {1, . . . , d},
then, by definition

(π̃1 + E)uk = λkuk.

Therefore

π2Euk = λkπ2uk.

According to Theorem 27, |λk − bk| ≤ e1, hence λk ≥ 1− e1 − e2. We deduce that

‖π2uk‖ ≤
e2

1− e1 − e2
≤ 2e2.

As a consequence, for all u ∈ T , ‖π2u‖ ≤ 2e2d ‖u‖. Hence,

∠(T0, T ) = max
u∈T

max
v′∈T⊥0

|〈u, v′〉|
‖u‖‖v′‖

≤ 2e2d.

E Local PCA for Tangent Space Estimation
This section is dedicated to the proofs of Section 5. The models with and without are considered
jointly as often as possible. When separate analyses are needed, we refer to the model without
outliers GD,d,fmin,fmax,ρ as "β = 1", and to the one with outliers OD,d,fmin,fmax,ρ,β as "β < 1". ∧
and ∨ denote respectively the minimum and the maximum of real numbers. We recall that

Σ̂j =
1

Nj

∑
i 6=j

(
Xi − X̄j

) (
Xi − X̄j

)t
1B(Xj ,h)(Xi),

X̄j =
1

Nj

∑
i 6=j

Xi1B(Xj ,h)(Xi),

Nj =
∑
i6=j

1B(Xj ,h)(Xi).

When a single point Xj is considered, we set j = 1 without loss of generality. Let U2:n denote(
1B(X1,h)(Xi)

)
i=1,...,n

, and let V2:n denote the vector such that Vi = 1 if Xi is drawn from the
noise distribution. It is immediate that the (Ui, Vi)’s are independent and identically distributed,
with common law (U, V ). With a slight abuse of notation, we will denote by PA (respectively EA)
conditional probabilities and expectations, A being an event or a random variable.

We will restrict our attention to points Xj that are close enough toM so that B(Xj , h)∩M has
enough probability mass. To this aim, we adopt the following notation. Let p(x) denote P (B(x, h)),
and set p(x) = βq(x) + (1− β)q′, where q(x) = Q(B(x, h)), and q′ = (h/K0)D.
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Lemma 28. There exists h0(ρ, β, fmin, fmax) such that, if h ≤ h0, for every x satisfying d(x,M) ≤
h/
√

2, we have

• B(πM (x), h/(2
√

2)) ∩M ⊂ B(x, h) ∩M ⊂ B(πM (x), 2h) ∩M,

• cdfminhd ≤ q(x) ≤ Cdfmaxhd,

• p(x) ≤ 2βq(x).

Proof of Lemma 28. Set h1(ρ) = ρ/8, and let x be such that d(x,M) ≤ h/
√

2, and h ≤ h0. Accord-
ing to Proposition 22 and Proposition 24, then B(πM (x), r−h )∩M ⊂ B(x, h)∩M ⊂ B(πM (x), r+

h )∩M ,
with r+

h = (1 + 4α2∆/ρ)rh ≤ 2rh and r−h = (1− α2∆/ρ)rh ≥ rh/2 ≥ h/(2
√

2).
The two remaining items of Lemma 28 proceed from what follows. According to Proposition

23, if h ≤ h1, then for any x such that d(x,M) ≤ h/
√

2, we have cdfminhd ≤ q(x) ≤ Cdfmaxhd, for
some constants cd and Cd. Applying Proposition 23 again , there exists h2(fmin, d,D, β, ρ) such
that if h ≤ h1 ∧ h0, then for any x such that d(x,M) ≤ h/

√
2 we have q′ ≤ Cd,fmin,ρh, along with

p(x) ≤ 2βq(x). Taking h0 = h1 ∧ h2 leads to the result.

Assume that h ≤ h0. For convenience assume that πMX1 = 0 and that T0M is spanned by the
d first vectors of the canonical basis of RD. Let m1 denote EU=1(X). Then m1 may be decomposed
as m1 = m>1 +m⊥1 , where m>1 denotes the orthogonal projection of m1 onto T0M .

Lemma 29. Assume that d(X1,M) ≤ h/
√

2 and h ≤ h0. Then

‖m⊥1 ‖ ≤ Cd,fmin
h2

ρ if β = 1,

‖m⊥1 ‖ ≤ Cd,fmin,ρh
2 if β < 1.

Proof of Lemma 29.

‖m⊥1 ‖ ≤ EU=1‖X⊥‖

≤ βq(X1)

p(X1)

(αr+
h )2

2ρ
+

(1− β)q′

p(X1)
2h,

according to Proposition 22. The case β = 1 follows straightforwardly. Noting that q′ ≤ Cd,fmin,ρhq(X1)
in the case β < 1 gives the second inequality.

The local covariance matrix may be decomposed as follows.

Σ̂1 =
1

N1

n∑
i=2

(Xi −m1)(Xi −m1)tUi −
(
X̄1 −m1

) (
X̄1 −m1

)t
= Ô1 + R̂1. (2)

The following Lemma gives the shape of the expectation of Ô1.

Lemma 30.

EX1,U2:nÔ1 =

(
A 0
0 0

)
+Q(X1, h),

with
‖Q(X1, h)‖F ≤ Cd

h3

ρ if β = 1,

‖Q(X1, h)‖F ≤ Cd,fmin,ρh
3 if β < 1.
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and
λmin(A) ≥ cd,fmin,fmaxh2.

Proof of Lemma 30. First we note that, conditionnaly on the Ui’s and X1 the Xi’s are independent
for i ≥ 2. Then, according to Proposition 21 combined with Proposition 22 and Proposition 23, we
may write, for h ≤ h0 and y in B(X1, h) ∩M ,

y = rv +R(r, v),

in local polar coordinates. According to Lemma 28, we have B(πM (x), h/(2
√

2)) ∩M ⊂ B(x, h) ∩
M ⊂ B(πM (x), 2h) ∩M . It follows that

EX1,U2:nÔ1

= β

∫
B(X1,h)∩M

(rv +R(r, v)−m1)(rv +R(r, v)−m1)t
f(r, v)J(r, v)

p(X1)
drdv

+
1− β
p(X1)

∫
B(X1,h)

(x−m1)(x−m1)t
dλD(x)

λD(B(0,K0))

= β

∫
B(X1,h)∩M

(rv −m>1 )(rv −m>1 )t
f(r, v)J(r, v)

p(X1)
drdv +Q(X1, h),

where

‖Q(X1, h)‖F ≤ Cd
h3

ρ if β = 1,

‖Q(X1, h)‖F ≤ Cd,fmin,ρh
3 if β < 1.

On the other hand, it is easy to see that

β

∫
B(X1,h)∩M

(rv −m>1 )(rv −m>1 )tJ(r, v)
f(r, v)

p(X1)
drdv =

(
A 0
0 0

)
.

Let u be a unit vector in T0M . Then

〈Au, u〉 = β

∫
B(X1,h)∩M

r2 〈u, rv −m1〉2 J(r, v)
f(r, v)

p(X1)
drdv

≥ β
σd−1fminc

−
vol(d)

p(X1)

∫ r−h

r=0

〈u, rv −m1〉2 rd−1drdv

≥ β
fminc

−
vol(d)σd−1

d(d+ 2)p(X1)
r−h

d+2

≥ cd,fmin
β

p(X1)
hd+2

≥ cd,fmin
q(X1)

hd+2

≥ cd,fmin,fmaxh2.

where p(X1) ≤ 2βq(X1) has been used to derive the fourth inequality.
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Now we bound the deviations of Ô1 from its expectations. For any D ×D matrix A we denote
by A11, A12, A21 and A22 the d× d, (D − d)× d, d× (D − d) and (D − d)× (D − d) submatrices
such that

A =

(
A11 A12

A21 A22

)
For r, s in {1, 2}, denote by Z1,rs the quantity ‖Ô1,rs − EX1,U2:nÔ1,rs‖.

Lemma 31. Suppose that d(X1,M) ≤ h0. Then, for every x > 0, we have

PX1

(
Zr,s ≥

6σr,s√
(n− 1)p(X1)

(1 +
√
x) +

2brsx

(n− 1)p(X1)

)
≤ e−

p(X1)(n−1)
8 + e−x,

with
br,s ≤ 16h2

(
h
2ρ

)r∨s−1

if β = 1

br,s ≤ 4h2 if β < 1,

and
σ2
r,s ≤ b2r,s if β = 1
σ2
r,s ≤ Cd,fmin,ρh

3+r∨s if β < 1.

Proof of Lemma 31. To control the deviations of Ô1 from its expectation, we will make use of the
version of Talagrand’s inequality that can be found in [5], and is recalled below.

Theorem 32 (Talagrand-Bousquet’s inequality). Let Y1, . . . , Yn be independent copies of Y , and
let F be a set of real-valued functions, such that, for all f in F , ‖f‖∞ ≤ b and V ar(f(Y )) ≤ σ2.
Denote by Z the quantity

Z = sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Yi)− E(f(Y ))

∣∣∣∣∣ .
Then, for every x > 0, we have, with probability larger than 1− e−x

Z ≤ E(Z) +

√
2x

(
σ2

n
+

4bE(Z)

n

)
+

2bx

3n
.

Denote by br,s the quantity

br,s =
∥∥∥((X −m1) (X −m1)

t
U
)
rs

∥∥∥
F,∞

We note that, if β = 1,

br,s ≤
(αr+

h )
r+s

(2ρ)r+s−2
≤ 16h2

(
h

2ρ

)r∨s−1

,

according to Proposition 22 and Lemma 28. On the other hand, if β < 1, we only have

br,s ≤ 4h2.

Denote by σ2
r,s the quantity

EU=1‖
(
(X −m1)(X −m1)tr,s

)
‖2.
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Then we get, if β = 1,

σ2
r,s ≤ b2r,s = 256h4

(
h

2ρ

)2(r∨s−1)

.

If β < 1, we may write
σ2
r,s ≤ Cd,fmin,ρh3+r∨s.

Remarking that

Z1,rs = sup
T |‖T‖F≤1

〈
T,

1

N1

n∑
i|Ui=1

(Ars(Xi)− EU=1(Ars(X))

〉
,

with Ar,s(x) =
(
(x−m1)(x−m1)tr,s

)
, and EX1,U2:nZr,s ≤

√
σ2
r,s

N1
, a direct application of Theorem

32 yields

PX1,U2:n

(
Zr,s ≥

3σr,s√
N1

(1 +
√
x) +

2brsx

N1

)
≤ e−x.

According to Bernstein’s inequality, (see, e.g., Proposition 2.9 in [23]), we may write

PX1

(
N1 ≤

(n− 1)p(X1)

4

)
≤ e−

p(X1)(n−1)
8 .

Hence we have

PX1

(
Zr,s ≥

6σr,s√
(n− 1)p(X1)

(1 +
√
x) +

2brsx

(n− 1)p(X1)

)
≤ e−

p(X1)(n−1)
8 + e−x.

Now we turn to the second term in (2). The following Lemma gives a bound on ‖R̂1,rs‖F .

Lemma 33. If d(X1,M) ≤ h0, we have

PX1

(∥∥(X̄1 −m1)>
∥∥
F ≥

6σ>√
(n− 1)p(X1)

(1 +
√
x) +

2b>x
(n− 1)p(X1)

)
≤ e−

p(X1)(n−1)
8 + e−x,

with
b> ≤ 2h,
σ> ≤ 2h.

Moreover

PX1

(∥∥(X̄1 −m1)⊥
∥∥
F ≥

6σ⊥√
(n− 1)p(X1)

(1 +
√
x) +

2b⊥x
(n− 1)p(X1)

)
≤ e−

p(X1)(n−1)
8 + e−x,

with
b⊥ ≤ 4h2

ρ if β = 1,

b⊥ ≤ 2h if β < 1,

and
σ⊥ ≤ b⊥ if β = 1,
σ2,⊥ ≤ Cd,fmin,ρh

3 if β < 1.
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Proof of Lemma 33. Lemma 33 follows from Theorem 32 combined with

PX1

(
N1 ≤

(n− 1)p(X1)

4

)
≤ e−

p(X1)(n−1)
8 ,

as in the proof of Lemma 31.

Assume that β = 1, set x = (1 + 2/d) log(n) in the previous results, and set the bandwidth

h =
(
Kfmin,fmax,d

log(n)
n

) 1
d

, for K large enough so that

PX1(λmin(Σ̂1,1) ≤ cd,fmin,fmaxh2) ≤ 4

(
1

n

)1+ 2
d

,

and

PX1

(
‖Σ̂r,s‖F ≥ cd,fmin,fmaxh2h

ρ

)
≤ 4

(
1

n

)1+ 2
d

,

if r ∨ s = 2. Then, we get

PX1

(
∠(T̂X1M, TX1M) ≥ πdh

ρ

)
≤ 8

(
1

n

)1+ 2
d

.

Since, in the noiseless case, d(X1,M) ≤ h/
√

2 almost surely, we may write, taking expectation with
respect to the law of X1,

P
(
∠(T̂X1M, TX1M) ≥ πdh

ρ

)
≤ 8

(
1

n

)1+ 2
d

.

Then, a union bound yields

P
(

sup
j=1,...,n

∠(T̂XjM, TXjM) ≥ πdh
ρ

)
≤ 8

(
1

n

) 2
d

,

hence Proposition 13 is proved.

F Convergence Rate for the Denoising Procedure
We are now able to prove the efficiency of the denoising procedure, namely Proposition 16.

Proof of Proposition 16. We recall that the slab ST (x) is the set of points y such that ‖πT (y−x)‖ ≤
k1h and ‖πT⊥(y − x)‖ ≤ k2h

2, where πT denotes the orthogonal projection onto T . The following
Lemma ensures that slabs that are centered on points far away from M of at least h2 would catch
only noise distribution, provided that their tangent space is well-approximated.

Lemma 34. Let K > 0 be fixed. There exists constants k1(ρ,K, d,D) and k2(d,D) such that, for
every h ≤ h0 ∧ 1 and x such that d(x,M) ≥ h2, we have

∠
(
Tπ(x)M,T

)
≤ Kh ⇒ ST (x) ∩M = ∅.
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Furthermore, if x and y are in M , then there exists a constant k3 such that

‖x− y‖ ≤ k3h ⇒ y ∈ ST ′(x).

Possible values for k1 and k2 are, respectively, 7ρ
16d ∧

7
32K
√
d
∧1 and 7

18(D−d) . Then k3 may be chosen
as k2

2K ∧
k1
2 ∧
√
ρk1 ∧

√
ρk2.

The proof of Lemma 34, mentioned in [18], follows from elementary geometry, combined with
the definition of the reach and Proposition 22.

According to the results of Section E, choosing h =
(
Cfmin,fmax,d

log(n)
β(n−1)

) 1
d+1

yields, for n large
enough,

P
({
∃j|d(Xj ,M) ≤ h/

√
2 and ∠(T̂XjM, TXjM) ≥ cd,fmin,fmax,ρh

})
≤ 8

(
1

n

) 2
d+1

.

Hence, choosing K = cd,fmin,fmax,ρ in Lemma 34, and k1 = k1(ρ,K, d,D)∧ 1/(2
√

2d), ensures that,
for n large enough,

P
({
∃j|d(Xj ,M) ≥ h2 and ST̂j (Xj) 6= ∅

})
≤ 8

(
1

n

) 2
d+1

,

along with

P
({
∃j|Xj ∈M and B(Xj , k3h) ∩M ( STj (Xj)

})
≤ 8

(
1

n

) 2
d+1

.

It remains to give bounds on the number of points that are falling into the slabs. To this aim, we
use the same Lemma as in [18], stated below.

Lemma 35 (Lemma 7 in [18]). Let A denote the set of hyperrectangles in RD. Then, with probability
larger than 1−

(
1
n

)2D, for every A in A, we havePn(A) ≤ P (A) + 16D log(2n)
n +

√
16D log(2n)

n

√
P (A)

Pn(A) ≥ P (A)−
√

16D log(2n)
n

√
P (A).

If ST (x) ∩M = ∅, then P (ST (x)) ≤
(
h
K0

)d+1

. On the other hand, if B(x, k3h) ∩M ⊂ ST (x),

then P (ST (x)) ≥ Cfmin,fmax,dκd3
log(n−1)
(n−1)h . Applying Lemma 35, we derive that, for any fixed m > 1

and for n large enough

P
({

d(Xj ,M) ≥ h2 and
√
h

n

log(n)
Pn(ST̂j (Xj)) ≥ 1/m

})
≤ 8

(
1

n

) 2
d+1

+

(
1

n

)2D

,

and

P
({

Xj ∈M and
√
h

n

log(n)
Pn(ST̂j (Xj)) ≤ m

})
≤ 8

(
1

n

) 2
d+1

+

(
1

n

)2D

.

Hence the result of Proposition 16.
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G Proof of the Main Reconstruction Results
We now prove main results Theorem 6 in the noise-free model, and Theorem 7 in the clutter noise
model.

G.1 Noise-Free Case

Proof of Corollary 14. Let Q ∈ GD,d,fmin,fmax,ρ. Write ε = cd,fmin,fmax

(
logn
n−1

)1/d

. Consider the
event A defined by

A =

{
max
Xj∈Yn

∠(TXjM, T̂j) ≤ Cd,fmin,fmax
ε

ρ

}
∩ {dH(M,Yn) ≤ 2ε} ∩ {Yn is ε-sparse} .

The construction of Yn from the farthest point sampling algorithm and a straightforward combi-
nation of Proposition 13 and Lemma 25 yields, for n large enough,

PQ (Ac) ≤ 2

(
log n

n

)1/d

.

Proof of Theorem 6. Following the above notation, we observe that on the event A, Theorem 12
holds with parameters τ1 = 0 and τ2 = Cd,fmin,fmax/ρ, so that the first part of Theorem 6 is proved.
Furthermore, for n large enough,

EQ
[
dH

(
M,M̂TDC

)]
≤ EQ

[
dH

(
M,M̂TDC

)
1A

]
+ EQ

[
dH

(
M,M̂TDC

)
1Ac

]
≤ (Cd,ρ′ρ,τ1,τ2 + τ2)ε2 + diam(M)PQ(Ac)

≤ C ′d,fmin,fmax,ρε
2,

where for the last line we used the diameter bound of Proposition 2.

G.2 Clutter Noise Case

Proof of Corollary 17. Let P ∈ OD,d,fmin,fmax,ρ,β . For n large enough, let us denote ε = cd,fmin,fmax,ρ

(
logn
βn

)1/(d+1)

.
Consider the event

A+ =

{
max
Xj∈Y+

n

∠(Tπ(Xj)M, T̂j) ≤ Cd,fmin,fmax,ρε

}
∩

{
max
Xj∈Y+

n

d(Xj ,M) ≤ ε2

}
∩
{

dH(M,Y+
n ) ≤ 2ε

}
∩
{
Y+
n is ε-sparse

}
.

From Lemma 25, Proposition 16 and the construction of Y+
n with the farthest point sampling

algorithm, it is clear that for n large enough,

PP (A+c) ≤ 8

(
1

n

)2/d

+

(
1

n

)2D

+

(
1

n

)2/d

≤ 10

(
1

n

)2/d

.
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Proof of Theorem 7. Following the above notation, we observe that on the event A+, Theorem 12
holds with parameters τ1 = 1 and τ2 = Cd,fmin,fmax,ρ, so that the first part of Theorem 7 is proved.
Furthermore, for n large enough,

EP
[
dH

(
M,M̂TDC+

)]
≤ EP

[
dH

(
M, M̂TDC+

)
1A+

]
+ EP

[
dH

(
M,M̂TDC+

)
1A+c

]
≤ (Cd,ρ′ρ,τ1,τ2

+ τ1 + τ2)ε2 + 2K0PP (A+c)

≤ C ′d,fmin,fmax,ρ,βε
2,

where for the second line we used Theorem 12 and the fact that M ∪ M̂TDC+ ⊂ B0, a ball of radius
K0.
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