
HAL Id: hal-01245457
https://hal.science/hal-01245457

Submitted on 17 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Unified mathematical framework for a compact and fully
parallel n-D skeletonization procedure

Antoine Manzanera, Thierry Bernard, Françoise Prêteux, Bernard Longuet

To cite this version:
Antoine Manzanera, Thierry Bernard, Françoise Prêteux, Bernard Longuet. Unified mathematical
framework for a compact and fully parallel n-D skeletonization procedure. Vision Geometry, Jul 1999,
Denver, United States. �10.1117/12.364113�. �hal-01245457�

https://hal.science/hal-01245457
https://hal.archives-ouvertes.fr


A uni�ed mathematial framework for a ompat and fully

parallel n-D skeletonization proedure

Antoine Manzanera

ad

, Thierry M. Bernard

b

, Fran�oise Prêteux



, and Bernard Longuet

a

a

A�erospatiale E/SCS/V , 2 Rue B�eranger, 92320 Chatillon Cedex, Frane

b

ENSTA/LEI, 32 Bd Vitor, 75015 Paris, Frane



ARTEMIS Projet Unit, INT, 9 Rue Charles Fourier, 91011 Evry Cedex, Frane

d

DCE/ETC4/CTA/GIP, 16bis Avenue Prieur de la Côte d'Or, 94114 Arueil Cedex, Frane

ABSTRACT

We present in this paper a generi algorithm to ompute the skeleton of an n-dimensional binary objet. Considering

the artesian hyperubi grid, we provide a mathematial framework in whih are given the expliit Boolean onditions

under whih the iterative thinning proedure removes a point. This algorithm preserves the topology in a sense whih

mathes the properties usually used in 2D and 3D. Furthermore, it is based on an original kind of median hypersurfae

that gives to the skeleton good behavior with respet to both shape preservation and noise sensitivity. The algorithm

is fully parallel, as no spatial subiterations are needed. The latter property, together with the symmetry of the boolean

n-dimensional patterns leads to a perfetly isotropi skeleton. The logial expression of the algorithm is extremely

onise, and in 2D, a large omparative study shows that the overall number of elementary Boolean operations

needed to get the skeleton is smaller than for the other iterative algorithms reported in the literature.

Keywords: Skeleton, Fully Parallel Algorithm, n-dimensional, Disrete Topology, Boolean Complexity

1. INTRODUCTION

Representing a shape with a small amount of information is a major hallenge in omputer vision. Skeletonization

is one of the approahes to this purpose. It arises from the idea that a shape is faithfully represented if its topology

(onneted omponents, holes...), as well as its geometry (elongated parts, rami�ations...) and loation are preserved.

The interest in skeleta for digital images is motivated by the usefulness of this representation as a preproessing step

in pattern reognition algorithms. A large number of papers has been published in the subjet, for 2D images for

several deades, and for 3D images a little more reently. Skeletonization in nD seems to be a more exoti issue, but

it is of some interest in robotis, where it provides the safest trajetories in a multi-parameter spae. The skeleton is

usually obtained through an iterative proedure alled thinning : the border points are removed as long as they are

not judged signi�ant for the features stated above, until no more point an be deleted. The remaining shape is then

alled skeleton. We believe that the available knowledge about digital skeleta su�ers two important problems. Firstly,

the haraterizations that are given in 2D are diÆult to adapt to 3D, whih shows the need for unifying onepts.

Seondly, these haraterizations are ompliated, and in partiular in 3D, never easy to implement. We propose

in the present paper a new thinning algorithm, alled MB, whih is de�ned in the hyperubi grid, independently

of the dimension. Indeed, the onditions under whih a point is removed are de�ned by means of one removing

ondition (Funtion Alpha) and one remaining ondition (Funtion Beta), that are haraterized in an adimensional

way. Getting the Boolean haraterization of the thinning proess in any dimension is then straightforward, and we

provide the orresponding pattern mathing form for dimensions 1 to 3. Under this form, our proedure lends itself

easily to omparison, and its ompatness an then be appreiated. Indeed, in 2D, the overall number of elementary

Boolean operations needed to ompute the skeleton has proved, through a large study, to be lower than for all

other thinning algorithm we know of. In 3D, suh a study is still to be done, but the oniseness of the Boolean

de�nition, that makes it straightforward to implement, yet shows up. This paper is organised as follows. Setion 2
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provides the little theoretial bakground that is used in the other setions. We next present our thinning algorithm,

illustrating with some results. In Setion 4 we present the properties of the MB algorithm, in the following order:

(1) Isotropy and full parallelism (2) Topology preservation (3) Median hypersurfae preservation (4) Noise sensitivity

and reonstrutibility (5) Computational speed.

2. PRELIMINARIES

2.1. The hyperubi grid.

Let Z be the set of integers, N the set of natural integers, R the set of real numbers. Let P(A) be the olletion of

all subsets of A, P

�

(A) = P(A) n ;. Let n 2 N , Z

n

is the n-dimensional disrete spae. The ubi grid is de�ned by

the immersion of Z

n

in the aÆne spae attahed to R

n

by means of the following appliation:

� : Z

n

�! P(R

n

)

z 7�! �(z) =

n

Y

i=1

[z

i

�

1

2

; z

i

+

1

2

℄

Thus a point z of the disrete spae is identi�ed to an hyperube of the quanti�ed aÆne spae, i.e. to the artesian

produt of the losed segments entered around z, z

i

being the i-th oordinate of z in the anoni basis.

2.2. Disrete hyberubi topologies.

Let 	 be the funtion de�ned on P

�

(R

n

) by 	(P ) = V suh that V is the linear manifold generated by P . Then n

kinds of adjaeny relations (and then topologies as well) an be de�ned on the hyperubi mesh, as follows:

De�nition Let z and z

0

be two points of Z

n

suh that �(z) \ �(z

0

) 6= ;.

then z and z

0

are k-adjaent (0 � k � n) if and only if:

dim(	(�(z) \ �(z

0

)) = k (1)

De�nition Let z and z

0

be two points of Z

n

. z and z

0

are k-neighbors if there exists j; k � j � n, suh that z and

z

0

are j-adjaent.

The adjaeny of two points orresponds then to a non-empty intersetion of two hyperubes, and the level of

adjaeny, to the dimension of the manifold generated by the intersetion. Please note the di�erene with the notion

of neighbor, whih mathes the de�nitions usually given in the literature. An example in 2D is provided on Figure 1.

x

z y

Figure 1. Connetivity relations in dimension 2: x and y are 1-adjaent (and not 0-adjaent). x and z are 0-adjaent.

x and y are 1-neighbors, therefore 0-neighbors.

Let a binary image I be a subset of Z

n

.

De�nition Interior points of a binary image: I � Z

n

. z 2 I , z is a k-interior point of I if and only if: 8z

0

; z and

z

0

are k-neighbors ) z

0

2 I .

Counting the k-neighbors: Considering the origin O of Z

n

, a point is k-adjaent to O if and only if it has n � k

oordinates in the set f�1;+1g, and the others equal to 0. Thus a point has A(n; k) k-adjaent points, with:

A(n; k) = 2

n�k

C

n�k

n

(2)



and then V (n; k) neighbors (itself exluded), with:

V (n; k) =

n�1

X

i=k

A(n; i) (3)

Table 1 gives the V (n; k) numbers for n smaller than 4. For k = 0, we meet of ourse the overall number of neighbors

in dimension n:

W

n

= V (n; 0) =

n�1

X

i=0

2

n�i

C

n�i

n

= 3

n

� 1 (4)

We present these numbers to point out the fat that, in the literature, the terms that are usually employed are

Table 1. Numbers of k-neighbors in nD, for n � 4.

k n n 1 2 3 4

3 - - - 8

2 - - 6 32

1 - 4 18 64

0 2 8 26 80

V (n; k)-onnetivity, V (n; k)-neighbors, et. Nevertheless, in this paper, with intent to meet both homogeneity and

onision, we will always use the single k- pre�x.

2.3. Disrete distanes and median hypersurfaes

Let Æ

n

k

denote the distane indued by the k-th topology in dimension n. (or Æ

k

when there is no ambiguity regarding

the dimension). Let X � Z

n

. Let X



denote Z

n

nX , the bakground of X .

De�nition The distane map assoiated with X and relative to Æ

k

is the funtion that assoiates Æ

k

(x;X



) to every

x in Z

n

.

De�nition Let r 2 N . Let x 2 Z

n

. Let B

k

(x; r) = fy 2 Z

n

; Æ

k

(x; y) � rg be the ball of entre x and radius r. Let

X � Z

n

. B

k

(x; r) is a maximal ball of X if and only if:

8y 2 X;8q 2 N;B

k

(y; q) � X ) B

k

(x; r) 6� B

k

(y; q) (5)

De�nition Let S

k

(X) denote the olletion of all the entres of maximal balls of the distane Æ

k

. S

k

(X) is alled

the median hypersurfae assoiated with distane Æ

k

.

This notion has been the only sheer de�nition of the skeleton.

1

But it does not math the modern notion of skeleton,

sine, in the general ase, X and S

k

(X) do not have the same topology.

Property Let x 2 X . x belongs to S

k

(X) if and only if for every y k-neighbor of x, Æ

k

(y;X



) � Æ

k

(x;X



).

In other words, the olletion of the entres of maximal balls is equal to the set of loal maxima of the orresponding

distane map.

The interest of these notions is to formalize the need to represent the geometry and the loation of the shape. Indeed,

we will guarantee that the skeleton lies right \at the middle" of the shape for some distane if it ontains the median

hypersurfae for this distane.

3. THINNING PROCEDURE

Our thinning proedure is de�ned by means of two binary funtions of the disrete spae: funtion Alpha and funtion

Beta. These two funtions are respetively de�ned in Table 2 and in Table 3. The omplete algorithm is given in

Table 4.

To express informally the de�nition given in Table 2, a point z of I suh that �(z) = 1 must be k-adjaent to a

(n�1)-interior point. If this ondition holds, these two points have a non-empty intersetion, that generates a linear

manifold of dimension k. Let us now onsider the image of this manifold by the symmetry of entre z. It is a parallel

linear manifold of dimension k, equal to the intersetion of n� k aÆne hyperplanes. Then �(z) = 1 if all the points



Table 2. Funtion Alpha.

Let I � Z

n

. Funtion � : I �! f0; 1g is de�ned as follows:

Let z 2 I . if there exists k; 0 � k � n� 1, suh that:

(1) 9z

0

(n� 1)-interior point, z and z

0

are k-adjaent

(2) ft, t (n� 1)-adjaent to z and

\

t

	(�(z) \ �(t)) = S

z

(	(�(z) \ �(z

0

)))g � I



.

where S

z

denotes the symmetry of entre z.

then �(z) = 1.

else �(z) = 0.

Table 3. Funtion Beta.

Let I � Z

n

. Funtion � : I �! f0; 1g is de�ned as follows:

Let z 2 I . if there exists k; 0 � k � n� 2, suh that:

There exist two ouples of k-adjaent points (a; b) and (; d) suh that

a; b; ; d are all k-neighbors of z, and suh that the two following onditions hold:

(1) �(a) \ �(b) = �() \ �(d)

(2) fa; bg � I and f; dg � I



then �(z) = 1.

else �(z) = 0.

(n� 1)-adjaents to z and whose intersetion with z generates one of those hyperplanes belong to the bakground of

I .

To express informally the de�nition given in Table 3, a point z of I suh that �(z) = 1 must ontain in its k-

neighborhood two ouples of k-adjaent points that have the same intersetion, and suh that one ouple belong to

the image, and the other to the bakground.

Figure 2 displays in a table the patterns mathed by the funtions Alpha and Beta, for dimensions from 1 to 3: in

Table 4. The MB algorithm.

Repeat for all points z 2 Z

n

within a parallel framework, until onvergene:

if �(z) = 1 and �(z) = 0, remove z.

dimension n, a point is removed if: (1) it mathes one of the pattern �

i

(or one of the �=2 rotated version around

one of the axis). Here the gray points belong to the image, the white ones to the bakground, the blak point is the

origin of the pattern. (2) it does not ontain any pattern �

i

within its i-neighborhood.

Some results of the MB algorithm are displayed in 2D on Figure 3, and in 3D on Figure 4. They illustrate the

properties and behavior of our thinning proedure, that we develop in the following setion.

4. PROPERTIES AND BEHAVIOR

4.1. Isotropy and full parallelism

In the hyperubi grid, isotropy means that all the diretions represented by the n axis must be treated the same way,

as well as the two diretions on every axis. Isotropy is one of the fundamental onstraints on whih our algorithm is

built. A natural outome of this onstraint is the presene of two-pixels thik surfaes in the skeleta, as it an be seen

on Figures 3 and 4. In the de�nitions of the two Boolean funtions, no diretion get a speial treatment. This property

appears learly on the pattern mathing form of the proedure, as all the patterns are ompletely symmetrial. With

this property, isotropy in the sense we have just de�ned is guaranteed, as long as all the iterations have exatly
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Figure 2. MB patterns in dimension 1 to 3.

the same ation. This is an important property of the MB-algorithm: the proedure is fully parallel, whih means

that all the iterations at exatly the same, removing points in the 2n ardinal diretions at the same time. The

onsequene is that the number of iterations before onvergene equals the radius of the biggest ball orresponding

to the strongest adjaeny relation. As we are going to see in the following subsetion, removing points within a

parallel framework in all diretions while preserving the topology is not trivial, as no Boolean haraterization of the

points to remove is available, unlike in the ase of a sequential framework.

4.2. Topology preservation

To remove points from an objet without hanging its topology means that we aim at preserving the onnetivity

relations that exist in the objet and in its bakground. We annot disonnet a onneted omponent, and we

annot reate or delete a \hole". Now in a disrete topology, speial are must be taken to deal with these notions.

For instane, a onneted omponent of the bakground may run aross a piee of surfae of the objet only if

there is a hole in it ! To keep this \natural" property meaningful, however, it is neessary to hoose two di�erent

onnetivity levels for the objet and its bakground. In this paper we always onsider 0-onnetivity for the objet

(two hyperubes of the objet are neighbors as soon as they share a point) and (n�1)-onnetivity for the bakground

(two hyperubes of the bakground are neighbors only if they share a fae). We use the (0; n� 1)� pre�x to reall

the hoie of the topology.

In this setion, we do not intend to prove that the MB-algorithm preserves the topology in n-D, as, to our knowledge,

no haraterization in n-D has been reognized by the disrete topology ommunity. Nevertheless, the formalism

that we use in the following results is ompletely generi as for the dimension, and the results are true for dimensions

2 and 3.

We must �rst give some meaning to \preserving the topology". In the 2D and 3D ontinuous spaes, topology an be

represented by means of the fundamental group, whih is the group of the equivalent lasses of homotopi ars (two

ars are said to be homotopi if there exists a ontinuous funtion mapping one to the other). Then two subsets of

R

2

have the same topology if and only if their fundamental groups are isomorphi; in R

3

this property is no longer

suÆient, as fundamental groups of the bakgrounds must be isomorphi too. In the next dimensions, homotopy

groups of higher orders are neessary to haraterize the topology.

In disrete spaes, the entral notion regarding topology preservation is simpliity. A subset A of a disrete image

X is said to be simple if X and X n A have the same topology. For a point x 2 X , \x is simple" means that fxg

is simple. In 2D and 3D there are expliit haraterizations to deide whether a point is simple or not. A very
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The last line shows the di�erent loal maxima sets, to be de�ned in Setion 4.
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(1) (2)

Figure 4. The results of the MB-3D algorithm: on a simple home-made 3D objet (1) and on a three-dimensional

segmented image of lung (2).

important result is that the deision an be made loally, examining only a �nite neighborhood. We now give the

haraterization, for the (0,n-1)-onnetivity model:

Theorem Let X � Z

n

be a binary image. Let x 2 X . Let X

x

0

denote the set of all the 0-neighbors of x in X , exept

x itself, and X

x

n�2

the set of all the (n-2)-neighbors of x in X



. x is simple in X for the (0,n-1)-onnetivity model

if and only if the two following onditions hold:

� x is 0-neighbor with one single 0-onneted omponent of X

x

0

.

� x is (n-1)-neighbor with one single (n-1)-onneted omponent of X

x

n�2

.

In 2D, this result orrespond to the 0-onnetivity number that has been de�ned by Yokoi,

6

but that had been used

earlier by Hildith.

7

In 3D, it is a result due to Bertrand and Malandain.

8

Thus, with the above theorem, we

propose a uni�ed expression of those two fundamental results.

Unfortunately, a union of simple points is not a simple set, in general, and this is the major diÆulty for designing

parallel thinning algorithms. The �rst problem is to haraterize simple sets. Ronse

9

did it �rst for 2D images, it was

then generalised by Kong

10

for higher-dimensional images. In these papers, it is shown that a set is simple for the

image X if and only if it an be ordered in a sequene of points fx

1

; : : : ; x

n

g suh that for every i in f1; : : : ; ng, x

i

is

individually simple with respet to X n fx

1

; : : : ; x

i�1

g. From this property, Ronse proposed

11

very eÆient suÆient

onditions to prove the soundness of parallel thinning algorithm in 2D. This result has been extended to the 3D ase

by Ma.

12

For this topi also, we may give a uni�ed expression of these results as follows: Let a unit lattie element

of dimension k, 0 � k � n, be a set of 2

k

points of Z

n

suh that every pair of points is a pair of (n� k)-neighbors.

Theorem (Ronse 88, Ma 94)

Let X � Z

n

be a binary image. An algorithm that removes points in parallel from a binary nD shape X preserves

(0,n-1)-onnetivity if the two following onditions are satis�ed:

� Every subset of X that is ontained in a unit lattie element of dimension (n� 1) and that is removed by the

algorithm is simple.

� No onneted omponent of X ontained in a unit lattie element of dimension n an be ompletely removed.

This theorem allows to prove the soundness of a parallel thinning algorithm by heking only a limited number of

on�gurations. In this ontext, the following proposition has been proved for n=2

13

and for n=3

14

:

Proposition

MB preserves the (0; n� 1)-topology.



4.3. Median hypersurfae onservation

In this setion, we are onerned with the non-topologial side of skeletonization, whih is geometry onservation.

Ideally, we ensure that the skeleton lies at the middle of the shape, if the loal maxima of the eulidean distane

belong to the skeleton. This distane is, however, omplex to ompute, and as our former purpose was oniseness,

our hoie was to deal only with the anonial distanes of the hyperubi grid.

Let p � m � n. Let us de�ne the (m; p)-median surfae as follows:

De�nition

S

p

m

(X) = fx 2 X ;8y p� neighbor of x; Æ

m

(y;X



) � Æ

m

(x;X



)g (6)

Note that the (m;m)-median surfae of X orresponds to the lassial S

m

(X) de�ned in Setion 2.3. The behavior

of MB with respet to median surfae preservation is haraterized by the following proposition:

Proposition Let n 2 N . Let X be a well-formed image.

The MB-nD skeleton of X ontains the set S

0

n�1

(X).

This important property is illustrated in 2D on Figure 5 and in 3D on Figure 6. On Figure 5, the upper pitures

show the distane funtions for the two di�erent onnetivity models, where the value is represented by the grey

level. On the entre, the left and the right images show the orresponding loal maxima set, and at the middle, the

original median axis on whih the MB skeleton (bottom, entre) is built. For omparison purposes are also shown

other skeleta on the left and on the right, based on the loal maxima for the 1- and the 0- distane respetively. On

Figure 6, it an be seen as well that di�erent 3D skeleta an be obtained, depending on the median surfae. On

Figure (b), the restrition of the Alpha funtion of the MB thinning algorithm to the �

2

pattern leads to a skeleton

based on the loal maxima of the 2-distane. On Figure (), restriting to patterns �

2

and �

1

leads to a skeleton

based on the (2; 1)�median surfae. Finally, the whole funtion Alpha is applied on Figure (d), and the resulting

skeleton is based on the (2; 0)�median surfae.

We must now tell about the \well-formed images", for whih the skeleton ontains the (n�1; 0)�median surfae.

A well-formed image is an image in whih the points are deleted by the thinning operator in the order of the (n� 1)-

distane funtion. In this ase, if we onsider the patterns �

i

; 0 � i � n�1 of Figure 2, we an see that they an only

remove a point that has in its 0-neighborhood a (n � 1)-interior point, whose (n � 1)�distane to the bakground

is stritly superior and thus the points of S

0

n�1

neessarily belong to the skeleton. It is worth observing that, for

usual images, points are examined aording to the order indued by the distane funtion. Nevertheless, there

are exeptions, like those orresponding to ill-onstruted images. We give an example of suh an image in 2D on

Figure 7(a). These images orrespond to a on�guration that would \protet" a piee of surfae, forbiding a thik

volume to be thinned, as in the shape present in the upper right orner of the image on Figure 3.

Although rigorous proof is still to be provided, it seems that a suÆient ondition for a n-D image to be well-formed

is not to ontain one-pixel holes mathing one of the patterns �

i

. An image X � Z

n

has a one-pixel hole if there

exist x 2 X



and V a linear manifold of dimension k, 2 � k � n suh that x 2 V and 8y; y (n-1)-adjaent to x, y 2 V ,

y 2 X .

Figure 7 shows the orresponding patterns: a 2D image is well-formed if it does not ontain any rotated version of

pattern (b), a 3D image if it does not ontain any rotated version of patterns () or (d), where at least one of the

two square points does not belong to X .

4.4. Noise sensitivity and reonstrutibility

The MB skeleton is based on a speial kind of median surfae, the aim of whih is to treat more symmetrially the

di�erent kinds of distanes in the ubi grid. In partiular, the thinning operator does not distinguish the balls of

the di�erent distanes, produing always one single point for any kind of ball. It also produe one single point for a

family of sets that are bounded (for the inlusion) by two balls of di�erent distanes, and of the same radius. Let

us all these sets Fuzzy balls. We show in Figure 8 some fuzzy balls of radius 7 in 2D, and their skeleton redued to

their entre (superimposed as a white dot). In 2D, it an be proved that a fuzzy ball B (formally de�ned as a set

whose (1,0)-median axis is redued to a point, alled its entre ) is a set that is inluded between a 1-ball and a

0-ball, suh that for all x in B, B ontains the smallest retangle ontaining x and .

The behavior of the MB skeleton with respet to fuzzy balls is the ause of its good properties regarding noise

immunity and �=4 rotation invariane, as an be appreiated on Figure 9, where the results are ompared to other

algorithms, already referened in Figure 3. In return, it only allows partial reonstrution. This fat is illustrated

on Figure 10: the shape is reonstruted from the weighted skeleton (here, the value of the distane funtion on the

skeleton is represented by the gray level). Unlike the left skeleton (a previous algorithm proposed by the authors

5

),
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Figure 5. Di�erent median axis leading to di�erent skeleta in 2D.
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Figure 7. An ill-onstruted image in 2D (a) and the responsible patterns in 2D (b) and 3D (,d)

Figure 8. Some fuzzy balls of radius 7 in 2D, and their skeleton redued to their entre.

that is based on the (1,1)-median axis, and thus allows exat reonstrutibility, the MB-algorithm, represented here

on the right does not. We show here an approximate reonstrution, based on otagons of the orresponding radius.

4.5. Computational speed

Does oneptual oniseness imply omputational speed ? We have argued in earlier work

5

that the most fundamental

way to ompare omputational eÆieny of data parallel algorithm was by the so-alled Shannon measure, i.e. the

overall number of elementary operations per pixel needed to perform the algorithm. The nature of the elementary

Original

Guo & Hall: AFP3

Stewart

MB

Jang & Chin

Manzanera & Bernard

Figure 9. Behavior of the MB algorithm in 2D, with respet to noise.



Figure 10. Exat reonstrution for the skeleton based on the 1-distane balls (left), approximate reonstrution

for the MB-skeleton based on the fuzzy balls (right).

operations depends on the omputer. However, we get a sound general measure by hoosing the most elementary

operation to be omputed in a digital algorithm: the Boolean funtion of two variables. Indeed, for any digital

algorithm, the ost of every elementary Boolean operation is found either at a software level, where it has an e�et

on the omputation time, or at a hardware level, under the form of an equivalent two-entries logi gate, where it has

an e�et on the expense in hardware resoures. The Table 5 displays the Shannon measure of the MB algorithm in

2D and in 3D. In 2D, the measure is ompared to some of the most reent thinning algorithms found in the literature.

Table 5. Comparing the ost of parallel thinning algorithms. r stands for the maximal objet thikness (i.e. the

radius of the biggest (n� 1)�ball ontained in the image). The number of elementary operations given for the other

algorithms is sometimes only an estimation, as the quoted papers did not always provide a logi minimization of

their algorithm.

Algorithm Size of neighborhood Number of elementary

examined operations required

Jang & Chin

2

7 32� r

Cardoner & Thomas

15

7 40� r

Stewart

3

19 64� r

Wu & Tsai

16

11 60� r

Guo & Hall (AFP1)

4

11 73� r

Guo & Hall (AFP2)

4

11 81� r

Guo & Hall (AFP3)

4

11 91� r

Manzanera & Bernard

5

13 18� r

MB-2D 21 28� r

MB-3D 81 148� r

5. CONCLUSION

The MB thinning algorithm is, to our knowledge, the �rst thinning algorithm valid both in 2D and in 3D. Further

researhes in disrete topology for higher dimension meshes will allow to hek its overall validity, sine the expression

in n-D is already available. More generally, we may hope that this work will suggest some researh traks. In

partiular, we have proposed a uni�ed formalism to express the theorems of homotopy in n-D propositions: the

Yokoi/Bertrand andMalandain theorem for the simple point haraterization, the Ronse/Ma theorem for the topology

preservation suÆient onditions. Do these propositions make sense for dimensions higher than 3 ? One of our goals

is to arouse some reations that will bring us the answer. Nevertheless, we think one of the best ahievements of the

MB algorithm is its great simpliity, as the n-D thinning proedure is de�ned through two binary Boolean funtions,



and only (2n�1) Boolean patterns. We have shown in 2D that this simpliity had led to omputational eÆieny, and

we an justi�ably expet the same advantage in 3D. Finally we have haraterized the median hypersurfae on whih

the skeleton is based, and shown that it provided some noise immunity to the skeleton. This median hypersurfae

implies a new kind of shape desriptors: the fuzzy balls, that we have haraterized in 2D. Further works will provide

a more general and rigorous view of this last issue.
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