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Abstrat

We propose in this paper a new 3D fully parallel

thinning algorithm that we believe to be the most on-

ise due to its simple haraterization. The algorithm

is indeed ompletely de�ned by a set of �ve patterns,

three removing onditions and two non-removing on-

ditions. These patterns are designed from the two fun-

damental and ompatible onstraints usually expeted

in skeleta: (1) Topology preservation and (2) Medial

surfae. From these two onstraints, the removing pat-

terns (�

1

, �

2

and �

3

) detet the non-loal maxima,

whereas the non-removing patterns (�

1

and �

2

) pre-

vent any topology hange that the removing onditions

ould imply. We show that the three mentioned on-

straints are respeted. The logial oniseness of our

proedure, alled MB-3D, makes it to our knowledge

the easiest 3D thinning algorithm to implement. Some

results are displayed, that illustrate the relevane of

our approah.

Keywords

3D fully parallel thinning algorithm - Disrete topo-

logy - Conise Boolean expression.

1 Introdution

Skeletonization is a very ommon way to represent

binary shapes with a limited amount of information.

A skeleton that faithfully represents a shape is ex-

peted to (1) be topologially equivalent to that shape

and (2) render its geometry and loation. Skeleta are

usually obtained through an iterative redution ope-

rator alled thinning : ertain types of border points

are iteratively removed until no more points an be

deleted: the remaining image is alled the skeleton.

Thinning algorithms have been an important subjet

of researh for years in 2D, and more reently in 3D.

Lots of e�orts have been done to provide the simplest

haraterization of the non-skeletal points removed by

an elementary thinning iteration. In 3D, the hara-

terizations remain ompliated, with great number of

deleting onditions and exeptions [10℄, [2℄, [6℄, [7℄, or

with speial rules to avoid disonnetion due to paral-

lel removal [5℄.

We present in this paper what we believe to be the

most omputationally eÆient to date Boolean expres-

sion of a fully parallel 3D thinning proess: the non-

skeletal points are entirely haraterized through a set

of three Boolean removing onditions and two Boolean

remaining onditions, every ondition being de�ned by

a simple pattern, whih makes our algorithm straight-

forward to implement. Our algorithm meets two fun-

damental (yet ompatible) onstraints: (1) Topology

preservation (2) presene of the loal maxima. Con-

straint (2) ensures that the skeleton is loated right

at the \middle" of shapes, and renders their most sig-

ni�ant geometrial features. The algorithm, alled

MB-3D, is ompletely de�ned by two small families of

patterns:

� Patterns �

1

, �

2

and �

3

are designed to remove

non loal maxima points for the distane indued

by the 6-topology, within the 26-neighborhood.

� Patterns �

1

and �

2

are designed to avoid dison-

netion of 18- and 26-onneted points respetive-

ly.

For self-ontainedness purposes, the following setion

realls some preliminaries. In Setion 3, we present

our algorithm, giving the Boolean expression and the

visual representation of the patterns. Then we show

that with the two simple pattern families that de�ne

it, the MB-3D algorithm respets the two onstraints

stated above. At the same time, we illustrate the pa-

per with some results and disuss the behavior of the

algorithm.

2 Theoretial bakground

In this setion we set out the mathematial tools

neessary to handle the notions we are dealing with. In

the �rst subsetion, we present the disrete geometry

framework, the ubi grid. Next, we disuss the issue
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Figure 1: Unity sized balls for the three di�erent

topologies in the ubi grid.

of topology preservation, and present the way it has

been addressed for the ubi grid in the litterature.

Finally, we introdue the morphologial operators to

be used for the de�nition of our thinning proedure.

2.1 Disrete topologies in the ubi grid

Let Z

3

be the disrete spae. Let X � Z

3

a (binary)

(three-dimensional) image. Let X



= Z

3

n X denote

the bakground of X . We are working in the ubi

grid, this means that the real spae R

3

is disretized

into Z

3

by means of the ubi quantization: A point

z 2 Z

3

represents an elementary volume whih is the

unit ube entered around z. In this mesh, three dif-

ferent onnetivity relations an be de�ned. Figure 1

shows the di�erent topologies in the ubi grid, as de-

�ned by the unity sized balls. The topology (and the

indued distane) is usually denoted using the number

of neighbors in the orresponding type of onnetivity.

Namely, a point, i.e. a ube in our representation, has

6 (respetively 18, 26) neighbors in the onnetivity

de�ned by B

6

(respetively B

18

, B

26

) whih are the

points it shares a fae (respetively an edge, a vertex)

with. Let x; y be two points of Z

3

. We say that x is

N-adjaent to y (N = 6, 18 or 26) if x is a N -neighbor

of y. Let A;B be two subsets of Z

3

. We say that A

is N-adjaent to B if there exists a 2 A and b 2 B

suh that a is N -adjaent to b. Let X � Z

3

. X is an

N-onneted omponent (N-) of Z

3

if there does not

exist any partition of X into two subsets that are not

N -adjaent. Let X � Z

3

be an image. x 2 X is said

to be N-interior to X if all its N -neighbors belong to

X .

De�nition 1 Let d

N

be the distane indued by the

N-topology. Let X � Z

3

. A ball B is maximal in

X if B � X and there does not exist a ball B

0

suh

that B � B

0

� X. Let S

N

(X) be the olletion of the

entres of maximum balls assoiated with d

N

.

De�nition 2 Let X � Z

3

. The distane funtion

assoiated with d

N

on X is �

N

(x) = d

N

(x;X



).

Property 1 S

N

(X) = fx 2 X ;8y N-adjaent to

x;�

N

(x) � �

N

(y)g: In other words, the olletion of

the entres of maximal balls orresponds to the set of

loal maxima of the distane map.

This formalism aims at giving a sound basis to the

notion of medial surfae. Indeed, we ensure that the

skeleton lies \at the middle" of the shape if we know

that it ontains the loal maxima of the orresponding

distane funtion.

2.2 Topology preservation

The topologial equivalene is a well known prop-

erty. A doughnut is equivalent to a o�ee up be-

ause they have both exatly one \hole of the same

type" (the handle). In 2D and 3D, the topology an

be haraterized by the so-alled fundamental group,

i.e a partition of the urves by the homotopi relation

(two urves are homotopi if there exists a ontinuous

morphing from one to the other).

To get a sound de�nition of suh topologial proper-

ty in our ubi grid, speial are must be taken in

the hoie of the onnetivity. In partiular, an ob-

jet may be rossed by a onneted omponent of the

bakground only if there is a hole through it ! In this

respet, it is usually hosen the strongest onnetivity

for the bakground (i.e. fae sharing), and a weaker

one for the objet itself (i.e. edge or vertex sharing).

The onnetivity model that is used in this paper is

(26,6)-onnetivity, whih means 26-onnetivity for

the image and 6-onnetivity for the bakground.

Our thinning proess works by iterative deletion of

sets of points. The entral notion around the hara-

terization of the deleted points is simpliity. A point

is simple if its deletion does not hange the topology.

As in 2D, the omputation of simpliity an be done

within a �nite neighborhood of the point. The most

onise haraterization is provided by Bertrand and

Malandain in [1℄:

Theorem 1 (Bertrand and Malandain 94)

Let X � Z

3

be a binary image. Let x 2 X. Let X

x

26

denote the set of all the 26-neighbors of x, exept x

itself, that belong to X, and X

x

18

the set of all the 18-

neighbors of x that do not belong to X. x is simple in

X for the (26,6)-onnetivity model if and only if the

two following onditions hold:

� x is 26-adjaent to only one 26- of X

x

26

.

� x is 6-adjaent to only one 6- of X

x

18

.

This haraterization uses onneted omponents

ounting only, as in the 2D ase. It is important to

notie, however, that simpliity is a property whih is

stritly individual with respet to a point of the u-

bi grid. In general, simultaneously removing simple

points from a shape leads to topology hanges. From

this problem arose the notion of simple sets, whih are

sets of points that an be removed from a shape while



preserving the topology. Ronse �rst introdued the

onept in [8℄ for 2D images, onept that was then

generalised by Kong in [3℄ for higher-dimensional im-

ages. In these papers, it is shown that a set is simple

for the image X if and only if it an be ordered in a

sequene of points fx

1

; : : : ; x

n

g suh that for every i

in f1; : : : ; ng, x

i

is individually simple (in the former

sense) with respet to X n fx

1

; : : : ; x

i�1

g. From this

property, Ronse proposed in [9℄ suÆient onditions

that were very eÆient to prove the soundness of par-

allel thinning algorithm in 2D. This result has been

extended to the 3D ase by Ma in [4℄. We now give

Ma's result for the (26,6)-onnetivity. Let a unit lat-

tie square be the set of four orners of a unit square

of the ubi grid, and a unit lattie ube be the set of

eight orners of a unit ube of the ubi grid.

Theorem 2 (Ma 94)

Let X � Z

3

be a binary image. An algorithm that

removes points in parallel from a binary 3D shape X

preserves (26,6)-onnetivity if the two following on-

ditions are satis�ed:

� Every subset of X that is ontained in a unit lat-

tie square and that is removed by the algorithm

is simple.

� No onneted omponent of X ontained in a unit

lattie ube is ompletely removed.

This theorem allows to prove the soundness of a par-

allel thinning algorithm by heking a limited number

of on�gurations.

2.3 Morphologial operators

We de�ne hereunder the morphologial operators

needed to provide the Boolean expression of our thin-

ning proedure.

The morphologial erosion of an image X by a set

B � Z

3

, denoted X 	 B is the set of all points x of

Z

3

suh that the translated set of B by vetor x is

ompletely inluded in X .

The morphologial dilation of an image X by a set

B � Z

3

, denoted X � B is the set of all points x of

Z

3

suh that the intersetion of the translated set of

B by vetor x with X is non-empty.

A pattern of Z

3

is a tuple (H;M) of �nite subsets of

Z

3

suh that H \M = ;.

The Hit-Or-Miss Transform (HMT) of an image X by

a pattern  = (H;M) is the image:

X ~  = (X 	H) \ (X



	M).

We will say that x mathes  every time that x 2

X ~ .

If we denote B

N

the set of all the N -neighbors of the

origin (N = 6, 18 or 26, f. Figure 1), we may also de-

�ne another transformation that we all Hit-Or-Miss

Neighborhood Transform (HMNT) relative to the N -

neighborhood, that we denote X }

N

, and de�ne by:

X }

N

 = (X ~ )� (B

N

	 (H [M))

Note that X }

N

 is a superset of X ~ .

These notions are going to be used in the de�nition of

MB-3D. HMT orresponds to a on�guration that the

neighborhood of a point must exatly math, whereas

HMNT orresponds to a on�guration that must be

ontained in the mentioned neighborhood.

3 The thinning proedure

MB-3D is an iterative parallel thinning algorithm,

where eah iteration deletes from an image X a set

of points denoted mb(X), orresponding to ertain

neighborhood onditions. These onditions are based

on patterns that are shown in Table 1. Every pattern

atually omes with all its �=2 rotated versions around

the three axes Ox, Oy, and Oz.

z 2 mb(X) if and only if:

(1) 9i 2 f1; 2; 3g; z 2 X ~ �

i

(2) z 62 X }

18

�

1

and (3) z 62 X }

26

�

2

Let X

0

= X , X

n+1

= X

n

nmb(X

n

).

The MB-3D skeleton of X is X

1

.

α
1

α
2

α
3 β

1
β

2

Table 1: De�nition of the MB-3D algorithm, based

on 5 lasses of patterns.

The �rst olletion (the �

i

family) is used in HMTs.

Every pattern represents two subsets of Z

3

, The Hit-

set orresponds to the grey ubes, whih are the points

whose value is 1. The Miss-set orresponds to the

transparent ubes, whih are the points whose value

is 0. The dark ube orresponds to the origin. No ori-

entation is given, as every pattern must be onsidered

in all its possible orientations, indeed, the proedure

is ompletely isotropi. Note right away that �

1

, �

2

and �

3

are based on the unity sized ball B

6

of Fi-

gure 1. Thus these patterns naturally lend themselves

to omputationally eÆient desription and manipu-

lation. The seond olletion (the �

i

family) is used in

HMNTs, �

1

is to be deteted in the 18-neighborhood,

�

2

in the 26-neighborhood. Note that no origin is

neessary here, sine both patterns are symmetrial.

To simplify in the following setions we shall say \x

mathes �

1

" (resp. �

2

) every time that x 2 X }

18

�

1

(resp. x 2 X }

26

�

2

).



(1) (2)

Figure 2: Two examples to illustrate the neessity of

patterns �

i

.

The thinning ation learly results from the shape of

the �

i

patterns. We atually believe that the de�ni-

tion of these patterns is a very pure haraterization

of a peeling proess: any point that mathes an �

i

is

adjaent to a 6-interior point, suh that all the faes

opposite to this interior point are on the frontier of

the image. Still the �

i

are a bit greedy: some topolo-

gy hanges would our without the safety provided

by the �

i

patterns. Figure 2 shows why the �

i

are ne-

essary through two examples. The blak points be-

long to the image, the white ones to the bakground.

(1) The square point math pattern �

1

, but its re-

moval would lead to 26-disonnetion: MB-3D will not

remove it sine �

1

is ontained in its 18-neighborhood.

(2) The two square points math pattern �

1

, but their

simultaneous removal would 6-onnet the two white

points, whih is forbidden: MB-3D will not remove

them sine �

2

is ontained in the 26-neighborhood of

the blak square points.

4 Results and behavior

Some results of our thinning algorithm an be seen

on Figure 3. The results of MB-3D are displayed on

the left olumn (Images (1.a) to (4.a)). As expeted,

there are two pixel-thik surfaes. This is a natural

outome of the isotropy onstraint.

In this setion, we establish the soundness of the pro-

edure, �rstly, by proving that the algorithm preserves

the (26,6)-topology, and seondly by showing that, un-

der a ertain ondition whih is expliited, the skele-

ton ontains the maxima of the d

6

distanes within the

26-neighborhood. We next disuss the behavior of the

algorithm as it is applied to some signi�ant shapes.

4.1 Topologial properties

We prove in this setion that the MB-3D algorithm

preserves the (26-6)-topology of the binary shapes. If

x 2 X , we use the two sets X

x

26

and X

x

18

de�ned in

Theorem 1. The proof is based on �ve lemmae. Lem-

mae 1 to 3 deal with the 26-topology preservation of

objets, whereas Lemmae 4 and 5 deal with the 6-

topology preservation of the bakground. Lemma 1

and 4 prove that one iteration of the MB-3D algorith-

m removes only simple points. Lemma 1 and Lemma 2

(1.a)(1)

(2) (2.a)

(3) (3.a)

(4) (4.a)

Figure 3: Some results of the thinning algorithm. The

left olumn ontains the original images. The right

olumn displays the results of MB-3D.

are used to prove Lemma 3. Lemma 4 is used to prove

Lemma 5. Lemmae 3 and 5 prove that any pair of

6-adjaent points removed by MB-3D is a simple set.

Finally, the proof is ompleted in Proposition 1.

Lemma 1 Let x 2 X, between two 6-neighbors a and

b, with a 62 X and b 2 X (f Figure 6). If x is 26-

adjaent to more than one 26- of X

x

26

, then either

x is ontained in pattern �

1

, or x is ontained in the

pattern � represented on Figure 5.

proof

If x is 26-adjaent to more than one 26-

 of X

x

26

, then there must exist a point

y in X

x

26

whih is not 26-adjaent to b. y

annot be a 6-neighbor of x, but it may

be an 18-neighbor, as illustrated by  on

Figure 5:

Pattern �.

Figure 6(1). In that ase, sine  and b are not in the

same 26-, x mathes �

1

. If there is no suh , then

y is only a 26-neighbor of x, as illustrated by d on

Figure 6(2). In that ase, x mathes � 2



Figure 4: Result of MB-3D on a segmented image of

lung.

a

x

bb

x

a d

(2)

c

(1)

Figure 6: Proving Lemma 1.

Corollary 1 Any point removed by one iteration of

the algorithm ful�ls ondition 1 of Theorem 1.

Indeed, any point that mathes pattern �

1

or �

2

is

neessarily between two 6-neighbors, one in X , the

other in the bakground. The same holds for a point

that mathes �

3

, and not �

1

. Then Lemma 1 applies

and, sine pattern � is a partiular ase of pattern �

2

,

the point is 26-adjaent to only one 26- of X

x

26

.

Lemma 2 Let x 2 X. Let Y be a subset of X suh

that Y � mb(X) and Y [ fxg is ontained in a unit

lattie square. Then x 2 (X n Y ) }

26

� implies x 2

X }

26

�

2

.

proof

Let us onsider x 2 (X n Y ) }

26

�. If x 2 X }

26

�,

then x 2 X }

26

�

2

. If not, the situation is that of

Figure 7(1), where Y � fy

1

; y

2

; y

3

g. Note that the

three points represented by squares belong either to

Y or to X



. If y

1

2 X



or y

3

2 X



, then obviously

x 2 X }

26

�

2

. If not, fy

1

; y

3

; zg � X . It follows

that y

2

may math an �

i

only with an interior point

within the ube drawn on Figure 7(1). But for

eah of the seven possibilities, one an easily hek

that this is not possible. Then y

2

62 Y , so y

2

2 X



,

and the four points fx; t; y

2

; zgmake up a �

2

pattern 2

Lemma 3 Let x and y be two 6-neighbors suh that

fx; yg � mb(X). Then x is 26-adjaent to only one

26- of (X n fyg)

x

26

.

y2

y
1

y3

(1)

z

x t

e

(2)

f

c

a

x

b

y

Figure 7: Proving Lemmae 2 and 3.

proof

Under the premises of Lemma 3, it an easily be

heked that whatever the �

i

it mathes, x is al-

ways between two 6-neighbors suh that one belongs

to X n fyg and the other to X



. Now suppose that x

is 26-adjaent to more than one 26- of (X n fyg)

x

26

.

From Lemma 1, x must math one of the two pattern-

s �

1

or � within (X n fyg). But Lemma 2 shows it

annot be � sine x would have mathed �

2

before the

removal of y, in ontradition with x being removed by

MB-3D. So x mathes �

1

within (X n fyg); more pre-

isely, the situation of x is that of Figure 6(1), with

 and b in distint 26-s. Sine x does not math

�

1

within X , y as a removed point, is part of �

1

, as

shown on Figure 7(2). Besides, e and f must both

belong to X



. But then, y ould not have mathed an

�

i

pattern, whih is in ontradition with its removal

by MB-3D 2

Lemma 4 Let x 2 X, between two 6-neighbors a and

b, with a 62 X and b 2 X. If x is 6-adjaent to more

than one 6- of X

x

18

, then x is ontained in pattern

�

1

.

proof

See Figure 8(1). If there exists  62 X suh that a and

 belong to two distint 6-s of X

x

18

, then point d suh

that d 6= x, d 6-adjaent to both a and  must belong

to X . So x mathes pattern �

1

2

Corollary 2 Any point removed by one iteration of

the algorithm ful�ls ondition 2 of Theorem 1.

Lemma 5 Let x and y be two 6-neighbors suh that

fx; yg � mb(X). Then x is 6-adjaent to only one

6- of (X n fyg)

x

18

.

proof

The premises of Lemma 5 (idential to those of Lem-

ma 3), implies that x is between two 6-neighbors suh

that one belongs to X nfyg and the other to X



. Now

suppose that x is 6-adjaent to more than one 6- of

(X n fyg)

x

18

. From Lemma 4, x must math �

1

within



(1) (2)

d

a

x

c b

e a

d

b

x
c

y

Figure 8: Proving Lemmae 4 and 5.

(X n fyg). See Figure 8(2), where a and y belong to

distint 6-s of (X n fyg)

x

18

. If b and  both belong to

X , then y ould not have mathed an �

i

pattern, so b

or  belong to X



. Let us suppose it is b. Sine x is

removed, it does not math pattern �

2

, and so d 2 X



.

Sine x does not math pattern �

1

, e 2 X



also, and

�nally a and y belong to the same 6-. That leads to

a ontradition 2

We may now give the main proposition.

Proposition 1 The MB-3D algorithm preserves the

(26,6) topology.

proof

As mentioned earlier, Lemma 1 and Lemma 4 prove

that one iteration of the MB-3D algorithm removes

only simple points. Now let fx

1

; x

2

g be a pair of 6-

adjaent points, simultaneously removed by MB-3D.

Lemma 3 and Lemma 5 prove that fx

1

; x

2

g is a sim-

ple set. More generally, let Y be a set of points suh

that Y � mb(X) and Y is ontained in a unit lat-

tie square. Let x 2 Y suh that x is not simple in

(X n (Y n fxg)). Then Lemmae 1 and 4, show that x

mathes pattern �

1

or �, but the latter is forbiden by

Lemma 2. Then x mathes �

1

within (X n (Y n fxg)).

Now let us onsider fx

1

; x

2

g � mb(X) a pair of 18-

adjaent, not 6-adjaent points. It is easy to see that

if x

1

62 X }

18

�

1

, then x

1

62 (X n fx

2

g) }

18

�

1

. So

x

1

is simple in (X n fx

2

g), and then fx

1

; x

2

g is a

simple set. Let fx

1

; x

2

; x

3

g � mb(X) be a triplet

of points ontained in a unit lattie square suh that

x

1

and x

2

are 6-adjaent. Then fx

1

; x

2

g is simple,

and it is easy to see that if x

3

62 X }

18

�

1

, then

x

3

62 (X n fx

1

; x

2

g) }

18

�

1

, so fx

1

; x

2

; x

3

g is a simple

set. Let fx

1

; x

2

; x

3

; x

4

g � mb(X) be the four orners

of a unit lattie square. fx

1

; x

2

; x

3

g is a simple set, and

if x

4

62 X}

18

�

1

, then x

4

62 (X nfx

1

; x

2

; x

3

g)}

18

�

1

, so

fx

1

; x

2

; x

3

; x

4

g is a simple set. Thus we have proved

that any set ontained within a unit lattie square is a

simple set. At last, it is obvious that an iteration of the

MB-3D algorithm annot entirely remove a onneted

omponent ontained in a unit lattie ube, sine no

�

i

�ts into this elementary ube. So we have proved

that MB-3D is a parallel redution operator that ful-

�ls onditions (1) and (2) of Theorem 2. Then MB-3D

preserves (26,6)-topology 2

4.2 Non-topologial properties

As we have seen in Setion 2.1, geometry preser-

vation is related to the notion of medial surfae. In

the ubi grid, there exist three anonial distanes,

namely d

6

, d

18

and d

26

, leading to three di�erent loal

maxima sets. A fully parallel thinning algorithm has

to favor the 6-distane, sine a removed point must

be a 6-ontour point (i.e. have a 6-neighbor in the

bakground). Let k = 6, 18 or 26. We de�ne the

(6; k)�medial surfae as the following set:

S

k

6

(X) = fx 2 X ;8y k-adjaent to x;�

6

(x) � �

6

(y)g

Note that the ase k = 6 orresponds to the set

S

6

(X) de�ned in Setion 2.1. In order to get a faithful

shape representation featuring some noise immunity,

the MB-3D algorithm is based on the (6; 26)�medial

surfae, i.e. S

26

6

(X).

We illustrate the seletive ation of the �

i

by apply-

ing the MB-3D to a parallelepiped, �rstly restrited to

pattern �

1

, seondly to the two patterns �

1

and �

2

,

and �nally the omplete algorithm. Results an be

seen on Figure 9. We see that di�erent skeleta are ob-

tained aording to the medial surfae they are built

on. The skeleton (b) (resp. (), (d)) is based on the

medial surfae S

6

(X) (resp. S

18

6

(X), S

26

6

(X)). Thus

the MB algorithm an lead to di�erent skeleta by the

restrition to ertain �

i

patterns. This an be very

useful for the versatile representation of omplex 3D

objets.

As every removed point is adjaen-

t to a 6-interior point, it an be for-

mally shown that the skeleton ontains

the set S

26

6

(X) de�ned above, as long

as the points are examined in the order

indued by the distane funtion. This

is what appends with usual images.

Nevertheless, there are exeptions, or-

Figure 10:

Ill-onstruted

2D image.

responding to ill-onstruted images. These images

are the 3D equivalent of the better known patholog-

(a) (b) (c) (d)

Figure 9: Di�erent hoies of the medial surfae lead-

ing to di�erent skeleta.



(1) (2)

Figure 11: Ill-onstruted patterns.

ial images in 2D, of whih we give an example on

Figure 10. These images orrespond to a on�gura-

tion that would \protet" a piee of surfae, prevent-

ing a thik volume from being thinned. In 3D, an

image is ill-onstruted if it ontains one of the two

patterns shown on Figure 11 (at least one of the two

square points does not belong to X). Note that it

orresponds to one-pixel holes mathing �

1

or �

2

.

The last, but not least, property of MB-3D to be

emphasized on is its omputational eÆieny. Firstly,

the oniseness of the Boolean de�nitions of the pro-

edure leads to a ompat omputational desription,

whih means eÆieny in the omputation of one itera-

tion. Seondly, the full parallelism of the algorithm

implies that the overall number of iterations needed

to ahieve the omputation of the skeleton equals the

radius of the largest 6-ball ontained as many itera-

tions.

5 Conlusion

A new thinning algorithm for 3D digital pitures

has been proposed. We have given in Table 1 its om-

plete expression. Compared to the other algorithms

we know of, MB-3D seems to be the most onise and

then the simplest to implement. Indeed, the points re-

moved by the �

i

patterns are those that are adjaent

to a 6-interior point, and for whih every fae oppo-

site to this interior point is a frontier fae. With this

very short haraterization, the �

i

patterns allow to

obtain the medial surfae through a fully parallel and

isotropi proedure while preserving onnetivity, ex-

ept in a few ases, taken are of by the even simpler

�

i

patterns. Although the de�nition of the thinning

algorithm is muh shorter than all other algorithms

we are aware of, the results prove to be satisfying.
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