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Abstract

Interpolation has been successfully applied in formal methods for model check-
ing and test-case generation for sequential programs. Security protocols, however,
exhibit such idiosyncrasies that make them unsuitable to the direct application of
interpolation. We address this problem and present an interpolation-based method
for security protocol verification. Our method starts from a protocol specification
and combines Craig interpolation, symbolic execution and the standard Dolev-Yao
intruder model to search for possible attacks on the protocol. Interpolants are gen-
erated as a response to search failure in order to prune possible useless traces and
speed up the exploration. We illustrate our method by means of concrete examples
and discuss the results obtained by using a prototype implementation.

1 Introduction
A number of tools (e.g., [2, 4, 8, 9, 10, 15, 17, 21, 30] just to name a few) have been
developed for the analysis of security protocols at design time: starting from a formal
specification of a protocol and of a security property it should achieve, these tools
typically carry out model checking or automated reasoning to either falsify the protocol
(i.e., find an attack with respect to that property) or, when possible, verify it (i.e., prove
that it does indeed guarantee that property, perhaps under some assumptions such as a
bounded number of interleaved protocol sessions [34]). While verification is, of course,
the optimal result, falsification is also extremely useful as one can often employ the
discovered attack trace to directly carry out an attack on the protocol implementation
∗Work partially supported by the FP7-ICT-2009-5 Project no. 257876, “SPaCIoS: Secure Provision and

Consumption in the Internet of Services” and the PRIN 2010-11 project “Security Horizons”. Much of this
work was carried out while Luca Viganò and Marco Volpe were at the Università di Verona, Italy. We thank
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(e.g., [3]) or exploit the trace to devise a suite of test cases so as to be able to analyze
the implementation at run-time (e.g., [5, 6, 11]).

Such an endeavor has already been undertaken in the programming languages com-
munity, where, for instance, interpolation has been successfully applied in formal
methods for model checking and test-case generation for sequential programs, e.g.,
[23, 25], with the aim of reducing the dimensions of the search space. Since a state
space explosion often occurs in security protocol verification, we expect interpolation
to be useful also in this context. Security protocols, however, exhibit such idiosyn-
crasies that make them unsuitable to the direct application of the standard interpolation-
based methods, most notably, the fact that, in the presence of a Dolev-Yao intruder [16],
a security protocol is not a sequential program (since the intruder, who is in complete
control of the network, can freely interleave his actions with the normal protocol exe-
cution).

In this paper, we address this problem and present an interpolation-based method
for security protocol verification. Our method starts from the formal specification of
a protocol and of a security property and combines Craig interpolation [13], symbolic
execution [20] and the standard Dolev-Yao intruder model [16] to search for goals
(representing attacks on the protocol). Interpolation is used to prune possible useless
traces and speed up the exploration. More specifically, our method proceeds as fol-
lows: starting from a specification of the input system, including protocol, property to
be checked and a finite number of session instances (possibly generated automatically
by using a preprocessor), it first creates a corresponding sequential non-deterministic
program, according to a procedure that we have devised, and then defines a set of goals
and searches for them by symbolically executing the program. When a goal is reached,
an attack trace can be extracted from the constraints that the execution of the path has
produced; such constraints represent conditions over parameters that allow one to re-
construct the attack trace found. When the search fails to reach a goal, a backtrack
phase starts, during which the nodes of the graph are annotated (according to an adap-
tation of the algorithm defined in [25] for sequential programs) with formulas obtained
by using Craig interpolation. Such formulas express conditions over the program vari-
ables, which, when implied from the program state of a given execution, ensure that
no goal will be reached by going forward and thus that we can discard the current
branch. The output of the method is a proof of (bounded) correctness in the case when
no goal location can be reached starting from a finite-state specification; otherwise all
the discovered (one or more) attack traces are produced.

In order to show that our method concretely speeds up the validation, we have im-
plemented a Java prototype called SPiM (Security Protocol interpolation Method). We
report here also on some experiments that we have performed: we considered 7 case
studies and compared the analysis of SPiM with and without interpolation, thereby
showing that interpolation does indeed speed up security protocol verification by re-
ducing the search space and the execution time. We also compare the SPiM tool
with the three state-of-the-art model checkers for security protocols that are part of
the AVANTSSAR platform [4], namely, CL-AtSe [36], OFMC [8] and SATMC [1].
This comparison shows, as we expected, that SPiM is not yet as efficient as these
mature tools but that there is considerable room for improvement, e.g., by enhancing
our interpolation-based method with some of the optimization techniques that are inte-
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grated in the other tools.
We proceed as follows. In Section 2, we provide some (fairly standard) back-

ground on security protocol verification, discussing the algebra of protocol messages,
the Dolev-Yao intruder, the two security protocol specification languages ASLan++
and ASLan that we consider in our method (which is however open to the integration
with other protocol specification languages), and the running example (the NSL proto-
col) that we will consider in the rest of the paper. In Section 3, we introduce SiL, the
input language of our SPiM tool, which is a simple imperative programming language
that we use to define the sequential programs to be analyzed by the verification algo-
rithm. We also give the details of the translation procedure from security protocols into
sequential programs, for one and more protocol sessions, and prove the correctness of
the translation (i.e., that it does not introduce nor delete attacks with respect to the input
ASLan++ specification). In Section 4, we present our interpolation algorithm, which
is a slightly simplified version of McMillan’s IntraLA algorithm [25], and show it at
work for our running example. In Section 5, we introduce the SPiM tool and discuss
the experiments we have performed. In Section 6, we discuss further related work (in
addition to the works already considered in the rest of the paper), and we conclude
in Section 7 by summarizing our main results and discussing future work. Additional
details (examples and a proof of one of the lemmas) are given in appendix.

This paper extends and supersedes [33].

2 Background
We provide some (fairly standard) background on security protocol verification.

2.1 Messages
Security protocols describe how agents exchange messages, built using cryptographic
primitives, in order to obtain security guarantees such as confidentiality or authenti-
cation. Protocol specifications are parametric and prescribe a general recipe for com-
munication that can be used by different agents playing in the protocol roles (sender,
receiver, server, etc.). The algebra of messages tells us how messages are constructed.
Following standard practice (e.g., [8, 29]), we consider a countable signature Σ and a
countable set Var of variable symbols disjoint from Σ, and write Σn for the symbols of
Σ with arity n; thus Σ0 is the set of constants, which we assume to have disjoint subsets
that we refer to as agent names (or just agents), public keys, private keys, symmetric
keys and nonces. The variables are, however, untyped (unless denoted otherwise) and
can be instantiated with arbitrary types, yielding an untyped model. We will use upper-
case letters to denote variables (e.g., A,B, . . . for agents, N for nonces, etc.) and lower-
case letters to denote the corresponding constants (concrete agents names, concrete
nonces, etc.). All these may be possibly annotated with subscripts and superscripts.

The symbols of Σ that have arity greater than zero are partitioned into the set Σp
of (public) operations and the set Σm of mappings. The public operations represent
all those operations that every agent (including the intruder) can perform on messages
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they know. In this paper, we consider the following public operations:1

• {M1}M2 represents the asymmetric encryption of M1 with public key M2;

• {M1}inv(M2) represents the asymmetric encryption of M1 with private key inv(M2)
(the mapping inv(·) is discussed below);

• {|M1|}M2 represents the symmetric encryption of M1 with symmetric key M2;

• [M1,M2] (or simply M1,M2 when there is no risk of confusion) represents the
concatenation of M1 and M2.

In contrast to the public operations, the mappings of Σm are those functions that
do not correspond to operations that agents can perform on messages, but that map
between constants. In this paper, we use the following two mappings. First, inv(M)
gives the private key that corresponds to public key M. Second, for long-term key
infrastructures, we assume that every agent A has a public key pk(A) and corresponding
private key inv(pk(A)); thus pk(· · ·) is a mapping from agents to public keys. In the
same way, one may model further long-term key infrastructures, e.g., using sk(A,B) to
denote a shared key of agents A and B.

Since the mappings map from constants to constants, we consider a term like
inv(pk(a)) as atomic as its construction does not involve any operation performed by
an honest agent or the intruder, nor there is a way to “decompose” such a message
into smaller parts. Since we will also deal with terms that contain variables, let us call
atomic all terms that are built from constants in Σ0, variables in Var, and the mappings
of Σm. The set TΣ(Var) of all terms is the closure of the atomic terms under the opera-
tions of Σp. A ground term is a term without variables, and we denote the set of ground
terms with TΣ.

As is often done in security protocol verification, we interpret terms in the free
algebra, i.e., every term is interpreted by itself and thus two terms are equal iff they
are syntactically equal.2 For instance, two constant symbols n1 and n2 immediately
represent different values.

2.2 The Dolev-Yao Intruder
For concreteness and brevity, we consider here the standard Dolev and Yao [16] model
of an active intruder, denoted by i, who controls the network but cannot break cryptog-
raphy, but note that our approach is independent of the actual strength of the intruder
and weaker (or stronger, e.g., being able to attack the cryptography) intruder models
could be considered.

i can intercept messages and analyze them if he possesses the corresponding keys
for decryption, and he can generate messages from his knowledge and send them under

1We could, of course, quite straightforwardly add other operations, e.g., for hash functions, but refrain
from doing so for the sake of brevity.

2Numerous algebras have been considered in security protocol verification, e.g. [12, 28], ranging from
the free algebra to various formalizations of algebraic properties of the cryptographic operators employed.
Here, we focus, for simplicity, on the free algebra, but nothing in our interpolation method would prevent
us from considering a more complex algebra (e.g., for protocols that make use of modular exponentiation or
xor).
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M ∈ IK
M ∈ DY (IK)

Gaxiom
M1 ∈ DY (IK) M2 ∈ DY (IK)

[M1,M2] ∈ DY (IK)
Gpair

M1 ∈ DY (IK) M2 ∈ DY (IK)

{M1}M2 ∈ DY (IK)
Gcrypt

M1 ∈ DY (IK) M2 ∈ DY (IK)

{|M1|}M2 ∈ DY (IK)
Gscrypt

[M1,M2] ∈ DY (IK)

Mi ∈ DY (IK)
Apairi

{|M1|}M2 ∈ DY (IK) M2 ∈ DY (IK)

M1 ∈ DY (IK)
Ascrypt

{M1}M2 ∈ DY (IK) inv(M2) ∈ DY (IK)

M1 ∈ DY (IK)
Acrypt

{M1}inv(M2) ∈ DY (IK) M2 ∈ DY (IK)

M1 ∈ DY (IK)
A−1

crypt

Figure 1: The system NDY of rules of the Dolev-Yao intruder.

any agent name. For a set IK of messages, we define DY (IK) (for “Dolev-Yao” and
“Intruder Knowledge”) to be the smallest set closed under the standard generation (G)
and analysis (A) rules of the system NDY given in Fig. 1. The G rules express that the
intruder can compose messages from known messages using pairing, asymmetric and
symmetric encryption. The A rules describe how the intruder can decompose messages.

2.3 ASLan++ and ASLan
We give here a brief overview of the security protocol specification languages ASLan++ [32]
and ASLan [7], focusing on the aspects relevant to our method. We remark that our
methodology can be easily adapted to work with other protocol specification languages
(which, like ASLan++, typically specify the different protocol roles as interacting pro-
cesses) by providing a translator to the SiL input language as described in Section 3.2.

ASLan++ is a formal and typed security protocol specification language, whose
semantics is defined in terms of the more low-level language ASLan, which we describe
below. An ASLan++ specification consists in a hierarchy of entity declarations, which
are similar to Java classes. The top-level entity is usually called Environment (similar to
the “main” procedure of a program) and it typically contains the definition of a Session
entity, which in turn contains a number of sub-entities (and their instantiations, i.e., new
subentity(<parameters>);) that represent all the parties involved in a protocol. Each

entity of an ASLan++ specification is composed by two main sections: symbols, in
which there is the instantiation of all the variables and constants used in the entity, and
body, in which the behavior of the entity is described (e.g., message exchange). Inside
the body of an entity we use three different types of statements: assignment, message
send and message receive. The only type of assignment that we use here is of the
form Var:=fresh(), which assigns to the variable Var a new constant of the proper type.
A message send statement, Snd -> Rcv: M, is composed by two variables Snd and Rcv

representing sender and receiver, respectively, and a message M exchanged between the
two parties. In message receive, Snd and Rcv are swapped and usually, in order to assign
a value to the variable M, a ? precedes the message M, i.e., Snd -> Rcv: ?M. However,
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in ASLan++, the Actor keyword refers to the entity itself (similar to “this” or “self” in
object-oriented languages) and thus we actually write the send and receive statements
as Actor -> Rcv: M and Snd -> Actor: ?M, respectively.

Finally, we describe here two kinds of protocol goals in ASLan++. A channel
goal, label(_): Snd <chn> Rcv;, defines a property <chn> that holds on all (the “_” is a
wildcard) the exchanged messages labeled with label between the two entities Snd and
Rcv. For example, we use authentication goals defined as auth_goal(_): Snd *-> Rcv;

where *-> defines sender authenticity. A secrecy goal is defined with label(_): {Snd,

Rcv}, which states that each message labeled with label can only be shared between
the two entities Snd and Rcv.

As discussed in [4], an ASLan++ specification can be automatically translated into
a more low-level ASLan specification, which ultimately defines a transition system
M = 〈S,I,→〉, where S is the set of states, I ⊆ S is the set of initial states, and → ⊆
S×S is the (reflexive) transition relation. The structure of an ASLan specification is
composed by six different sections: signature of the predicates, types of variables and
constants, initial state, Horn clauses, transition rules of → and protocol goals. The
content of the sections is intuitively described by their names. In particular, an initial
state I ∈ I is composed by the concatenation of all the predicates that hold before
running any rule (e.g., the agent names and the intruder’s own keys).

The specifications that we consider in this paper do not use Horn clauses, but a so
called Prelude file, in which all the actions of the DY intruder are defined as a set H
of Horn clauses, is automatically imported during the translation from ASLan++ into
ASLan (see [7]).

The transition relation→ is defined as follows. For all S ∈ S, S→ S′ iff there exist

• a rule such that
PP.NP&PC&NC =[V ]⇒ R ,

where PP and NP are sets of positive and negative predicates, PC and NC con-
junctions of positive and negative atomic conditions, and

• a substitution σ : {v1, . . . ,vn}→ TΣ, where v1, . . . ,vn are the variables that occur
in PP and PC such that:

1. PPσ ⊆ dSeH , where dSeH is the closure of S with respect to the set of
clauses H,

2. PCσ holds,

3. NPσσ ′∩dSeH = /0 for all substitutions σ ′ such that NPσσ ′ is ground,

4. NCσσ ′ holds for all substitutions σ ′ such that NCσσ ′ is ground and

5. S′= (S\PPσ)∪Rσσ ′′, where σ ′′ is any substitution such that for all v∈V ,
vσ ′′ does not occur in S.

We now define the translation of the ASLan++ constructs we have considered here.
Every ASLan++ entity is translated into a new state predicate and added to the section
signature. This predicate is parametrized with respect to a step label (that uniquely
identifies every instance) and it mainly keeps track of the local state of an instance
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(current values of whose variables) and expresses the control flow of the entity by
means of step labels. As an example, if we have the ASLan++ entity

1 entity Snd(Actor, Rcv: agent){
2 symbols
3 Var: message;
4 }

the predicate stateSnd is added to the section signature and, supposing an instantiation
of the entity new Snd(snd, rcv), the new predicate

1 state_Snd(snd, iid, sl_0, rcv, dummy_message)

is used in transition rules to store all the informations of an entity, where the ID iid

identifies a particular instance, sl_0 is the step label, the parameters Actor, Rcv are re-
placed with constants snd and rcv, respectively, and the message variable Var is initially
instantiated with dummy_message.

Given that an ASLan++ specification is a hierarchy of entities, when an entity is
translated into ASLan, this hierarchy is preserved by a child(id_1, id_0) predicate that
states id_0 is the parent entity of id_1 and both id_0 and id_1 are entity IDs.

A variable assignment statement is translated into a transition rule inside the rules
section. As an example, if in the body of the entity Snd defined above there is an
assignment Var := constant;, where constant is of the same type of Var, then we obtain
the following transition rule:

1 state_Snd(Actor,IID,sl,Rcv,Var)
2 =>
3 state_Snd(Actor,IID,succ(sl),Rcv,constant)

In the case of assignments to fresh(), the variable Var is assigned to a new variable.
In the case of a message exchange (sending or receiving statements) the iknows(

message) predicate is added to the right-hand side of the corresponding ASLan rule.
This states that the message message has been sent over the network, where iknows

stands for intruder knows and is used because, as is usual, the Dolev-Yao intruder is
identified with the network itself.

The last point we discuss is the translation of goals focusing on authentication and
secrecy described above. The label in a send statements (e.g., Actor -> Rcv: auth:(Na

)) generates a new predicate witness(Actor,Rcv,label,Payload) that is inserted into the
ASLan transition rule representing the send statement. An equivalent request(Actor,

Snd,label,Payload,IID) predicate is added for receive statements. These predicates are
used in the translation of goals. In fact, an authentication goal is translated into the
state (i.e., attack state)

1 not(dishonest(Snd)).
2 not(witness(Snd, Rcv, auth, Payload)).
3 request(Rcv, Snd, auth, Payload, IID)

where not(dishonest(Snd)) states the sender Snd has not to be the intruder, not(witness
(Snd, Rcv, auth, Payload)) states the payload of the authentication message has not to
be sent by the honest agent Snd and the last request predicate states the receiver Rcv has
received the authentication message. A secrecy goal is translated into the attack state

1 iknows(Payload).
2 not(contains(i, Knowers)).
3 secret(Payload, label, Knowers)
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A→ i : {NA,A}pk(i) Alice1.Actor→ Alice1.B : {Alice1.Na,Alice1.Actor}pk(Alice1.B) a→ i : {c1,a}pk(i)

i(A)→ B : {NA,A}pk(B) ?→ Bob2.Actor : {Bob2.Na,Bob2.A}pk(Bob2.Actor) i(a)→ b : {c1,a}pk(b)

B→ i(A) : {NA,NB}pk(A) Bob2.Actor→ Bob2.A : {Bob2.Na,Bob2.Nb}pk(Bob2 .A) b→ i(a) : {c1,c2}pk(i(a))

i→ A : {NA,NB}pk(A) Alice1.B→ Alice1.Actor : {Alice1.Na,Alice1.Nb}pk(Alice1.Actor) i→ a : {c1,c2}pk(a)

A→ i : {NB}pk(i) Alice1.Actor→ Alice1.B : {Alice1.Nb}pk(Alice1 .B) a→ i : {c2}pk(i)

i(A)→ B : {NB}pk(B) Bob2.A→ Bob2.Actor : {Bob2.Nb}pk(Bob2 .Actor) i(a)→ b : {c2}pk(b)

Figure 2: Man-in-the-middle attack on the NSPK protocol (left), symbolic attack trace
at state 15 of the algorithm execution (middle) and instantiated attack trace obtained
with our method (right).

where iknows(Payload) states that the Payload has to be sent over the network, that the
set of knowers (Snd and Rcv in the example above) does not contain the intruder i and
the secret predicate is used to check the goal only when the rule containing the secrecy
goal label is fired. This is because a secret(Payload, label, Knowers) predicate is added
to all the transition rules that are translations of statements in which the payload of the
secrecy goal is used. The declaration of an attack state AS amounts to adding a rule
AS => AS.attack for a nullary predicate attack.

2.4 Running example
As a running example, we will use NSL, the Needham-Schroeder Public Key (NSPK)
protocol with Lowe’s fix [21], which aims at mutual authentication between A and B:

A→ B : {NA,A}pk(B)

B→ A : {NA,NB,B}pk(A)

A→ B : {NB}pk(B)

The presence of B in the second message prevents the man-in-the-middle attack that
NSPK suffers from, which is shown on the left of Fig. 2, where we write i(A) to denote
that the intruder is impersonating the honest agent A (that is, i(x) denotes the intruder
playing the role of x, for x an agent name.)

We give the overall ASLan++ specifications for the protocol NSL in Appendix A;
here we briefly describe only the section modeling the behavior of the two entities
involved. Note that, for readability, from now on, we use math fonts instead of mixing
math and typewriter fonts (e.g., we write iknows(Payload) instead of iknows(Payload))
in the text, while we use typewriter in code listings.
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1 entity Alice(Actor, B: agent) {
2 symbols
3 Na, Nb: text;
4 body{
5 Na := fresh();
6 Actor -> B: {Na,Actor}_pk(B);
7 B -> Actor: {Na,?Nb,B}_pk(Actor);
8 Actor -> B: {auth:(Nb)}_pk(B);
9 }

10 }

1 entity Bob(A, Actor: agent) {
2 symbols
3 Na, Nb: text;
4 body{
5 ? -> Actor: {?Na,?A}_pk(Actor);
6 Nb := fresh();
7 Actor -> A: {Na,Nb,Actor}_pk(A);
8 A -> Actor: {auth:(Nb)}_pk(Actor);
9 }

10 }

The two roles are Alice, who is the initiator of the protocol, and Bob, the responder.
The elements between parentheses in line 1 declare which variables are used to denote
the agents playing the different roles along the specification of the role Alice: Actor
refers to the agent playing the role of Alice itself, while B is the variable referring to
the agent who plays the role of Bob. Similarly, the section symbols declares that Na and
Nb are variables of type text. The section body specifies the behavior of the role. First,
the operation fresh() assigns to the nonce Na a value that is different from the value
assigned to any other nonce. Then Alice sends the nonce, together with her name, to
the agent B, encrypted with B’s public key. In line 7, Alice receives her nonce back
together with a further variable (expected to represent B’s nonce in a regular session of
the protocol) and the name of B, all encrypted with her own public key. As a last step,
Alice sends to B the nonce Nb encrypted with B’s public key.

The variable declarations and the behavior of Bob are specified by the listing on
the right. We omit a full description of the code and only remark that the “?” in the
beginning of line 5 denotes the fact that the sender of such a message can be any agent,
though no assignment is made for ? in that case.

In this example, we want to verify whether the man-in-the-middle attack known for
the NSPK protocol can be still applied after Lowe’s fix. The scenario we are interested
in can be obtained by the following ASLan++ instantiation:

1 body { % of Environment
2 any Session(a,i);
3 any Session(a,b);
4 }

In session 1, the roles of Alice and Bob are played by the agents a and i, respectively,
whereas in session 2 they are played by a and b.

Finally, a set of goals needs to be specified. For simplicity, here we only require to
check the authentication property with respect to the nonce of Bob, i.e., we will verify
that the responder Bob authenticates the initiator Alice.

1 goals { auth:(_) A *-> B; }

As an example of the equivalent ASLan specification, we show the ASLan code of
the translation of line 7 of the Alice entity

1 iknows(crypt(pk(E_S_A_Actor), pair(Na, pair(Nb_1, E_S_A_B)))).
2 state_Alice(E_S_A_Actor, E_S_A_IID, 3, E_S_A_B, Na, Nb)
3 =>
4 state_Alice(E_S_A_Actor, E_S_A_IID, 4, E_S_A_B, Na, Nb_1)

where, after receiving the message in the iknows predicate, the nonce Nb is updated in
the state fact in the right-hand side of the transition rule.
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3 Translating security protocols into sequential programs

3.1 The SPiM Input Language SiL
In Fig. 3, we present the full grammar of the SPiM Input Language SiL, a simple
imperative programming language that we will use to define the sequential programs
to be analyzed by the verification algorithm.

Definition 1. The SPiM Input Language SiL is defined by the grammar in Fig. 3, where
X ranges over a set of variable locations Loc and c ranges over the set Σ0∪N. �

The basic terms of the language are in the syntactic category E. A message M is a
constant, a variable, a concatenated message or some form of encrypted message.

The category L denotes lists of messages, whereas S stands for a set of messages:
here IK is a special identifier referring to the intruder knowledge and + is used to
denote the union operation between sets.

B denotes the class of Booleans. In addition to the standard Boolean constants and
operators, SiL contains two specific predicates: IK `M, which intuitively evaluates to
true when the message M is derivable from the set of messages in IK, and witness, with
three arguments (a sender, a receiver, and a message), which is used in order to verify
a goal of authentication.

Finally, the statements of SiL, in the category C, comprise standard constructs (like
assignments, conditionals and concatenation) together with mechanisms used to handle
specific aspects of security protocols, like the possibility of setting the values of the set
IK and of the predicates witness and attack, which takes Boolean values and is set to
true when an attack is found.3

Definition 2. We denote with V = Loc∪ {IK,attack} the set of program variables
and with D = Σ0∪N∪P (TΣ)∪{true, f alse}∪P

(
Σ0×Σ0×TΣ

)
the set of possible

data values, i.e., natural numbers, ground messages, sets of ground messages, Boolean
values and sets of triples (agent, agent, message) for the witness predicate. �

Note that here, in order to simplify the presentation, we do not use an explicitly
typed model. However, the implementation described in Section 5 does make use of a
typed model in order to improve the efficiency of the tool (at the small expenses of not
being able to find type-flaw attacks).

Definition 3. A SiL data state (that we will sometimes refer to only as “state”) is a
partial function ς : V → D and we denote with D the set of all such functions. �

In order to specify the behavior of SiL constructs, we present a big-step structural
operational semantics for it. As it is the case for any structural operational semantics,
the definition is given by means of a proof system. Rules manipulate judgments of the
form < T,ς >⇓ v, where T denotes an element in any of the syntactic categories of

3Two remarks are in order. First, for simplicity, we give the syntax in the case of a single goal to be
considered; in case of more goals, a distinct attack variable can be added for each goal. Second, by the
definition of the translation procedure into a SiL program, an authentication goal is verified immediately
after the receipt of the message on which the authentication is based. Thus, we do not need in SiL an
equivalent of the ASLan predicate request.
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E ::= X | c
M ::= E | [M,M] | {M}M | {M}inv(M) | {|M|}M
L ::= M | L,M
S ::= {L} | IK | S+S
B ::= true | false | IK `M | E = E | witness(E,E,M) | not(B) | B or B | B and B
C ::= X := E | IK := S | attack := B | witness(E,E,M) := true |C;C | if B then C else C | skip | end

Figure 3: The grammar of SiL.

SiL and v is a data value of the corresponding type (in particular, v is a state in the case
when T is a statement). In a big-step semantics [19] formulation, < T,ς >⇓ v means
that by the complete evaluation of T in the state ς , we obtain v. (This is in opposition
to what happens in the case of the so-called small-step semantics, where each sequent
denotes a minimal, atomic step of evaluation.) For instance, <C,ς >⇓ ς ′ denotes that
by evaluating the statement C in a state ς , we move to a state ς ′. Given the simplicity
of the language and the kind of analysis that we intend to carry out on it, we chose to
give a big-step semantics, which typically has the advantage of needing fewer inference
rules and allowing for a more concise presentation.

Definition 4. The big-step operational semantics of SiL is defined by the proof system
in Fig. 4, where we use the following meta-variables: m ranges over TΣ, l ranges over
lists of elements of TΣ, p ranges over P (TΣ), and b ∈ {true, false}. We denote with
ς [m/X ] the state obtained from ς by replacing the content of X by m, i.e., ς [m/X ](Y ) =
m if Y = X and ς [m/X ](Y ) = ς(Y ) otherwise. �

Rules for the evaluation of basic terms are quite simple: a constant evaluates to
itself and a variable to the value associated to it in a given data state.

Rules for compound messages evaluate the single components and then merge the
results in a message of the appropriate form.

Rules of the third class show how lists are evaluated by concatenating single mes-
sages and how sets of messages are built by using lists. In particular, the special set
variable IK is evaluated in the same way as any other variable.

Evaluation of Booleans is standard: constants evaluate to themselves; predicates
(equality and witness) evaluate either to true or false, according to a side condition
referring to the values of the arguments; compound Boolean expressions are evaluated
by functionally composing the truth values of the components.

Finally, rules for statements operate by modifying the data state on which they are
applied. Assignments modify the state value of the variable considered (be it a generic
variable, IK or a variable referring to a predicate). Concatenation and conditional state-
ments are treated as usual. skip and end do not alter the data state: the first one is just
introduced in order to simplify the proof of some results, while the latter allows one to
ignore the statements that follow.

3.2 The translation procedure
Definition 5. Given a protocol P involving a set R of roles (Alice,Bob, . . ., a.k.a. en-
tities), a session instance (or session, for short) of P is a function si assigning an agent
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BASIC TERMS
< X ,ς >⇓ ς(X) < c,ς >⇓ c

MESSAGES

< M1,ς >⇓ m1 < M2,ς >⇓ m2

< [M1,M2],ς >⇓ [m1,m2]

< M1,ς >⇓ m1 < M2,ς >⇓ m2

< {M1}M2 ,ς >⇓ {m1}m2

< M1,ς >⇓ m1 < M2,ς >⇓ m2

< {M1}inv(M2),ς >⇓ {m1}inv(m2)

< M1,ς >⇓ m1 < M2,ς >⇓ m2

< {|M1|}M2 ,ς >⇓ {|m1|}m2

LISTS AND SETS OF MESSAGES

< L,ς >⇓ l < M,ς >⇓ m

< L,M,ς >⇓ l,m

< L,ς >⇓ l

< {L},ς >⇓ {l}
< IK,ς >⇓ ς(IK)

< S1,ς >⇓ p1 < S2,ς >⇓ p2

< S1 +S2,ς >⇓ p1 ∪ p2

BOOLEAN EXPRESSIONS

< true,ς >⇓ true < false,ς >⇓ false
< IK,ς >⇓ ς(IK) < M,ς >⇓ m

< IK `M,ς >⇓ true
m ∈ DY (ς(IK))

< IK,ς >⇓ ς(IK) < M,ς >⇓ m

< IK `M,ς >⇓ false
m /∈ DY (ς(IK))

< E1,ς >⇓ c1 < E2,ς >⇓ c2

< E1 = E2,ς >⇓ true
c1 = c2

< E1,ς >⇓ c1 < E2,ς >⇓ c2

< E1 = E2,ς >⇓ false
c1 6= c2

< E1,ς >⇓ c1 < E2,ς >⇓ c2 < M,ς >⇓ m

< witness(E1,E2,M),ς >⇓ true
(c1,c2,m) ∈ ς(witness)

< E1,ς >⇓ c1 < E2,ς >⇓ c2 < M,ς >⇓ m

< witness(E1,E2,M),ς >⇓ f alse
(c1,c2,m) /∈ ς(witness)

< B,ς >⇓ b

< not(B),ς >⇓ ¬b

< B1,ς >⇓ b1 < B2,ς >⇓ b2

< B1 or B2,ς >⇓ b1 ∨b2

< B1,ς >⇓ b1 < B2,ς >⇓ b2

< B1 and B2,ς >⇓ b1 ∧b2

STATEMENTS

< E,ς >⇓ c

< X := E,ς >⇓ ς [c/X ]

< S,ς >⇓ p

< IK := S,ς >⇓ ς [p/IK]

< B,ς >⇓ b

< attack := B,ς >⇓ ς [b/attack]

< E1,ς >⇓ c1 < E2,ς >⇓ c2 < M,ς >⇓ m

< witness(E1,E2,M) := true,ς >⇓ ς [witness∪{(c1,c2,m)}/witness]

<C0,ς >⇓ ς ′′ <C1,ς
′′ >⇓ ς ′

<C0;C1,ς >⇓ ς ′

< B,ς >⇓ true <C0,ς >⇓ ς ′

< i f B then C0 else C1,ς >⇓ ς ′

< B,ς >⇓ false <C1,ς >⇓ ς ′

< i f B then C0 else C1,ς >⇓ ς ′
< skip,ς >⇓ ς < end,ς >⇓ ς

< end,ς >⇓ ς <C1,ς
′ >⇓ ς ′′

< end;C1,ς >⇓ ς

Figure 4: A big-step semantics for SiL.
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(honest agent or the intruder i) to each element of R.
A scenario of a protocol P is a finite number of session instances of P . �

The input of our method is then:

1. an ASLan++ specification of a protocol P ,

2. a scenario S of P , and

3. a set of goals (i.e., properties to be verified) in S .

We will first describe how to obtain a program for a single session and then how to
decorate it with goal locations used to verify security properties. In Section 3.3, finally,
we will explain how to combine more sessions in a single graph.

3.2.1 Translating a single session

First of all, we notice that in our translation, and according to the ASLan++/ASLan
instantiation mechanism, a session instance between two honest agents is represented
as the composition of two sessions, where each of the honest agents communicates with
the intruder. We will refer to the session instances obtained after such a translation as
program instances.

Example 1. For example, the second session of our running example (Section 2.4),
i.e., the one between a and b, is obtained by the composition of two sessions, the first
played by a and i(b) and the second by i(a) and b, thus giving rise to the following
three program instances

Program Alice Bob
1 a i
2 a i(b)
3 i(a) b

We also remark that an intruder is not obliged to play dishonestly; thus, e.g., a program
instance between a and i(b) does also capture the case of an honest session between a
and b. �

To simplify notation, for the variables and constants of the resulting program we
will use the same names as the ones used in the ASLan++ specification. However, in
order to distinguish between variables with the same name occurring in the specifica-
tion of different roles, program variables have the form E.V where E denotes the role
and V the variable name in the specification. In the case when more than one session
are considered, we also prefix an index denoting the session to the program variable
name, e.g., as in S1_E.V .

The behavior of the intruder introduces a form of non-determinism, which we cap-
ture by representing the program as a procedure depending on a number of input values,
one for each choice of the intruder. Along a single program, input variables are denoted
by the symbol Y , possibly subscripted with an index. Finally, symbols of the form c_i,
for i an integer, are used to denote constants to be assigned to nonces.
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Structure of the program The exchange of messages in a session follows a given
flow of execution that can be used to determine an order between the instructions con-
tained in the different roles. Such a sequence of instructions will constitute the skeleton
of the program.

After a first section that concerns the initialization of the variables, the program
will indeed contain a proper translation, based on the semantics of ASLan++, of the
instructions in such a sequence. For each program instance, we will follow the flow
of execution of the honest agents, as we can think of the intruder actions as not being
driven by any protocol, and model the intruder interaction with the honest agents by
means of IK `M statements and updates of IK.

In the next paragraphs, we will describe more specifically: (i) how variables are
initialized and (ii) how each statement is translated.

Initialization of the variables A first section of the program consists in the initializa-
tion of the variables. Let pi be the program instance of the program we are considering.
For each role Alice such that pi(Alice) = a, for some agent name a 6= i, we have an ini-
tialization instruction Alice.Actor := a. Furthermore, for the same Alice, and for each
other role Bob, with B being the variable referring to the role Bob amongst the agent
variables of Alice: if si(Bob) = b, then we have the assignment Alice.B := b. Finally,
it is necessary to initialize the intruder knowledge. A typical initialization instruction
for IK has the form:

IK := {a_1, ...,a_n, i,pk(a_1), ...,pk(a_n),pk(i), inv(pk(i))} .

That is, i knows each agent a_j involved in the scenario and his public keys pk(a_j), as
well as his own public and private keys pk(i) and inv(pk(i)). Specific protocols might
require a specific initial intruder knowledge or the initialization of further variables,
depending on the context, such as symmetric keys or hash functions, which are possibly
defined in the Prelude section of the ASLan++ specification.

Sending of a message The sending of a message Actor→ B : M defined in a role
Alice is translated into the instruction IK := IK +{M}, where the symbol + denotes
set union (corresponding to ∪) so that the intruder knowledge is increased with the
message M.

Receipt of a message Consider the receipt of a message R→ Actor : M in a role
Alice. Assume the message is sent from a role Bob. Then the instruction is translated
into the following code, where Q_1, ...,Q_n are all the variables occurring preceded by
? in M and Y_1, ...,Y_n are distinct input variables not introduced elsewhere:

1 If (IK |- M)
2 then Alice.Q_1 := Y_1;
3 ...
4 Alice.Q_n := Y_n;
5 else end;

14



Generation of fresh values Finally, an instruction of the form N := fresh() in Alice,
which assigns a fresh value to a nonce, can be translated into the instruction Alice.N := c_1,
where c_1 is a constant not introduced elsewhere.

3.2.2 Defining goals for the verification of security properties

Introducing goal locations The next step consists in decorating the program with
a goal location for each security property to be verified. As it is common when per-
forming symbolic execution [20], we express such properties as correctness assertions,
typically placed at the end of a program. Once we have represented a protocol session
as a program (or more programs in the case when a session instance is split into more
program instances), and defined the properties we are interested in as correctness as-
sertions in such a program, the problem of verifying security properties over (a session
of) the protocol is reduced to verifying the correctness of the program with respect to
those assertions.

We consider here three common security properties (authentication, confidentiality
and integrity) and show how to represent them inside the program in terms of asser-
tions. They are expressed by means of a statement of the form if (not(expr)) then attack := true,
where expr is an expression referring to the goal considered, as described below.

Authentication Assume that we want to verify that Alice authenticates Bob with re-
spect to a message M in the specification of the protocol, in a given program instance
by the ASLan++ statement: B→ Actor : auth : (M) where auth is the label of the goal
and a corresponding sending statement is included in the specification.

We can restrict our attention to the case when according to the program instance
under consideration Bob is played by i, since otherwise the authentication property is
trivially satisfied. The problem thus reduces to verifying whether the agent i is playing
under his real name (in which case authentication is again trivially satisfied) or whether
i is pretending to be someone else, i.e., whether the agent playing Alice believes she
is speaking to someone who is not i. Hence, one of the conditions required in order
to reach the goal is not(Alice.B = i), where B is the agent variable referring to the role
Bob inside Alice.

A second condition is necessary and concerns the fact that the message M has not
been sent by Alice.B to Alice.Actor. This can be verified by using the witness predicate,
which is set to true when the message is sent and whose state is checked when a goal
is searched for, i.e., immediately after the receipt of the message M.

Example 2. In NSL, we are interested in verifying a property of authentication in the
session that assigns i to Alice and b to Bob: namely, we want Bob to authenticate Alice
with respect to the nonce Bob.Nb contained in the reception in line 8 on the right of the
NSL example (Section 2.4). Such a receipt corresponds to the sending of line 8 on the
left. Thus we can add a witness assignment of the form witness(Alice.Actor, Alice.B,

[Alice.Nb,pk(Alice.B)]):= true after the sending, and the instruction
1 if (not(Bob.A = i) and not(witness(Bob.A, Bob.Actor, {Bob.Nb}_pk(Bob.Actor))))
2 then attack:=true;
3 else skip;
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after the receipt of the message. �

Confidentiality Assume that we want to verify that the message corresponding to a
variable M, in the specification of a role Alice of the protocol, is confidential between
a given set of roles R = {Alice_1, . . . ,Alice_n} in a session si, i.e., we have a sending
statement Actor→ B : {secret : (M)}, where secret is the goal label, for a confiden-
tiality goal expressed as secret : (_) {Alice_1, . . . ,Alice_n}. This amounts to checking
whether the agent i got to know the confidential message M even though i is not in-
cluded in R. Inside the program, this corresponds to verifying whether the message
Alice.M can be derived from the intruder knowledge and whether any honest agent
playing a role in R believes that at least one of the other roles in R is indeed played
by i, which we can read as having indeed i ∈R. The following assertion is added at
the end of the SiL program:

1 if ((IK |- Alice.M) and (not((Alice_1.B^1_1 = i) or
2 ... (Alice_1.B^1_m = i) or ...
3 (Alice_n.B^n_1 = i) or ... (Alice_n.B^n_m = i))))
4 then attack := true;
5 else skip;

where Alice_j, for 1 ≤ j ≤ n, is a role such that Alice_j ∈ R and si(Alice_j) 6= i,
{Bob_1, . . . , Bob_m} ⊆R is the subset of those roles in R that are instantiated with i
by si and Bj

l, for 1≤ j ≤ n and 1≤ l ≤ m, is the variable referring to the role Bob_l in
the specification of the role Alice_j.

Example 3. For NSL, assume that we want to verify the confidentiality of the variable
Nb (contained in the specification of Bob) between the roles in the set {Alice,Bob}. We
can express this goal by appending the assertion

1 if ((IK |- Bob.Nb) and (not(Bob.A = i)))
2 then attack := true;
3 else skip;

at the end of the program. �

Integrity In this case, we assume that two variables (possibly of two different roles)
are specified in input as the variables containing the value whose integrity needs to be
checked. The check will consist in verifying whether the two variables, at a given point
of the session execution, also given in input, have the same value. Let M in the role
Alice and M′ in the role Bob be the two variables; then the corresponding correctness
assertion will be

1 if (not(Alice.M = Bob.M’))
2 then attack := true;

Example 4. The program instances described in Example 1 give rise to the following
three SiL programs, for which a single IK initialization instruction holds:

IK := {a,b,i,pk(a),pk(b),pk(i),inv(pk(i))}}

Program 1

16



1 S1_Alice.Actor := a;
2 S1_Alice.B := i;
3 S1_Alice.Na := c_1;
4

5 IK := IK + {{{S1_Alice.Na,S1_Alice.Actor}}_pk(S1_Alice.B)};
6

7 if (IK |- {{S1_Alice.Na,{S1_Alice.Y_1,S1_Alice.B}}}_pk(S1_Alice.Actor)
8 then S1_Alice.Nb := S1_Alice.Y_1;
9 else end;

10

11 IK := IK + {{S1_Alice.Nb}_pk(S1_Alice.B)};
12 witness(S1_Alice.Actor,S1_Alice.B,{S1_Alice.Nb}_pk(S1_Alice.B)}) := true;

Program 2
1 S2_Alice.Actor := a
2 S2_Alice.B := b
3

4 S2_Alice.Na := c_1
5

6 IK := IK + {{{S2_Alice.Na,S2_Alice.Actor}}_pk(S2_Alice.B)}
7

8 if (IK |- {{S2_Alice.Na,{S2_Alice.Y_1,S2_Alice.B}}}_pk(S2_Alice.Actor))
9 then S2_Alice.Nb := S2_Alice.Y_1;

10 else end;
11

12 IK := IK + {{S2_Alice.Nb}_pk(S2_Alice.B)}
13 witness(S2_Alice.Actor,S2_Alice.B,{S2_Alice.Nb}_pk(S2_Alice.B)}) := true;

Program 3
1 S2_Bob.A := a
2 S2_Bob.Actor := b
3

4 if (IK |- {{S2_Bob.Y_1,S2_Bob.Y_2}}_pk(S2_Bob.Actor))
5 then S2_Bob.Na := S2_Bob.Y_1;
6 S2_Bob.A := S2_Bob.Y_2;
7 else end;
8

9 S2_Bob.Nb := c_2
10

11 IK := IK + {{{S2_Bob.Na,{S2_Bob.Nb,S2_Bob.Actor}}}_pk(S2_Bob.A)}
12

13 if (IK |- {S2_Bob.Nb}_pk(S2_Bob.Actor))
14 then
15 if (not(witness(S2_Bob.A, S2_Bob.Actor, {S2_Bob.Nb}_pk(S2_Bob.Actor)))
16 and
17 (not(S2_Bob.A = i)));
18 then attack := true;
19 else end;

�

3.3 Combining more sessions
Now we need to define a global program that properly “combines” the programs related
to all the sessions in the scenario. The idea is that such a program allows for executing,
in the proper order, all the instructions of all the sessions in the scenario; the way in
which instructions of different sessions are interleaved will be determined by the value
of further input variables, denoted by X (possibly subscripted), which can be seen as
choices of the intruder with respect to the flow of the execution. Namely, we start to
execute each session sequentially and we get blocked when we encounter the receipt of
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a message sent by a role that is played by the intruder. When all the sessions are blocked
on instructions of that form, the intruder chooses which session has to be reactivated.

For what follows, it is convenient to see a sequential program as a graph (which can
be simply obtained by representing its control flow) on which the algorithm of Section
4 for symbolic execution and annotation will be executed. We recall here some notions
concerning programs and program runs.

Definition 6. A (SiL) program graph is a finite, rooted, labeled graph (Λ, l0,∆) where
Λ is a finite set of program locations, l0 is the initial location and ∆ ⊆ Λ×A ×Λ is
a set of transitions labeled by actions from a set A , containing the assignments and
conditional statements provided by the language SiL.

A (SiL) program path of length k is a sequence of the form l0,a0, l1,a1, . . . , lk, where
each step (l j,a j, l j+1) ∈ ∆ for 0≤ j < k−1.

Let ς0 be the initial data state. A (SiL) program run of length k is a pair (π,ω),
where π is a program path l0,a0, l1,a1, . . . , lk and ω = ς0, . . . ,ςk+1 is a sequence of data
states such that < a j,ς j >⇓ ς j+1 for 0≤ j ≤ k. �

Let S be a scenario of a protocol P with m program instances pi1, . . . ,pim. We
can associate to each program instance pi j, for 1 ≤ j ≤ m, a sequential program by
following the procedure described in Section 3.2.

For each 1 ≤ j ≤ m, we have a program graph G j = (Λ j, l j
0,∆

j) corresponding to
the program of pi j. The program graph corresponding to a given scenario is obtained by
composing the graphs of the single program instances. Below we describe an algorithm
for concretely obtaining such a graph for S . For simplicity, we will assume that the
original specification of P is such that no receipts of messages are contained inside a
loop statement or an if-statement.

Definition 7. Given a program graph, an intruder location is a location of the graph
corresponding to the receipt of a message sent from a role played by i.

A block of a program graph G ′ is a subgraph of G ′ such that its initial location is
either the initial location of G ′ or an intruder location.

The exit locations of a block B are the locations of B with no outgoing edges.
A program graph can simply be seen as a sequence of blocks. Namely, we can

associate to the program graph G j, for each 1 ≤ j ≤ m, its block structure, i.e., a
sequence B j

1, . . . ,B
j
n of blocks of G j, such that: (i) the initial location of B j

1 is the
initial location of G j; (ii) each intruder location of G j is the initial location of B j

k
for some 1 ≤ k ≤ m; (iii) for 1 ≤ k < n, the initial location of B j

k+1 coincides, in G j,
with an exit location of B j

k ; (iv) the graph obtained by composing B j
1, . . . ,B

j
n, i.e., by

letting the initial location of B j
k+1 coincide with the corresponding exit location of B j

k ,
is G j itself. �

Intuitively, we decompose a session program graph G i into sequential blocks start-
ing at each intruder location. The idea is that each such a block will occur as a subgraph
in the general scenario graph G (possibly with more than one occurrence). Namely, the
procedure for generating the scenario graph will create a graph that allows one to ex-
ecute all the blocks of the scenario just once, in any possible sequence that respects
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create a location l;

Λ := {l};

l0 := l;

∆ := /0;

pc(l, j) := 1 for 1≤ j ≤ m;

ic(l) := 1;

for h = 1 to m do {

if (initial location of Bh
1 is not intruder location)

then {
attach Bh

1 to l;
let l′ be the main exit location of Bh

1 :
pc(l′, j) := pc(l, j) for all j 6= h;
pc(l′,h) := pc(l,h)+1;
ic(l′) := 1;
l := l′

}

}

T := {l};

do {

pick a location l ∈ T ;

for h = 1 to m do {

if (Bh
pc(l,h) does exist) then {

create a location l∗;
Λ := Λ∪{l∗};
∆ := ∆∪ {(l, if X_k = i, l∗)}, where k =

ic(l);
attach Bh

pc(l,h) to l∗;

let l′ be the main exit location of Bh
pc(l,h):

pc(l′, j) := pc(l, j) for all h 6= j;
pc(l′,h) := pc(l,h)+1;
ic(l′) := ic(l)+1;
T := T ∪{l′};
}

}

T := T \{l};

} while (T 6= /0);

Figure 5: An algorithm for building the graph G = (Λ, l0,∆).

the order of the single sessions. For instance, given the block structures (B1
1 ,B

1
2)

and (B2
1), the resulting graph will contain a path corresponding to the execution of

B1
1 ,B

1
2 ,B

2
1 in this order, as well as a path for B1

1 ,B
2
1 ,B

1
2 , as well as a path for

B2
1 ,B

1
1 ,B

1
2 . Note also that, under the restriction on P introduced above (i.e., no

receipts inside loops and if-statements), each block has at most one “interesting” exit
location, in the sense that at most one of its exit locations did not correspond to a lo-
cation with no outgoing edges even in the original session graph. In the algorithm of
Fig. 5, we will refer to such an exit location as the main exit location.

In Fig. 5, we give an algorithm that we have devised to incrementally build the
graph G = (Λ, l0,∆) starting from the root and adding blocks step by step. We assume
the number of program instances m given. In the algorithm we use a procedure attach,
which given a block B and a location l, adds the subgraph B to G (by letting the initial
location of B coincide with l) and updates the sets Λ and ∆ accordingly. During the
construction, the set T ⊆Λ contains the locations of the graph to be still expanded. Two
functions pc : Λ×{1, . . . ,m} → N and ic : Λ→ N are used to keep track of the status
of the construction. Their intended meaning is the following: assume that the location
l in the graph is still to be expanded; then for each 1≤ j≤m, B j

pc(l, j) is the next block
to be added for what concerns the program instance pi j (i.e., each path going from the
root to l has already executed B j

h for 1≤ h < pc(l, j)) and the next input variable to be
used is Xic(l).

The first for loop in the pseudo-code of the algorithm composes, in a sequence, the
first blocks of each session program graph. Then the while loop expands the graph by
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adding a fork at each intruder choice.
The resulting graph G = (Λ, l0,∆) can be finally simplified by making indistin-

guishable nodes collapse into one, according to standard graph and transition system
optimization techniques.

Example 5. Fig. 8 shows a path of the program graph for NSL in the scenario de-
scribed in the previous examples. The entire graph (Appendix B) is obtained by unify-
ing some equivalent nodes in the graph produced by the algorithm of Fig. 5. �

3.4 Correctness of the translation
Now, we show that the translation into SiL, defined in Sections 3.2 and 3.3, preserves
important properties of the original specification. In particular, we show that given an
ASLan++ specification, an attack state can be reached by analyzing its ASLan transla-
tion if and only if an attack state can be found by executing its SiL translation.

Equivalence of single steps

Definition 8. We say that an ASLan term M′ and a SiL term M′′ are equivalent, M′ ∼
M′′, iff one of the following conditions holds:

• M′ ≡ c′, M′′ ≡ c′′ and c′ = c′′;

• M′ ≡ pair(M′1,M
′
2), M′′ ≡ [M′′1 ,M

′′
2 ] and M′1 ∼M′′1 , M′2 ∼M′′2 ;

• M′ ≡ crypt(M′1,M
′
2), M′′ ≡ {M′′2}M′′1

and M′1 ∼M′′1 , M′2 ∼M′′2 ;

• M′ ≡ scrypt(M′1,M
′
2), M′′ ≡ {|M′′2 |}M′′1

and M′1 ∼M′′1 , M′2 ∼M′′2 ;

• M′ ≡ inv(M′1), M′′ ≡ inv(M′′1 ) and M′1 ∼M′′1 . �

In the following, we consider an ASLan++ program and the corresponding ASLan
translation. As described in Section 2.3, for each signature in the SignatureSection we
will have a corresponding state fact.

Definition 9. We define a variable mapping as a function f (E,A) that given an entity
name E and a variable name A returns the value i corresponding to the index of the
position of variable A in the state fact state_E. �

Note that such a function always exists and it is implicitly created at translation time
from the translation procedure from ASLan++ into ASLan described in Section 2.3.

In order to handle multiple sessions, let pi1, . . . ,pin be the program instances of the
considered protocol scenario; we can assume to have a function g such that g( j) = SID
where SID is the identifier of the state fact state_Session_j(...,SID, ...) ⊆ S represent-
ing the symbolic session corresponding to the program instance pi j; note that such a
function is implicitly created when a symbolic session is instantiated (Section 2.3) and
is bijective. Then we will write S(E j, i) to indicate the value vi of the state predicate
state_E(v1,SID, ...,vn) such that child(g(j),SID)⊆ S.
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Definition 10. We say that an ASLan state S and a SiL state ς are equivalent, S ∼ ς ,
iff:

• for each SiL ground term M′ and ASLan ground term M′′ such that M′ ∼ M′′,
M′ ∈ DY (ς(IK))⇔ iknows(M′′)⊆ dSeH ;

• ς(Sj_E.A) = S(E j, f (E,A)) for each E representing an entity name involved in
the protocol, for each A representing an ASLan++ variable name or parameter
name of entity E, for each session instance si j

• ς(attack) = true⇔ attack ⊆ dSeH ;

• (M,M1,M2) ∈ ς(witness)⇔ witness(M′,M′1,M
′
2, . . .)⊆ dSe

H , where M, M1 and
M2 are SiL ground terms and M′, M′1 and M′2 are ASLan ground terms such that
M ∼M′, M1 ∼M′1 and M2 ∼M′2. �

We notice that while an ASLan transition occurs when there exists a substitution
(of values for variables) that makes a rule appliable, in SiL we simulate, and in a sense
make more explicit, such a substitution by using the Y input variables. This establishes
a correspondence between ASLan substitutions and assignments of values to SiL input
variables, which will be important in the following proofs, and that we will handle by
means of the following notion of extension of a SiL state.

Definition 11. Given a SiL state ς and a set of input variables Y1, ...,Yn such that ς(Yi)
is undefined, we define an extension ς̄ of ς as a SiL state where ς̄ is defined for Y1, ...,Yn
and for each other variable A, ς̄(A) = ς(A). �

Since the input variables of the form Yi are not involved in the definition of equiv-
alence, if an ASLan state S and a SiL state ς are equivalent, that is S ∼ ς , and ς̄ is an
extension of ς , then also S and ς̄ are equivalent, that is S∼ ς̄ .

Let r be an ASLan rule; we will write S r−→ S′ iff there exists a transition from an
ASLan state S to an ASLan state S′ obtained by applying the rule r.

Lemma 1. Let I be an ASLan++ statement, r the corresponding ASLan rule and w
the corresponding SiL code, as defined in Section 2.3 and 3.2, respectively. Given an
ASLan state S and a SiL state ς such that S∼ ς we have:

1. If S r−→ S′ then there exists an extension ς̄ of ς such that < w, ς̄ >⇓ ς ′ and S′ ∼ ς ′;

2. If there exists an extension ς̄ of ς such that < w, ς̄ >⇓ ς ′, then either there exists
an S′ such that S r−→ S′ and S′ ∼ ς ′ or S = S′.

Proof. The proof proceeds by considering all the possible ASLan++ statements and is
given in Appendix C.

Equivalence of runs We have showed that, starting from equivalent states, the ap-
plication of ASLan rules and SiL code fragments that have been generated from the
same ASLan++ statements brings to states that are still equivalent. Now we will show
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that given an ASLan++ specification, for each run in the SiL translation, there exists a
sequence of corresponding ASLan rules in the ASLan translation.

First, we note that, strictly speaking, the translation of an ASLan++ statement into
SiL is not always an atomic action, e.g., in the case of a receipt, the corresponding
SiL action comprises both a conditional and some assignments. For simplicity, in the
remainder of this section, we will use the term actions also to refer to such compound
actions, i.e., small sequences of atomic actions arising from the translation of a single
ASLan++ statement.

Definition 12. Let P be a protocol and E1, . . . ,En the entity names involved in P .
We denote with Ie ≡ Ie,1, . . . , Ie,me the sequence of ASLan++ statements corresponding
to the entity Ee.

Given a scenario S , for each program instance pi( j), we denote with r j
e,1, . . . ,r

j
e,me

the sequence of ASLan rules and with w j
e,1, . . . ,w

j
e,me , the sequence of SiL actions cor-

responding to Ie. We will call sequences of the last form SiL action paths4.
Finally, we define a SiL action run as a pair (π,ω) where π = w0, . . . ,wk is a SiL

action path and ω = ς0, . . . ,ςk+1 is a sequence of data states such that < a j,ς j >⇓ ς j+1
for 0≤ j ≤ k. �

It is easy to see that given a program graph, each SiL path corresponds to a SiL
action path (obtained by ignoring the locations in the SiL path, removing the Xi-
conditionals and possibly grouping some consecutive atomic actions).

Definition 13. An ASLan path (for a protocol scenario S ) is a sequence r0, . . . ,rk of
ASLan rules such that:

• for each entity Ee, program instance pi( j) and 1≤ l ≤ me, there is one and only
one 0≤ i≤ k such that ri ≡ r j

e,l ;

• for 0≤ i≤ k, ri ≡ r j
e,l for some e, l and j;

• for 0 ≤ i ≤ k, if state_E(...,sl, ...), where sl is the index referring to the step
label, is in the left-hand side of ri ≡ r j

e,l then either sl = 1 or there exists h < i

such that state_E(...,sl, ...) is in the right-hand side of rh and rh ≡ r j
e,l−1. �

The intuition behind this definition is that, given an ASLan transition system, the
set of ASLan paths collects all the “potential” sequences of applications of ASLan
rules, i.e., those admissible by only taking care of respecting the order given by the
step labels inside the rules, no matter how the rest of the state evolves.

Definition 14. An ASLan run (for a protocol scenario S ) is a pair (τ,ρ) where τ is
an ASLan path r0, . . . ,rk and ρ = S0, . . . ,Sk+1 is a sequence of ASLan states such that
Si

ri−→ Si+1 for 0≤ i≤ k. �

4Notice however that in a sequence w j
e,1, . . . ,w

j
e,me defining a SiL action path, we ignore the conditionals

with respect to Xi variables, i.e., those used in SiL to handle the interleaving between sessions.
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Definition 15. We say that an ASLan path r0, . . . ,rk and a SiL action path w0, . . . ,wk
are equivalent iff for each 0≤ i≤ k, ri and wi can be obtained as the translation of the
same ASLan++ statement. �

Lemma 2. Let S be a protocol scenario and G the corresponding program graph.
Then there exists a SiL action path w0, . . . ,wk for G iff there exists an ASLan path
r0, . . . ,rk for S and the paths are equivalent.

Proof. It is enough to observe that SiL action paths and ASLan paths follow, for a
given program instance, the order in which the actions are executed in the protocol:
this is obtained by the definition of the graph construction in the case of SiL, and by
using step labels inside the rules in the case of ASLan. Furthermore, in both cases,
each possible interleaving between sessions is admitted, i.e., whenever in a SiL path an
action of the program instance pi(i) is followed by an action of the program instance
pi( j), there is a corresponding possible choice for a next rule r to be applied in ASLan
such that r = r j

e,l for some e and l; vice versa, for each ASLan rule in an ASLan path
letting one switch from a session i to a session j, there is a corresponding branch where
Xh = j giving rise to a corresponding SiL path.

Theorem 1. There exists a SiL action run (π,ω) of graph G corresponding to the
protocol scenario S , where ω = ς0, . . . ,ςk+1, iff there exists an ASLan run (τ,ρ) for
S , where ρ = S0, . . . ,Sk+1, and ςi ∼ Si for 0≤ i≤ k+1.

Proof. Let ς0 be the data state obtained after the initialization block of the SiL program
graph and S0 the ASLan initial state, as defined in Section 2. It is easy to check that
ς0 ∼ S0. Then, the thesis follows by using Lemma 2 (for each SiL action path, there
is an equivalent ASLan path) and Lemma 1 (equivalent steps preserve equivalence of
states).

Finally, we can use the previous theorem to show that an attack state can be found
in an ASLan path iff a goal location can be reached in the corresponding SiL path.

Corollary 1. Let S be a protocol scenario and G the corresponding program graph.
An attack state can be found in an ASLan path for S iff a goal location can be reached
in a SiL path for G .

Proof. Let S be an ASLan attack state, i.e., attack ⊆ dSeH . By Theorem 1, S is in an
ASLan run for S iff there exists ς ∼ S in a SiL run for G . By Definition10, ς(attack) =
true, i.e., a goal location referring to the given attack has been reached.

4 An interpolation-based algorithm for verification
In this section, we present the interpolation-based algorithm that we use for verification
and describe, in particular, how we can calculate interpolants in our specific setting.

Our algorithm is a slightly simplified version of the IntraLA algorithm of [25],
obtained by removing some fields only used there to deal with program procedures. In
a nutshell, the idea underlying our algorithm is as follows. The input of our algorithm
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Figure 6: A SiL program graph (left). A first phase of symbolic execution with gener-
ation of an annotation (center). A second phase of symbolic execution with annotation
check (right).

is a SiL program graph, as defined in Section 3.3, together with a set of attacks (goals)
to search for; the output is either the proof that no attack has been found or an abstract
attack trace for each attack found. The algorithm executes symbolically the program
graph searching for given goal locations, which in our case represent attacks found on
the given scenario of the protocol. In Fig. 6-left, we have depicted a simplified version
of a generic program graph, highlighting a location n from which a path leading to a
goal location starts. In the case when we fail to reach a goal during a search along an
edge (Fig. 6-center), an annotation, i.e., a formula expressing a condition under which
no goal can be reached, is produced by using Craig interpolation. Informally speaking,
the annotation, î in the figure, will be a formula implied by (a formula describing the
state originated by) the execution exec1 and inconsistent with (a formula describing the
state reached at) the goal location. Through a backtrack phase, such an annotation is
propagated to the preceding nodes of the edge and can be used to block a later phase
of symbolic execution along an uninteresting run, i.e., a run for which the information
contained in the annotation allows one to foresee that it will not reach a goal (Fig. 6-
right).

4.1 Preliminary definitions
4.1.1 The annotation language

In what follows, it seems convenient to use a two-sorted first-order language with
equality, in which the graph annotations will be expressed. The signature of the first
sort is based on the algebra of messages defined in Section 2, over which we also allow
a set of unary predicates DY j

IK for 1 ≤ j ≤ n with a fixed n ∈ N, whose meaning will
be clarified below, and a ternary predicate witness. The signature of the second sort
is based on a signature containing a set of variables (denoted in our examples by X
possibly subscripted) and uninterpreted constants (for which we use integers as labels),
and allows no functions and no predicates other than equality. We assume fixed the sets
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of constants and denote by L (V ) the set of well-formed formulas of such a two-sorted
first-order language defined over a (also two-sorted) set V of variables, which we will
instantiate with the concrete program variables of our SiL programs.

4.1.2 Symbolic execution notions

Before presenting the algorithm, we introduce some notions concerning symbolic exe-
cution. In the following, we will assume given a program graph (Λ, l0,∆).

Definition 16. Let V be the set of program variables. A symbolic data state is a triple
(P,C,E), where P is a (again, two-sorted) set of parameters, i.e., variables not in V ,
C ∈L (P) is a constraint over the parameters, and the environment E is a map from
the program variables V to terms of the corresponding sort defined over P, where, in
particular, that IK is mapped to a set of message terms and witness to a set of triples of
message terms. We write Ξ to denote the set of symbolic data states. �

Given its definition, a symbolic data state ξ can be characterized by the predicate

χ(ξ ) = C ∧ (
∧

v∈V\{IK}(v = E(v))) ∧ (
∧

m∈E(IK) DY0
IK(m)) ∧

(
∧

(m1,m2,m3)∈E(witness) witness(m1,m2,m3)) .

Note that the variable IK is treated in a particular way, i.e., we translate the fact that
E(IK) = M for some set M of parametric messages into a formula expressing that a
predicate DY0

IK holds for all the messages in M.
A symbolic data state ξ can be associated to the set ε(ξ ) of data states produced by

the map E for some valuation of the parameters satisfying the constraint C. We assume
a defined initial symbolic data state ε(ξ0) = {d0}.
Definition 17. A symbolic state is a pair (l,ξ ) ∈ Λ×Ξ. A symbolic interpreter SI is a
total map from the set A of SiL actions to Ξ×Ξ such that for each symbolic data state
ξ and action a, ∪ε(SI(a)(ξ )) = Sem(a)(σ(ξ )). �

Intuitively, SI takes a symbolic data state ξ and an action a and returns a non-empty
set of symbolic data states, which represent the set of states obtained by executing the
action a on ξ .

4.1.3 IntraLa basic notions

Definition 18. An algorithm state is a triple (Q,A,G) where Q is the set of queries
(where a query is a symbolic state), A is a program annotation (or simply annotation,
for short) and G⊆ Λ is the set of goal locations that have not been reached. �

During the execution of the algorithm, the set of queries is used to keep track of
which symbolic states still need to be considered, i.e., of those symbolic states whose
location has at least one outgoing edge that has not been symbolically executed, and
the annotation is a decoration of the graph used to prune the search. Formally:

Definition 19. A program annotation is a set of pairs in (Λ∪∆)×L (V ). We will
write these pairs in the form l : φ or e : φ , where l is a location, e is an edge and φ is
a formula called the label. When we have more than one label on a given location, we
can read them as a disjunction of conditions: we define A(l) =

∨
{φ | l : φ ∈ A}. �
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Definition 20. For an edge e = (ln,a, ln+1), the label e : φ is justified in A whenever
starting from the precondition formula φ and by executing the action a, the postcondi-
tion produced is A(ln+1), i.e., when it implies the annotation of ln+1 after executing a.
In that case, we write J (e : φ ,A).

Let Out(l) be the set of outgoing edges from a location l. The label l : φ is justified
in A when, for all edges e ∈ Out(l), there exists e : ψ ∈ A such that ψ is a logical
consequence of φ .

An annotation is justified when all its elements are justified. �

A justified annotation is inductive and if it is initially true, then it is an inductive
invariant. The algorithm maintains the invariant that A is always justified.

Definition 21. A query q = (l,ξ ) is blocked by a formula φ when ξ |= φ and we then
write Bloc(q,A(φ)).

With respect to q, the edge e is blocked when Bloc(q,A(e)) and the location l is
blocked when Bloc(q,A(l)). �

4.2 The rules of our algorithm
The rules of our algorithm are given in Fig. 7.

4.2.1 Initialization

The first rule applied is always Init, which initializes the algorithm state, i.e., the algo-
rithm starts from the initial location, the initial symbolic data state, an empty annotation
and a set G0 of goals to search for, which is given as input together with the graph. Af-
ter the application of Init, the rules Decide, Learn and Conjoin can be applied whenever
their side-conditions are satisfied.

4.2.2 Symbolic execution steps

The Decide rule is used to perform symbolic execution. By symbolically executing one
program action, it generates a new query from an existing one. It may choose any edge
that is not blocked and any symbolic successor state generated by the action a. If the
generated query is itself not blocked, it is added to the query set. In the definition of the
rule, SI is a symbolic interpreter, ln and ξn denote the currently considered location and
symbolic data state, respectively, and ln+1 and ξn+1 the location and symbolic data state
obtained after executing the action a. The side conditions of the Decide rule require
that, when we move from ξn to ξn+1, the first needs to be into the query set and the
branch between the two nodes must exist and not be blocked (neither the edge nor the
location).

4.2.3 Backtracking steps

During a backtracking phase, two rules are used:

(i) Learn, which generates annotations; and
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INITIALIZATION

{(l0,ξ0)}, /0,G0
Init

SYMBOLIC EXECUTION STEPS

Q,A,G
Q+(ln+1,ξn+1),A,G

Decide

q = (ln,ξn) ∈ Q

e = (ln,a, ln+1) ∈ ∆

¬Bloc(q,A(e))

ξn+1 ∈ SI(a)(ξn)

¬Bloc((ln+1,ξn+1),A(ln+1))

BACKTRACKING STEPS

Q,A,G
Q,A+ e : φ ,G Learn

q = (ln,ξn) ∈ Q

e = (ln,a, ln+1) ∈ ∆

Bloc(q,φ)

J (e : φ ,A)

Q,A,G
Q −q,A+ ln : φ ,G− ln

Conjoin

q = (ln,ξ ) ∈ Q

¬Bloc(q,A(ln))

(∀e ∈ Out(ln).

e : φe ∈ A∧Bloc(q,φe))

φ =
∧
{φe | e ∈ Out(ln)}

Figure 7: Rules of the algorithm IntraLA with corresponding side conditions

(ii) Conjoin, which merges annotations coming from distinct branches.

If some outgoing edge e = (ln,a, ln+1) is not blocked, but every possible symbolic step
along that edge leads to a blocked state, then the rule Learn is applied. Such a rule
infers a new label φ that blocks the edge, where the formula φ can be any formula
φ that both blocks the current query and is justified. In Section 4.3, we will explain
how the formula φ can be obtained by exploiting the Craig interpolation lemma [13],
which states that given two first-order formulas α and β such that α∧β is inconsistent,
there exists a formula φ (their interpolant) such that α implies φ , φ implies ¬β and
φ ∈L (α)∩L (β ).

Finally, the rule Conjoin is used when all the outgoing edges of the location in
a query q are blocked. The rule blocks the query q by labeling its location with the
conjunction of the labels that block the outgoing edges. If the location is a goal, then
we can remove it from the set of remaining goals. Finally, the query is discarded from
the set q.
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4.3 The generation of interpolants
We have seen in Section 4.2 that the rule Learn (Fig. 7) requires the generation of a
formula φ that blocks the current query and is justified, to be used as an annotation.
Here we will first introduce some notions concerning the description of data states and
actions in our annotation language and then describe how to obtain the formula φ as an
appropriate interpolant.

Let µ be a term, a formula, or a set of terms or of formulas. We write µ ′ for
the result of adding one prime to all the non-logical symbols in µ . Intuitively, the
prime is used to refer to the value of a same variable in a later step and it is used in
transition formulas, i.e., formulas in L (V ∪V ′). Since the semantics of a SiL action
(see Section 3.1) expresses how we move from a data state to another, we can easily
associate to it a transition formula. In the following, we will write Sem(a) to denote
the transition formula corresponding to the action a.

In the context of our graphs, the most interesting case is when the action a is rep-
resented by a conditional statement, with a condition of the form IK `M for some
message M, which intuitively means that the message M can be derived from a set of
messages IK by using the rules of NDY of Fig. 1. In our treatment, we fix a value n as
the maximum number of inference steps that the intruder can execute in order to derive
M. We observe that this is not a serious limitation of our method since several results
(e.g., [34]) show that, when considering a finite number of sessions, as in our case, it is
indeed possible to set an upper bound on the number of inference steps needed. Such
a value can be established a-priori by observing the set of messages exchanged along
the protocol scenario; we assume such an n to be fixed for the whole scenario.5

We use formulas of the form DY j
IK(M), for 0 ≤ j ≤ n, with the intended meaning

that M can be derived in n steps of inference by using the rules of NDY . In particular,
the predicate DY0

IK is used to represent the initial knowledge IK, before any inference
step is performed. Under the assumption on the n mentioned above, the statement
IK `M can be expressed in our language as the formula DYn

IK(M).
The formula

ϕ j = ∀M.(DY j+1
IK (M)↔ (DY j

IK(M)

∨ (∃M′.DY j
IK([M,M′])∨DY j

IK([M
′,M]))

∨ (∃M1,M2.M = [M1,M2]∧DY j
IK(M1)∧DY j

IK(M2))

∨ (∃M1,M2.M = {M1}M2 ∧DY j
IK(M1)∧DY j

IK(M2)))

∨ (∃M′.DY j
IK({M}M′)∧DY j

IK(inv(M′)))

∨ (∃M′.DY j
IK({M}inv(M′))∧DY j

IK(M
′))

∨ (∃M1,M2.M = {|M1|}M2 ∧DY j
IK(M1)∧DY j

IK(M2)))

∨ (∃M′.DY j
IK({|M|}M′)∧DY j

IK(M
′))) ,

in which↔ denotes the double implication and every quantification has to be intended
5The ability of the intruder of generating new messages can be simulated by enriching his initial knowl-

edge with a set of constants not occurring elsewhere in the protocol specification. Since we consider finite
scenarios, the size of such a set can also be bounded a-priori.
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over the sort of messages, expresses (as a disjunction) all the ways in which a given
message can be obtained by the intruder in one inference step, i.e., by a single applica-
tion of one of the rules in the system NDY , thus moving from a knowledge (denoted by
the predicate) DY j

IK to a knowledge (denoted by the predicate) DY j+1
IK .

A theory TMsg(n) over the sort of messages is obtained by enriching classical first-
order logic with equality with the axioms ϕ j, for 1≤ j < n, together with an additional
set of axioms that formalize that in the free algebra of messages any two distinct ground
terms are not equal, e.g., ∀M1.M2.M3.M4.([M1,M2] = [M3,M4])⊃ (M1 = M3∧M2 = M4).

Our translation of the program statement IK `M into the formula DYn
IK(M) is jus-

tified by the following result. This is proved by induction on the height of a derivation
Π in the system DY (IK), which is defined as the greatest number of successive appli-
cations of rules in Π.

Theorem 2. Let M be a ground message, n ∈ N, IK a set of ground messages and I
an interpretation of TMsg(n) such that IK = I (DY0

IK). Then I satisfies the formula
DYn

IK(M) iff there exists a derivation of M ∈ DY (IK) of height at most n+ 1 in the
system NDY .

Proof. (⇒) Assume that the interpretation I satisfies the formula DYn
IK(M), denoted

I |=DYn
IK(M). We proceed by induction on n. If n= 0, then we have I |= DY0

IK(M),
i.e., M ∈I (DY0

IK) which by hypothesis gives M ∈ IK. But then there exists a deriva-
tion in NDY of M ∈ DY (IK), obtained by a single application of the rule Gaxiom. Now
assume we have proved the assert for n= j−1 and consider n= j. Since I satisfies the
premise of the left-to-right implication in ϕ j−1, i.e., DY j

IK(M), then it must also satisfy
one of the disjuncts in the conclusion. We have a case for each disjunct. We consider
two of them; the others are similar. (i) Let I |= DY j−1

IK (M). By induction hypothesis,
there exists a derivation of M ∈DY (IK) in NDY of height at most j, which is the deriva-
tion we were looking for. (ii) Let I |= ∃M′.DY j−1

IK ([M,M′])∨DY j−1
IK ([M′,M]). We

can assume there exists a message M′ such that I |= DY j−1
IK ([M,M′]) (the other case is

symmetrical). By induction hypothesis, there exists a derivation of [M,M′] ∈ DY (IK)
in NDY of height at most j. A further application of Apairi gives a derivation of
M ∈ DY (IK) of height at most j+1.

(⇐) Again, we proceed by induction on n. If n = 0, the only admissible derivation
of M ∈ DY (IK) is the one given by an application of Gaxiom. It follows that M ∈ IK.
Then IK = I (DY0

IK) implies I |= DY0
IK(M). Now let us consider n = j and assume

we have a derivation of M ∈ DY (IK) of length at most j + 1. Let r be the last rule
applied. We have one case for each rule in NDY . Let r be Gpair. It follows that we have
two derivations, of length at most j, of M1 ∈ DY (IK) and M2 ∈ DY (IK), respectively,
where M = [M1,M2]. By induction hypothesis, we have I |= DY j−1

IK (M1) and I |=
DY j−1

IK (M2), which implies that I satisfies one of the disjuncts in the premise of the
right-to-left implication of ϕ j−1. It follows that its conclusion must also be satisfied,
i.e., I |= DY j

IK(M). The other cases can be treated similarly.

Now let α = χ(ξn) and β = Sem(a)∧¬A(ln+1)
′. Then we can obtain the formula φ

we are looking for, during an application of the rule Learn, as an interpolant for α and
β , possibly by using an interpolating theorem prover. With regard to this, we observe
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that, in the presence of our finite scenario assumption, when mechanizing such a search,
the problem can be simplified by restricting the domain to a finite set of messages.

4.4 Output and correctness of the algorithm
The algorithm terminates when no rules can be applied, which implies that the query
set is empty. In [25], the correctness of the algorithm, with respect to the goal search,
is proved: the proof given there applies straightforwardly for the slightly simplified
version we have given here.

Theorem 3. Let G0 be the set of goal locations provided in input. If the algorithm ter-
minates with the algorithm state (Q,A,G), then all the locations in G0\G are reachable
and all the locations in G are unreachable.

The output of our method can be of two types. If no goal has been reached, then
we have a proof of the fact that no attack can be found, with respect to the security
property of interest, in the finite scenario that we are considering. Otherwise, for each
goal location that has been found, we can generate an abstract attack trace. We also note
that, by a trivial modification of the rule Conjoin, we can easily obtain an algorithm
that keeps searching for a given goal even when this has already been reached through
a different path, thus allowing for extracting more attack traces for the same goal on a
given scenario.

Such traces can be inferred from the information deducible from the symbolic data
state (P,C,E) corresponding to the last step of execution. We proceed as follows. First
of all, we can reconstruct the order in which sessions have been interleaved. Such
an information is completely contained in the value of the parameters corresponding
to the variables X j, for j an integer. The value of such parameters is specified in C.
This allows for obtaining the sequence of messages exchanged, expressed in terms
of program variables. Then, by using the maps in E, each such a variable can be
associated to a function over the set of parameters P, and possibly further specified
by the constraints over the parameters in C. It follows that the final result will be a
sequence of messages where all the variables have been replaced by (functions over)
parameters. Such a sequence constitutes our attack trace. In the case when the value
of some parameter is not fully specified by the conditions in C, we have a parametrical
attack trace, which can be instantiated in more than one way. A concrete example of
this can be found in Example 6.

Example 6. We continue our running example by showing the execution of the algo-
rithm on some interesting paths of the graph defined in Section 3.2 for the protocol
NSL: Table 1 summarizes the algorithm execution.

For readability, we have not reported the evolution of parameters and goals set.
We remark that each new parameter is added to the parameters set once used and the
goals set is initialized with the goal locations corresponding to the translation of the
authentication goal auth (see Section 3.2 for details) but, given that no goal is reached,
the goals set does not change during the execution of the algorithm. Note that in the
table we use statements of the form IK `M in the constraint set as an abbreviation for
the set of constraints over the parameters that make the (translation of the) statement
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satisfiable, according to the definition above. Qi, Ci and Ei denote, respectively, the
set of queries, the set of constraints and the environment at step i of the execution. We
have also used # to indicate the step number and R to indicate which rule is applied
using the first letter of the rule.

The first path we show (summarized by the Message Sequence Chart (MSC) in
Fig. 8) reaches a goal location with an unsatisfiable state and then annotates it with an
interpolant, while the other ones reach the previously annotated path and then block
their executions (thus saving some execution steps). The algorithm starts, as described
in Table 1, by using the Init rule to initialize the algorithm state and then it symbolically
executes the program graph from query (l0,ξ0) to (l18,ξ18) using the Decide rule (steps
0–19). In step 20, the algorithm blocks its symbolic execution because the edge (l19, l20)
is labeled with the goal action for an authentication goal and any possible symbolic
execution step leads to a blocked symbolic data state. The backtrack phase starts and,
until step 33, the algorithm creates interpolants to annotate the program graph and
then it propagates annotations up to the location l14 (where the symbolic execution
restarts with the Decide rule but we have not reported it in Table 1 for lack of space).

As shown in Fig. 9, there are other two paths that reach location l18. Each path that
reaches this location has already executed an action of the form IK ` {NA,NB,B}pk(A).
As described in [21], it is impossible for the DY intruder to create a message of the form
{NA,NB,B}pk(A) from its knowledge (IK) if the intruder is not explicitly playing the
role of the sender, i.e., A. This means that each symbolic state that reaches location l18
implies the interpolant S2_Bob.A = i. This is a concrete example of how the annotation
method can help (and improve) the search procedure: in NSL we can stop following
every path that reaches location l18 as the annotation method ensures that we will never
reach a goal location.

While with NSL the algorithm concludes with no attacks found, if we consider the
original protocol NSPK (i.e., remove Lowe’s addition of “B” in the second message of
the protocol), then our method reaches the goal location with an execution close to the
one we have just provided. In fact, in NSPK, when we compute the step after the 19th,
the intruder rules lead to the goal with the inequality S2_Bob.A 6= i. This is because
the intruder i can perform a man-in-the-middle attack using the initiator entity of the
first session in order to decrypt the messages that the receiver sends to i in the second
one [21]. To show the attack trace, we first check the path that is used during the
algorithm execution to reach the goal location and that is represented by the values of
X j parameters contained in the C19 set. In this case, {X11 = 2, X9 = 1} ⊆C19, which
produces the symbolic attack trace (at state 19 of the algorithm execution) shown in
the middle of Fig. 2.

Now, by using the information in Ξ19, we can instantiate this trace using parameter
and constant values, and thus obtain the instantiated attack trace shown on the right
of Fig. 2. We can note from IK19 that Y2 has no constraints on the fact that it has to
be i, i.e., the intruder acts as if it were an honest agent (under his real name) in the
first session, and then we write the concretization as i(a) to show that the intruder is
acting as the honest agent a in the second session and this makes possible the man-in-
the-middle-attack.

It is also not difficult to extract from this instantiated attack trace a test case, which
can then be applied to test the actual protocol implementation. In fact, the constraint
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Figure 9: NSL sub-graph.

set contains a sequence of equalities of the form Xi = n, which specify the session to be
followed at each branch of the executed path. �

5 The SPiM tool
In order to show that our method concretely speeds up the validation, we have imple-
mented a Java prototype called SPiM (Security Protocol interpolation Method), which
is available at http://regis.di.univr.it/spim.php. As shown in Fig. 10,
SPiM takes an ASLan++ specification as input that is automatically translated into a
SiL program graph by the translator ASLan++2Sil. The program graph is then given as
input to the Verification Engine (VE), which verifies the protocol by searching for goal
locations that represent attacks on the protocol. The VE is composed by three main
components:

(i) a quantifier elimination module,

(ii) DY intruder and EUF (Equalities and Uninterpreted Functions) theories and

(iii) the tools Z3 [31] and iZ3 [26], used for SAT solving and interpolant generation,
respectively.

Both Z3 and iZ3 are invoked by SPiA (Security Protocol interpolation Algorithm),
which is our implementation of the algorithm in Section 4. Quantifier elimination and
the definition of theories are related to the usage of Z3 and iZ3. In fact, as shown in
Section 4, our algorithm needs to handle many quantifications and, for performance
issues, a module that unfolds each quantifier over the finite set of possible messages
has been developed. Moreover, the DY theory has been properly axiomatized (with
respect to each formula produced by SPiA) in Z3 and iZ3, which do not support it by
default.
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Figure 10: The SPiM tool.

More specifically, the VE symbolically executes a program graph. After the execu-
tion of an action branching from a node to the next one, it produces a formula, which
represents the symbolic state reached. Z3 is then used for a satisfiability check on the
newly produced formula. When the symbolic execution of a given path fails to reach
a goal, the VE calls iZ3, which generates an annotation (i.e., a formula expressing a
condition under which no goal can be reached) by using Craig’s interpolation. By a
backtracking phase, SPiA propagates the annotation through the program graph. Such
an annotation is possibly used to block a later phase of symbolic execution along an
uninteresting run, as explained in Section 4. SPiM concludes reporting either all the
different reachable attack states (from which abstract attack traces can be extracted) or
that no attack has been found for the given specification.

5.1 Experiments and results
We considered 7 case studies and compared the results obtained by using interpolation-
driven exploration (SPiA) and full exploration (Full-explore) of the program graph.
Full-explore explores the entire graph checking, at each step, if the state is satisfiable
or not. If there is an inconsistence, SPiM blocks the execution of the path resuming
from the first unexplored path, until it has explored all paths.6

Table 2 shows the results obtained (with a general purpose computer), by making
explicit the time required for symbolic execution steps (applications of Decide) and for
interpolant generation (applications of Learn). The usage of SPiA has allowed us to
speed up the validation (in the context of security protocols, i.e, using the DY intruder)
by (i) reducing the number of states to explore and then (ii) lowering the execution
time. The relation between (i) and (ii) is due to the fact that the time needed to perform
a Decide is comparable to the one required to perform a Learn, and the time used to
propagate the annotations (Conjoin rule) is negligible. For example, the time needed
to symbolically execute a (sub-)path twice, using Full-explore, is comparable to the

6It would be possible to modify the Full-explore algorithm and check for inconsistencies at the end of the
path instead of at any step but this would lead to an unfair comparison. In fact, a similar improvement could
have been implemented also for SPiM, but then it would have been difficult to distinguish between the steps
pruned by interpolation and those pruned by such an improvement.
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Table 2: SPiA vs Full-explore.
Specification (sessions) SPiA: Decide+Learn (time) Full-explore: Decide (time) Speedup % Result
ISO6 (ab,ab) 311+274 (205m6s) 467* (278m12s) -26.28 % no attack found
NSL (ab,ab) 257+234 (57m37s) 631 (173m7s) -66.71 % no attack found
NSL (ai,ab) 89+22 (1m30s) 119 (1m49) -17.43 % no attack found
NSPK (ab,ab) 257+234 (26m5s) 631 (76m20s) -65.82 % no attack found
NSPK (ai,ab) 101+22 (0m56s) 123 (0m51s) +8.92 % attack found
Helsinki (ab,ab) 311+274 (112m7s) 660* (261m47s) -57.17 % no attack found
Helsinki (ai,ab) 167+88 (13m41) 407 (46m44s) -70.72 % attack found

time used to execute and annotate the same (sub-)path. But from that point on, if the
annotation blocks the execution, only the Full-explore will execute that (sub-)graph
again. We have observed that, in the case studies analyzed, the annotations block the
executions of all those (sub-)paths that do not reach a goal location, thus ensuring a
clear improvement of the performances. In particular, when applying a Decide moving
from a node l1 to a node l2, we generate a formula, which describes the state of the
execution at node l2 and the axiomatization of the DY theory; this formula is then
given to Z3 that “decides” whether it is satisfiable or not. On the other hand, in order
to execute a Learn between the same S1 and S2, we translate the state S1 with the
axiomatized DY theory into a formula α and the semantics of the action a together with
all previous annotations into a formula β . In order to find an interpolant we use iZ3
that performs a satisfiability check on the formula α ∧β (very similar to what a Decide
would do) and from the refutation by resolution steps an interpolant can be calculated
in linear time [22, 23]. Finally, the Conjoin rule propagates these interpolants without
performing other satisfiability checks.

Empirically, the more the program graph grows the more the annotations prune the
search space. This is due to the fact that the number of states pruned by interpolation
is usually related to the size of a program graph; this is confirmed by the results in
Table 2 and, in particular, by the case studies for which Full-explore has not concluded
the execution (marked with an asterisk).

We have also compared the SPiM tool with the three state-of-the-art model check-
ers for security protocols that are part of the AVANTSSAR platform [4]: CL-AtSe [36],
OFMC [8] and SATMC [1].7 Not surprisingly, Table 3 shows that their average compu-
tational times of execution are in general better than ours. This is mainly due to several
speed-up techniques implemented by these model checkers and to empirical conditions
that can stop the execution (both not implemented yet in SPiM). In Table 3, we have
also reported the number of transitions and/or nodes reached during the validations
with the exception of SATMC, which does not report them as output. However, for
each safe specification (in which no attacks are found), SATMC reached the maximum

7For this comparison, given that all these tools support ASLan++, we have used the same input files and
we have also used the same general purpose computer used to generate the results in Table 2. We have con-
sidered OFMC v2012c, which is the last version that supports ASLan++ although it only supports untyped
analysis, while for SATMC and CL-AtSe we have considered versions 3.4 and 2.5-21, respectively, which
support typed analysis as SPiM does. Note that the times shown in Table 2 also consider the translation from
ASLan++ to SiL program graph (usually several seconds), while in Table 3 we do not show the translation
time from ASLan++ to ASLan (the input supported by the three tools), which is usually less than one second.
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Table 3: SATMC, CL-AtSe and OFMC.
Specification (sessions) SATMC (v.3.4) CL-AtSe (v.2.5-21) OFMC (v.2012c) Result

time transitions states time nodes time

ISO6 (ab,ab) 6.318s 452 236 0.034s 8432 3.804s no attack found
NSL (ab,ab) 14m28s 794 534 0.052s 3236 3.295s no attack found
NSL (ai,ab) 6m51s 93 69 0.015s 575 0.327s no attack found
NSPK (ab,ab) 14m10s 794 534 0.053s 8180 3.208s no attack found
NSPK (ai,ab) 1m56s 14 10 0.014s 96 0.134s attack found
Helsinki (ab,ab) 7.01s 794 534 0.061s 8180 3.795s no attack found
Helsinki (ai,ab) 50.8s 14 10 0.017s 96 0.121s attack found

number of steps (80) permitted as default and the reported timings are comparable to
those obtained by SPiM for some specifications; in the case when they are not com-
parable, it is interesting to observe that SPiM executes a number of rules much higher
than 80. For both CL-AtSe and OFMC, on safe specifications, the number of transi-
tions and nodes explored is, in most cases, higher than the number of rules (transitions)
of SPiM (Table 2). On unsafe specifications (where an attack is found), these numbers
seem to be in disfavor of SPiM but this is because SATMC, OFMC and CL-AtSe stop
their executions once a goal is found, while SPiM searches for every possible attack
trace in the program graph (i.e., SPiM features a multi-attack-trace support).

We remark that the aim of SPiM is mainly to show that Craig’s interpolation can
be used as a speed-up technique also in the context of security protocols and not (yet)
to propose an efficient implementation of a model checker for security protocol ver-
ification. In fact, we do not see our approach as an alternative to such more mature
and widespread tools, but we actually expect some interesting and useful interaction.
For example, CL-AtSe implements many optimizations, like simplification and rewrit-
ing of input specifications, and OFMC implements some optimizations at the intruder
level as well as a specific technique, called constraint differentiation (CDiff), which
considerably prunes the state space (it is more or less the equivalent of partial-order
reduction techniques typical of model checking, where the reduction is “pushed” to
the constraint solving procedure). Moreover, both CL-AtSe and OFMC implement the
step compression and protocol simplifications techniques, which merge together some
of the actions performed in the protocol.

We do not see any incompatibility in using interpolation together with such opti-
mization techniques. For instance, CDiff prunes the state space by not considering the
same state twice, whereas interpolation works on reducing the search space by exclud-
ing some paths during the analysis (i.e., it prunes the execution of some of the paths).
Moreover, based on the idea that the intruder controls the network, when the intruder
sends a message (IK `M) to an honest agent and the honest agent sends back a reply
(IK := IK +{M}), step compression merges the two into a single step. This would
reduce the state space but not prevent SPiM to generate and use interpolants.

The only possible side effect that we foresee in using interpolation together with
such optimization techniques is that the number of paths pruned by interpolation could
decrease when we use it in combination with other techniques. In general, however,
although we do not have experimental evidence yet, we expect that if enhanced with
such techniques, SPiM could then reach even higher speed-up rates. We are currently
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working in this direction.

6 Related work
To the best of our knowledge, there is no other tool for security protocol analysis that
uses a speed-up technique based on Craig’s interpolation. We now discuss some further
related work on interpolation, in addition to the works we already considered in detail
in the other sections of the paper.

In [25], McMillan presented the IntraLA algorithm that we have used as a basis
for this work. However, our application field is network security whereas IntraLA has
been developed for software verification, and this has led to a number of substantial
differences between the two works. First of all, our case studies are security protocols,
and thus parallel programs, whereas IntraLA works on sequential ones. For this reason,
we have defined a simple programming language (SiL) with some protocol-oriented
features and provided a translation procedure from protocol specifications (expressed
in ASLan++) into SiL programs (proving the correctness of the translation with respect
to the semantics of ASLan++). In particular, given the object of our study, SiL allows
to express statements aimed at handling the actions of the DY intruder. The DY theory
has then been used both in the symbolic execution of a program graph (Decide rule,
Section 4) and for interpolants generation (Learn rule, Section 4). The nature of the
goals that we verify also differ from the ones in [25], as they are directly related to
security goals like authentication and integrity. The same differences can be found
between SPiM and IMPACT II (the implementation of [25]): IMPACT II takes as input
control flow graphs from C programs and has been tested on the source codes of drivers.
The algorithm implementations do also have some differences. In particular, in SPiA,
we have implemented an optimization according to which an interpolant is calculated,
at a given node or edge, only when the graph presents an unexplored path that can be
blocked by such an interpolant.

Recently, McMillan has proposed in [27] a variation of IntraLA that mainly adapts
IntraLA to large-block encoding (LBE).This technique reduces the abstract reachability
tree used by the IntraLA algorithm, for example by simplifying the tree produced from
very long sequences of if statements. Moving from original trees to the ones produced
with LBE is not a trivial task and requires further investigation. Introducing LBE could
speed up our tool too but, as we have already discussed in Section 5.1, we implemented
SPiM mainly to show that interpolation can concretely be used as a speed-up technique
together with the DY intruder model in the context of security protocols. Other works
by McMillan that exploit the use of Craig interpolation in model checking are [22, 24],
but interpolants are used there in a different way, i.e., to apply interpolant-based image
approximation.

Besides for McMillan’s works on interpolation applied to model checking, there
are a number of model checkers that implement different techniques to speed-up the
search for goal locations. In particular, for the purpose of the comparison with SPiM
and in addition to the tools already considered in Section 5.1, we consider here four se-
curity protocol analysis tools that implement the DY intruder theory: Maude-NPA [18],
ProVerif [9], Scyther [14] and Tamarin [35].
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Besides for DY, Maude-NPA supports a wide range of theories such as the “associative-
commutative plus identity” theory. Maude-NPA has been implemented with particular
focus on performances and in fact, during the analysis, it takes advantage of various
state-space reduction techniques. These range from a modified version of the lazy in-
truder (called “super lazy intruder”) to a partial-order reduction technique. The ideas
behind the speed-up techniques of Maude-NPA are very similar to the ones of SPiM:
reduce the number of states to explore and try to not explore a state after having the
evidence that from this state the model checker will never reach the goal location (i.e.,
will never reach the initial state given that Maude-NPA performs a backward reachabil-
ity search). As for all the back-ends of the AVANTSSAR Platform (discussed in Sec-
tion 5.1), in principle we do not see any incompatibility in combining the interpolation-
based technique we have proposed in this paper with the speed-up techniques imple-
mented in Maude-NPA. However, Maude-NPA performs backward reachability analy-
sis whereas our technique has been defined for forward reachability analysis. This does
not prevent possible useful interaction between the two approaches but it might require
a non-trivial adaptation of the interpolation-based algorithm.

In ProVerif, security protocols are represented using Prolog rules in order to handle
multiple executions. It implements an efficient algorithm that, combined with a unifi-
cation technique along with rule optimization procedures, handles the problem of state-
space explosion. Due to the particular nature of the techniques it implements, it is not
clear if ProVerif could further improve its performance by integrating an interpolation-
based technique.

Scyther uses a pattern-refinement algorithm that provides concise representations
of (infinite) sets of traces. It does not use approximation methods nor abstraction
techniques and it could thus benefit from including our technique, in particular, when
unbounded verification is performed. However, as for Maude-NPA, due to Scyther’s
backward searching algorithm, this integration would require further study.

Tamarin uses a constraint-solving algorithm and a symbolic representation of states
like SPiM, but supports analysis for an unbounded number of protocol sessions. In-
truder capabilities and protocols are specified jointly as a set of (labeled) multiset
rewriting rules. Tamarin is particularly well suited for the analysis of protocols that
use the Diffie-Hellman key exchange, which SPiM does not handle. One of the main
difficulties one might have in implementing our speed-up technique in Tamarin is thus
with the Diffie-Hellman key representation. However, since Tamarin uses a (labeled)
operational semantics that is similar to the one used in SPiM, it might still be feasible
to adapt the interpolation technique successfully.

7 Concluding remarks
We believe that our interpolation-based method, together with its prototype implemen-
tation in the SPiM tool and our experimental evaluation, shows that we can indeed use
interpolation to reduce the search space and speed up the execution also in the case
of security protocol verification. In particular, as we have shown, we can use a stan-
dard security protocol specification language (ASLan++, but, we believe that with little
effort, also other languages that specify the different protocol roles as interacting pro-
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cesses could be used) and translate automatically into SPiM’s input language SiL with
the guarantee that in doing so we will not introduce nor lose any attack. The tool then
proceeds automatically and concludes reporting either all the different reachable states
(from which one or more abstract attack traces can be extracted) or that no attack has
been found for the given specification.

As future work, we plan to increment our experimental results by considering fur-
ther (and more complex) security protocols, such as those described in [10] and in the
standard literature. This will allow us to collect further evidence on to what extent
interpolation can indeed increase the performance of SPiM.

More importantly, as we remarked above, we are not aware of any other tool for
security protocol verification that uses an interpolation-based speed-up technique, and
we believe that actually interpolation might be proficiently used in addition (and not in
alternative) to other optimization techniques for security protocol verification. We are
thus currently investigating possible useful interactions between interpolation and such
optimization techniques, given that there are no theoretical or technical incompatibili-
ties between them. This will allow us to enhance SPiM and promote its performance
closer to the level of the more mature tools. Symmetrically, it would be interesting
to investigate also whether such mature tools might benefit from the integration of
interpolation-based techniques such as ours to provide an additional boost to their per-
formance. This will of course be a much more challenging endeavor to undertake, as
it will possibly require some internal changes to already deployed tools, but given our
close scientific relations to some of the tool developers, we are hopeful that we will be
able to carry out some attempts in this direction.
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A ASLan++ specification of NSL.

1 specification NSL
2 channel_model CCM
3

4 entity Environment {
5 symbols
6 a,b:agent;
7

8 entity Session (A, B: agent) {
9

10 entity Alice (Actor, B: agent) {
11

12 symbols
13 Na, Nb: text;
14

15 body {
16 Na := fresh();
17 Actor -> B: {Na.Actor}_pk(B);
18 B -> Actor: {Na.?Nb.B}_pk(Actor);
19 Actor -> B: {auth:(Nb)}_pk(B));
20 }
21 }
22

23 entity Bob (A, Actor: agent) {
24

25 symbols
26 Na, Nb: text;
27

28 body {
29 ? -> Actor: {?Na.?A}_pk(Actor);
30 Nb := fresh();
31 Actor -> A: {Na.Nb.Actor}_pk(A);
32 A -> Actor: {auth:(Nb)}_pk(Actor);
33 }
34 }
35

36 body { % of Session
37 new Alice(A,B);
38 new Bob(A,B);
39 }
40

41 goals
42 auth:(_) A *-> B;
43 }
44

45 body { % of Environment
46 any Session(a,i);
47 any Session(a,b);
48 }
49 }

B NSL Program Graph
Fig. 11 shows the SiL program graph for the protocol NSL with respect to the instanti-
ation of Example 1.
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C Proof of Lemma 1
Proof. We show two representative cases; the other ones can be treated similarly. (i)
Let the statement I considered be the receipt of a message having the form:

1 entity Environment {
2 ...
3 entity Session (A, B: agent) {
4 ...
5 entity Alice(Actor, B: agent) {
6 ...
7 body {
8 ...
9 B -> Actor: M(?A_1,...?A_n)

10 ...
11 }

The corresponding ASLan rule r has the form:
1 step ...(...) :=
2 PF’.
3 iknows(M’(N_1,..., N_n)).
4 state_Alice(B_1,...,B_m)
5 =>
6 R’.
7 state_Alice(B’_1,...,B’_m)

where M′ is the ASLan translation of M, n≤ m and ∀ j.1≤ j ≤ m if j = f (Alice,A_i)
for some 1≤ i≤ n, then B′_ f (Alice,A_i) = N_i, otherwise B′_ j = B_ j.
For simplicity, we ignore in the variable names the prefixes referring to the session
instance. w has the form:

1 if (IK |- M’’(Y_1,...,Y_n))
2 then
3 Alice.A_1 = Y_1;
4 ...
5 Alice.A_N = Y_N;
6 else
7 end

where M′′ is the SiL translation of M where we have replaced ?A_1, ...,?A_n with
Y_1, ...,Y_n.
(⇒) Let S′ be such that S r−→ S′. By the semantics of ASLan, there must exist a substi-
tution σ such that:

iknows(M′(N_1, ...,N_n)).state_Alice(B_1, ...,B_m)σ ⊆ dSeH

Furthermore, there exists a substitution σ ′′ such that:

state_Alice(B′_1, ...,B′_m)σσ
′′ ⊆

⌈
S′
⌉H

Then we can build an extension ς̄ of ς such that:

• ς̄(Y_i) = σ(N_i) for 1≤ i≤ n;

• ς̄(A) = σ(A) for any other variable A.

It follows that M′(N_1, ...,N_n)σ ∼M′′(Y_1, ...,Y_n)ς̄ and since iknows(M′(N_1, ...,N_n))σ ⊆
dSeH then, by hypothesis, M′′(Y_1, ...,Y_n)∈DY (ς̄(IK)) which implies < IK `M′′(Y _1, ...,Y _n), ς̄ >⇓
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true. By using this fact in the following derivation:

< IK `M′′(Y _1, ...,Y _n), ς̄ >⇓ true

< Y _1, ς̄ >⇓ ς̄(Y )

< Φ1, ς̄ >⇓ ς1

....
< Alice.A_2 := Y _2,ς1 >⇓ ς2

< Φ2, ς̄ >⇓ ς2 . . .
....

< Φn−1, ς̄ >⇓ Σn−1

< Yn,ςn−1 >⇓ ς̄(Yn)

< Ψn,ςn−1 >⇓ ςn ≡ ς ′

< Φn, ς̄ >⇓ ς ′

< i f (IK `M′′(Y _1, ...,Y _n)) then Φn else end, ς̄ >⇓ ς ′

we get that < w, ς̄ >⇓ ς ′ ≡ ςn, where we have used the abbreviations:

Φi ≡ Alice.A_1 := Y _1; . . . ; Alice.A_i := Y _i;

Ψi ≡ Alice.A_1 := Y _i; . . . ; Alice.A_i := Y _n;

ςi ≡ ς̄ [Alice.A_1← ς̄(Y _1), ..., Alice.A_i← ς̄(Y _i)].

We have that S′(Alice, f (Alice,A_i))=σ(B′_ f (Alice,A_i))=σ(N_i)= ς ′(Alice.A_i),
for 1 ≤ i ≤ n. Since S′ and ς ′ coincide with S and ς , respectively, for what concerns
the other variables, we can conclude S′ ∼ ς ′.
(⇐) Assume there exists an extension ς̄ of ς such that < w, ς̄ >⇓ ς ′. The case when
< IK `M′′(Y _1, ...,Y _n), ς̄ >⇓ false is trivial, since ς ′ ≡ ς̄ and we can easily take S′ ≡
S. Let < IK `M′′(Y _1, ...,Y _n), ς̄ >⇓ true. Then M′′(Y _1, ...,Y _n)ς̄ ∈ DY (ς(IK)). It
follows that we can choose a substitution σ such that σ(N_i) = ς̄(Y _i), for 1≤ i≤ n,
and thus iknows(M′(N_1, ...,N_n))σ ⊆ dSeH . By applying the rules of SiL semantics
as above and the rule r, we get an S′ such that S r−→ S′ and S′ ∼ ς ′.

(ii) Let us assume that Alice wants to authenticate Bob and consider, without loss
of generality, a program instance pi where pi(Alice) = a and pi(Bob) = i, since if Bob
is played by an honest agent, then the authentication property is trivially satisfied. I
has the form:

1 entity Environment {
2 ...
3 entity Session (A, B: agent) {
4 ...
5 entity Alice(Actor, B: agent) {
6 ...
7 body {
8 ...
9 B -> Actor: auth:(M);

10 ...
11 }
12 ...
13 }
14 ...
15 goals
16 auth:(_) B *-> A;
17 ....
18 }

and is a particular case of a receipt. As such, it is translated as a common receipt,
treated in case (i), plus special constructs/rules aimed at handling the goal conditions,
which will be treated here. The corresponding ASLan attack state is described by:
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1 attack_state auth(M’, Actor, B,..) :=
2 not(dishonest(B)).
3 not(witness(B, Actor, M’, auth)).
4 request(Actor, B, M’, auth, ...)

where M′ is the ASLan translation of M (for simplicity, we assume here that the payload
on which authentication is based is the whole message). We also add a corresponding
ASLan rule r of the form:

1 AS => AS.attack

which simply adds the 0-ary predicate attack to an attack state AS containing the pred-
icates described above.
The corresponding SiL statement w has the form:

1 if(not(Alice.B = i) and not(witness(Alice.B, Alice.Actor, M’’)))
2 then
3 attack := true;
4 else
5 skip;

where M′′ is the SiL translation of M. First, we notice that while the rule r can be
applied at any step in an ASLan run, the corresponding SiL statement w is placed, by
the translation procedure, immediately after the receipt instruction. For simplicity, we
will restrict to consider those ASLan runs where attack rules concerning authentication
goals, like r above, are only applied immediately after the receipt of the corresponding
message. This can be done without loss of generality (and is also the reason why we
do not need a request predicate in SiL).
(⇒) In order to apply the rule r, by the semantics of ASLan, there must exist a substi-
tution σ such that:

request(Actor,B,M′,auth, . . .).state_Alice(...,B, ...)σ ⊆ dSeH

where, in particular, σ(B)= S(Alice, f (Alice,B)). At the same time, we have: dishonest(B)σ 6⊆
dSeH and witness(B,Actor,M′,auth)σ 6⊆ dSeH .

Since, as for every ASLan state, dishonest(i)⊆ dSeH , we get σ(B) 6= i. Let ς̄ be an
extension of ς . By hypothesis, S∼ ς , from which we infer σ(B)= S(Alice, f (Alice,B))=
ς(Alice.B)= ς̄(Alice.B) 6= i. With analogous arguments, we infer (ς̄(Alice.B), ς̄(Alice.Actor), ς̄(M′′)) /∈
ς̄(witness). By using these facts, we obtain the derivation in Figure 12.

We have that S′ and ς ′ differ from S and ς̄ , respectively, only for the value of the
predicate attack. By observing that attack⊆ dS′eH and ς ′(attack) = true, we conclude
S′ ∼ ς ′.
(⇐) Let ς̄ be an extension of ς such that <w,ς >⇓ ς ′. The case when <Ψ, ς̄ >⇓ f alse,
where Ψ is defined as in (⇒) above, is trivial. Let us consider < Ψ, ς̄ >⇓ true. By
hypothesis, S ∼ ς and thus the preconditions of r concerning the predicates dishonest
and witness are enabled in S. As for the condition on the request, it is enabled by the
fact that the corresponding receipt has just been encountered, by construction of a SiL
graph. It follows that r can be applied and we get an ASLan state S′, which differs from
S only in the fact that attack⊆ dS′eH . Moreover, by applying the same derivation as in
case (⇒) above, we have ς ′(attack) = true, from which we conclude S′ ∼ ς ′.

46



Figure 11: A SiL program graph for NSL.

47



<
A

li
ce
.B
,ς̄

>
⇓

ς̄
(A

li
ce
.B
)

<
i,

ς̄
>
⇓

i

<
A

li
ce
.B

=
i>

ς̄
>
⇓

fa
ls

e

<
no

t(
A

li
ce
.B

=
i)
,ς̄

>
⇓

tr
ue

<
A

li
ce
.B
,ς̄

>
⇓

ς̄
(A

li
ce
.B
)

<
A

li
ce
.A

ct
or
,ς̄

>
⇓

ς̄
(A

li
ce
.A

ct
or
)

<
M
′′ ,

ς̄
>
⇓

ς̄
(M
′′ )

<
Φ
,ς̄

>
⇓

fa
ls

e

<
no

t(
Φ
),

ς̄
>
⇓

tr
ue

<
Ψ
,ς̄

>
⇓

tr
ue

<
tr

ue
,ς̄

>
⇓

tr
ue

<
at

ta
ck

:=
tr

ue
,ς̄

>
⇓

ς̄
[t

ru
e/

at
ta

ck
]

<
if

Ψ
th

en
at

ta
ck

:=
tr

ue
el

se
sk

ip
,ς̄

>
⇓

ς̄
[t

ru
e/

at
ta

ck
]≡

ς
′

In
th

e
de

riv
at

io
n,

w
e

us
ed

Φ
≡

w
it

ne
ss
(A

li
ce
.B
,A

li
ce
.A

ct
or
,M
′′ )

an
d

Ψ
≡

no
t(

A
li

ce
.B

=
i)

an
d
(n

ot
(Φ

))
as

ab
br

ev
ia

tio
ns

.

Fi
gu

re
12

:A
de

riv
at

io
n

fo
ra

n
au

th
en

tic
at

io
n

go
al

ch
ec

ki
ng

by
th

e
op

er
at

io
na

ls
em

an
tic

s
of

Si
L

.

48


