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S. Fischler and T. Rivoal
December 17, 2015

Abstract

Building upon previous works of André and Chudnovsky, we prove a general result
concerning the approximations of values at rational points a/b of any G-function F
with rational Taylor coefficients by fractions of the form n/(B-b™), where the integer
B is fixed. As a corollary, we show that if F' is not in Q(z), then for any ¢ > 0,
|F(a/b) —n/b™| > 1/b™(1+9) provided b and m are large enough with respect to a,
¢ and F'. This enables us to obtain a new result on the repetition of patterns in the
b-ary expansion of F(a/b) when b > 2. In particular, defining A'(n) as the number
of consecutive equal digits in the b-ary expansion of F'(a/b®) starting from the n-th
digit, we prove that limsup,, N (n)/n < e provided the integer s > 1 is such that b°
is large enough with respect to a, € and F. This is a step towards the conjecture
that this limit should be equal to 0 whenever F'(a/b) is an irrational number. All our
results are effective.

1 Introduction

This paper deals with the approximations of values of G-functions at rational points by
rational numbers with denominator a power of a fixed integer; an important motivation is
that periods are conjecturally values of G-functions (see [18, Section 2.2]). Before stating
our results, we recall some important results in the Diophantine theory of G-functions, as
well as of F-functions, even though no new result will be given for the latter. Throughout
the paper we fix an embedding of Q into C.

Definition 1. A G-function F is a power series F(z) = Y °  an2" such that the coeffi-
cients a, are algebraic numbers and there exists C' > 0 such that, for any n > 1:

(1) the mazimum of the moduli of the conjugates of a,, is < C™.

(17) there exists a sequence of rational integers d,, with |d,| < C™, such that d,a, is
an algebraic integer for all m < n.

(iii) F(z) satisfies an homogeneous linear differential equation with coefficients in Q(z).

An E-function is a power series F'(z) = Y~ “=2" with algebraic coefficients and satisfying
the same conditions (i), (i1) and (ii1).



Siegel’s original definition [24] of E' and G-functions is slightly more general but it is
believed to define the same functions as above. It is a fact that the Diophantine theory of
G-functions is not as fully developped as that of E-functions. There is no general theorem
about the transcendance of values of G-functions, but results like the following one.

Theorem 1 (Chudnovsky [16]). Let Y (2) =" (Fi(z2),..., F.(z)) be a vector of G-functions
solution of a differential system Y'(z) = A(2)Y (2), where A(z) € M, (Q(z)). Assume that
Fi(z), ..., F.(2) are C(z)-algebraically independent.

Then for any d, there exists C' = C(Y,d) > 0 such that, for any algebraic number o # 0
of degree d with |a| < exp(—C'log (H(Oz))#il), there does not exist a polynomial relation
between the values Fi(a),. .., F,(a) over Q(«) of degree d.

Here, H(«) is the naive height of «, i.e. the maximum of the modulus of the coefficients
of the (normalized) minimal polynomial of o over Q. Chudnovky’s theorem refines the
works of Bombieri [12] and Galoshkin [19]. André generalized Chudnovsky’s theorem to the
case of an inhomogenous system Y'(z2) = A(2)Y (z) + B(z), A(2), B(z) € M,(Q(2)), with
a similar condition on a and H(«); see [4, pp. 130-138] when the place v is archimedean.
André and Chudnovky’s theorems are still essentially the best known today in this gen-
erality but they are far from being transcendance or algebraic independence statements.
We recall that, in fact, it is not even known if there exist three algebraically independent
G-values. (1)

On the other hand, the situation is essentially best possible for F-functions.

Theorem 2 (Siegel-Shidlovsky [24, 23]). Let Y(z) = “(Fi(2),..., Fu.(z)) be a vector of

E-functions solution of a differential system Y'(z) = B(2)Y (z), where B(z) € M,(Q(z))-

Denote the common denominator of the entries of B(z) by T'(z). Then, for any £ € Q
such that T (&) # 0, we have

deg trg Q(F1(€),. .., Fu(§)) = deg trg., Q(2) (Fi(2), - . ., Fu(2)).

Note that Beukers [11] was even able to describe very precisely the nature of the nu-
merical algebraic relations when the transcendence degree is not maximal.

A lot of work has been devoted to improvements of Theorem 1, or alike, for classical
G-functions like the polylogarithms ) | 2" /n®, or to determine weaker conditions for the
irrationality of the values of G-functions at rational points. From a qualitative point of
view, the result is the following.

Theorem 3. Let F' be a G-function with rational Taylor coefficients such that F'(z) ¢ Q(z).
Then there exist some positive constants Cy and Cs, depending only on F', with the following
property. Let a # 0 and b > 1 be integers such that

b > (Ch]a])C2. (1.1)

!There exist examples of two algebraically independent G-values, for instance 7 and I'(1/3)3, or 7 and
I'(1/4)*. This was first proved by Chudnovsky with a method not related to G-functions, but André [5]
obtained a proof with certain Gauss’ hypergeometric functions, which are G-functions. André’s method is
very specific and has not been generalized.



Then F(a/b) is irrational.

This result follows from Theorem I in [16, 17], together with an irrationality measure;
see also [19]. This measure and the value of Cy have been improved by Zudilin [26], under
further assumptions on F. He obtains the following result (in a more precise form).

Theorem 4 (Zudilin [26]). Let n > 2 and Y (z) = Y(F1(2),...,F,(2)) be a vector of G-
functions solution of a differential system Y'(z) = A(2)Y (2) + B(z), where A(z),B(z) €
M, (C(z)). Assume that either n =2 and 1, F\(2), F5(z) are C(z)-linearly independent, or
that n > 3 and Fi(z),..., F,(z) are C(z)-algebraically independent. Let ¢ > 0, a € Z,
a # 0. Let b and q be sufficiently large positive integers, in terms of the F;’s, a and €; then
F;(a/b) is an irrational number and for any integer p, we have

1
F;(%)—g'zq2+€, j=1,....N. (1.2)

Zudilin’s proof follows Shidlovsky’s ineffective approach to zero estimates (see [23, p. 93,
Lemma 8]). It is likely that using an effective method instead (see [4, Appendix of Chapter
III], [9] and [15]), one would make Theorem 4 effective. We mention that Zudilin [25]
also obtained similar irrationality measures for the values of E-functions at any non-zero
rational point.

We now come to our main result. Roughly speaking, it is an improvement of Zudilin’s
exponent 2+ ¢ in (1.2) when ¢ is restricted to integers of the form 4™, or of a slightly more
general type. In this case, the exponent drops from 2 4 ¢ to 1 + . We first state a more
precise version, without ¢.

Theorem 5. Let F' be a G-function with rational Taylor coefficients and with F(z) ¢ Q(z),
and t > 0. Then there exist some positive effectively computable constants ci, ¢, 3, cq,

depending only on F (and t as well for c3), such that the following property holds. Let
a# 0 and b, B > 1 be integers such that

b > (c1]a|)® and B < b (1.3)

Then for any n € Z and any m > cglogloﬂ we have

b
(lal+1)

() - 5l 2 5w
b)  B-bn| = B b (| + 1)em

(1.4)

In the case of the dilogarithm Liy(z) = 7, jl—’;, our proof provides ¢; = 4e5%, ¢y = 12
and cq = 10%. We did not try to compute c3 because it is useless for the application stated
in Theorem 6 below, but this could be done in principle. Needless to say, these values are
far from the best possible but this is not the point of this paper. For related results, but
restricted only to the G-functions (1 —2)® and log(1—2z), see [7, 8, 10] and [21] respectively.
We point out that Theorem 5 is effective, because an effective zero estimate (due to André)

is used. In contrast with Zudilin’s theorem, we only need to assume that F'(z) € Q(z). On
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the other hand, we did not try to compare (c1, ¢2) with the constants (Cy, Cs) of Theorem 3,
so that Theorem 5 might apply in some cases to rational values F'(a/b). If under (1.3),
F(a/b) is a rational number u/v with coprime integers u and v, then (1.4) proves that the
denominator v is not of the form B - 0™ with B < b'. Consequently, in the b-ary expansion
of F(a/b), the period / is greater than ¢ because v divides v™(b* — 1) for some m.

Given £ > 0 and assuming that m > 2t/ and b > (|a| + 1)%%/¢, we derive the following
corollary. It is also effective and it will be used to prove Theorem 6 below.

Corollary 1. Let F' be a G-function with rational Taylor coefficients and with F(z) ¢ Q(z),
e>0,t>0anda €Z,a+#0. Let b and m be positive integers, sufficiently large in terms
of F, e, a (and t for m). Then for any integers n and B with 1 < B < b', we have

a n 1
‘F(5> a B~bm‘ 2 prra

We don’t know if some analogues of Theorem 5 and Corollary 1 hold when F’ is supposed
to be an E-function. This is surprising because, as we indicated above, the Diophantine
theory of E-values is much more advanced than that of G-values. Our method is inoperant
for E-functions and we could not find any way to fix it. We explain the reason for this
unusual advantage of G-functions in the final Section 5. We also explain there that an
analogue of Theorem 5 holds for 1/F(z) instead of F'(z) under a less general assumption
on the G-function F(z).

The quality of restricted rational approximants as in Theorem 5 and Corollary 1 can
be measured (when ¢ = 0) by a Diophantine exponent v, studied in [3]. Given £ € R\ Q,
(&) is the infimum of the real numbers p such that [ — 2%| > b=+ for any n € Z and
any sufficiently large m. With this notation, the special case t = 0 of Corollary 1 reads
vp(F(a/b)) < e. The metric properties of this Diophantine exponent are studied in [3,
Section 7]: with respect to Lebesgue measure, almost all real numbers £ satisfy v,(§) = 0
for any b > 2, and given b > 2 the set of £ such that v,(§) > € has Hausdorff dimension
1—_1%. Therefore Theorem 5 and Corollary 1 are a step towards the conjecture that values
of G-functions behave like generic real numbers with respect to rational approximation.

Our results have interesting consequences on the nature of the b-ary expansions of
values of G-functions; this is a class of numbers for which very few such results are known
(see [13, 14]). Let b, t be integers with b > 2 and ¢ > 1, and let £ € R\ Q. We denote by
0.a1azas . .. the expansion in base b of the fractional part of £&. For any n > 1, let NV (&, ¢, n)
denote the largest integer ¢ such that (ap@, 1. ..an4e 1)° is a prefix of the infinite word
(pQpi10pao . ... In other words, it is the number of times the pattern a,a, 1 ...ap1¢—1 is
repeated starting from a,. Obviously Ny(&,t,n) > 1, and Ny(&, ¢, n) is finite since & is
irrational. If t = 1, Ny(&,t,n) is simply the number of consecutive equal digits in the
expansion of ¢, starting from a,. For almost all real numbers ¢ with respect to Lebesgue
measure, lim, . %Nb(g, t,n) =0.

If € is a rational number with a period of length greater than ¢ in its b-ary expansion,
then Ny (€, t,n) is also finite. We mentioned above that under the hypothesis of Theorem 5,
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if F'(a/b) is a rational number then the period of its b-ary expansion is greater than ¢. The
theorem below, which is effective, applies also to this (presumably exceptional) case.

Theorem 6. Let F' be a G-function with rational Taylor coefficients and with F(z) ¢ Q(z),
e>0,anda € Z, a#0. Let b > 2. Then for any s > 1 such that b° is sufficiently large
in terms of F, €, and a, we have for any t > 1:

lim sup l./\/b(F(a/bs),t,n) < e/t
n—oo N

In the case of the dilogarithm, this result applies to Lis(1/6°) for a = 1, any fixed
e € (0,1), any ¢ > 1 and any b > 2 provided s > 107/e. A similar bound for this
upper limit, but with 1 + ¢ instead of ¢, follows from (and under the assumptions of)
Theorem 4. Conjecturally, we have lim, %Nb(g ,t,m) = 0 whenever £ is a transcenden-
tal value of a G-function, but it seems that the only such ¢ for which the upper bound
lim sup,, %/\/’b({ ,t,n) < 1 was known are values of the logarithm (using a slight generaliza-
tion of the results of [21] to allow a parameter ¢ as in Theorem 5 and Corollary 1).

When ¢ is an irrational algebraic number, Ridout’s theorem [20] yields v,(£) = 0 and
lim,, %./\fb(f ,t,n) = 0 for any b and any t. It is not effective: for a general real alge-
braic number ¢, given b, t and € > 0, no explicit value of N(&,b,t,¢) is known such that
Np(&,t,n) < en for any n > N(&,b,t,e). On the contrary, if £ = F(a/b*) then Theorem 6
provides such an explicit value provided b° is large enough — recall that algebraic functions
which are holomorphic at 0 are G-functions. However if £ is fixed then Theorem 6 applies
only if € is not too small: we do not really get an effective version of Ridout’s theorem
for £. For other results concerning the b-ary expansions of algebraic numbers, we refer the
reader to [2, 6, 22].

We proved in [18] that any real algebraic number is equal to F'(1) for some algebraic
G-function F' with rational coefficients and radius of convergence arbitrarily large. Unfor-
tunately, we do not have a control on the growth of the sequence of denominators of the
coefficients of F', which is important in the computation of the constants in Theorem 5.
Therefore, we cannot prove that any real algebraic number can be realized as a G-value
F(a/b) to which Theorem 5 applies.

Finally, let us explain the basic reason behind our improvement on Zudilin’s exponent.
To estimate the difference |F'(§) — 2| using the methods of this article, we need at some
point to find a lower bound for a certain difference D = \g — 3| between two distinct
rationals (k € N, p,q,u,v € Z). When ¢ could be anything, the best we can say is that,
trivially, D > (b*qu)~1; however, if we know in advance that ¢ = b then we can improve
the trivial bound to D > (b™*(Kk)y)~1 and we save a factor of b™™5*) in the process.
The fraction 3= is obtained by constructing (inexplicit) Padé approximants of type II to
F(z) and the other G-functions appearing in a differential system of order 1 satisfied by F.
Inexplicit Padé approximation is a classical tool in the Diophantine theory of G-functions.

Our main new ingredient is the use of non-diagonal Padé type approximants, i.e. the

polynomials are made to have different degrees, which creates the factor b* we need. This
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idea seems to have been introduced in [10] in a particular case; we use it in its full generality.
To illustrate its importance for Theorem 6, we remark that if one tries to compute an
irrationality measure for F'(a/b) under the assumptions of Theorem 3 with the method of
the present paper, one gets an irrationality exponent not smaller than N + 1+ ¢, where N
is the least integer such that 1, F(z),..., F™)(2) are linearly dependent over Q(z).

The structure of this paper is as follows. Section 2 is devoted to general results on
Padé-type approximation, and Section 3 to the proof of Theorem 5. At last, we deduce
Theorem 6 in Section 4 and conclude with some remarks in Section 5.

2 Non diagonal Padé-type approximation

We gather in this section known results and preparatory computations that will be used
in Section 3 to prove Theorem 5.

2.1 Setting and zero estimate

Let Fi(z),..., Fx(z) be G-functions with rational coefficients. We let Fj(z) = 1 and assume
that Fo, Fi,..., Fx are linearly independent over Q(z). We assume also that Y(z) =
"(1, Fi(z2),..., Fn(2)) is a solution of a differential system of order 1

Y'(2) = A(2)Y (2) (2.1)

where A(z) € Mny1.n+1(Q(2)) is a matrix of which the rows and columns are numbered
from 0 to N.

Let D(z) be a non-zero polynomial in Z[z] such that D(2)A(z) € Myi1n+1(Z[2]). Let
d € N be such that

degD(z) < d and degD(2)A;;(2) <d—1

for any coeflicient A; ;(z) of A(z). We observe that D(z) is not a constant polynomial
because if A(z) has polynomial entries, the system (2.1) cannot have a non-zero vector of
solutions formed of G-functions; therefore d > 1.

For any integers p,q,h such that p > ¢ > Nh > 0, we can find N polynomials
Pi(z),...,Py(2) € Q|z] of degree < p and Q(z) € Q[z] of degree < ¢, such that the
order at z = 0 of

Rj(z) := Q(2) Fj(z) — P;(2)
is at least p+ h + 1 for all j = 1,..., N. In particular, Q(z) is not identically zero. We
say that (Q; Py,..., Py) is a Padé-type approximant of type II [¢;p,...,p;p + h + 1] of
(F1,...,Fy). It is not unique in general.

In what follows it is convenient to let Py(z) = @Q(z) and Ry(z) = 0, even though they
do not play exactly the same role as the other P;’s and R;’s.



Set P(z) = '(Po(z),...,Py(z)) and R(z) = (RO (z)). Following Chud-
novsky [16, 17], for & > 0 we define Py(z) := (POk( ) PNk(z)) € Q[z]¥*! and
Ri(2) == (Rox(2),. ... Rni(2)) € Q[[2]]V! by

Pu(z) = —D(z)k<— - A(z))kP(z), (2.2)

Ry(2) = ;'m (2 ~A() R().

Now recall that Fy = 1, Fy, ..., Fyy are linearly independent, so that the matrix A(z)
is uniquely determined by these functions and the zero-th row of A is identically zero.
Therefore we obtain the formula

1

Qu(2) = DV (:) (2.3
where Qr(2) := Py x(z). An important property is that if Q(z) € Z[z], then Qx(z) € Z|z]
for any k because %(27)(’?) = (k) 2=k Moreover we have for any k¥ € N and any j:

deg Qp < q+ (d— 1)k and deg P, < p+ (d — 1)k.

We shall make use of the following results. Part (i) follows easily from the bounds on
the degrees of @y and P;; and the relation R;, = QyF; — Pjj: see [17, §2]. Part (ii) is
the difficult one: it is a reﬁnement and correction by André [4 p. 115] of Chudnovsky’s
zero estimate [16, 17]. The fact that Fy, ..., Fiy are G-functions is used only to make the
constant in (i7) effective.

Theorem 7 (Chudnovsky, André). Let (Q; Py,...,Py) be a Padé-type approximant of
type Il [q¢;p,...,p;p+ h+ 1] of (F1,...,Fn); recall that Fo(z) = 1, Fi(z), ..., Fnx(z) are
Q(z)-linearly independent G-functions wzth rational coefficients. Then:

(i) For any k > 0 such that h > kd, (Qi; Pi, ..., Pnyi) is a Padé-type approzimant

g+ k(d—1);p+k(d—1),....p+k(d—1);p+h+1—k]

Of(Fla"'aFN)'
(13) The determinant

go<z) ngv(z)
An(z) = 1 e(Z) : 1,1\:7(2)
PN,O<Z) e PNJV(Z)

1s not identically zero provided h > hgy, where hy is a positive constant, which depends only
on Fy, ..., Fy and can be computed explicitly.



Let us deduce precisely this result from André’s theorem. Given distinct integers i, j €
{1,..., N} we have

ordo(P;Fj — PjF;) = —ordo(Q) + ordo(F(QF; — Pj) — Fj(QF; — F))
> —ordy(®) + min(ordy(F;),ordg(P;)) + p+ h+1
>p+h+1

because ordy(F;) > ordy(Q) for any i. Since we also have ordo(QF; — P;) > p+ h + 1,
André’s zero estimate [4, p. 115] applies as soon as h is greater than the constant he denotes
by co(A), that we call hy here. Moreover hg is effective: see [4, Exercise 2, p. 126]. For
future reference, we notice that (i) and (i7) can be combined as soon as h > max(hg, Nd);
this will be the case below.

2.2 Construction of the Padé approximants

Let us explain precisely now the construction of the P;’s and of (). First of all, we set

Fi(z) =Y fin?"
n=0

Since the F}’s are G-functions, there exist a sequence of integers d,, > 0 and a constant
D > 0 such that d,f;,, € Z and d, < D™ and also a constant C' > 0 such that
| fin] < C™ 1 for all n > 0 and all j. Let us write Pj(z) = Y 7_ ju;,2" for 1 < j < N and

Q(z) =>7_ v,2". By definition of the P;’s and of ), we have the equations

q
> finwe=0, n=p+1...p+h j=1...N (2.4)
k=0

and
min(n,q)

Z Jin—kVk = Ujn, n=0,....,p, 7=1,...,N. (2.5)
k=0
Multiplying Eq. (2.4) by dp41, we obtain a system of Nh equations in the ¢g+1 unknowns

Vo, ..., Vg, With integer coefficients dpinfjo, ..., dptnfjprn bounded in absolute value by

(CD)PHHL Since g+ 1 > Nh, Siegel’s lemma (see for instance [23, Lemma 11, Chapter 3,

p. 102]) implies the existence of a non-zero vector of solutions (v, ...,v,) € ZI* such

that .

lup| < 1+ (q(CD)yPThyari=sn kb =0,...,q. (2.6)

From Eq. (2.5), we see that d,P;(z) € Z[z] forj =1,..., N. Let H(A) denote the maximum
of the moduli of the coefficients of a polynomial A(z) with real coeflicients. Since CD > 1,
Eq. (2.6) implies that

H(Q) < 2(g(CDy )T, (27)



2.3 Properties of Q);,, Pj; and R;

In this section, we collect some informations we shall freely use in the proof of Theorem 5.
From the estimate (2.7), we can bound the coefficients of Qx(z) € Z[z] for any k£ > 0.

We recall that
dy+ -+ +dy

n—1

H(A - A,) < ( )H(Al) L H(AY)

as soon as deg A; < d;. We thus have

i < (1T o)

< 22q+(d—1)k+1H(D)k}(q(cD)p+h+1)Ji—h]\fh' (2.8)

Let us now bound R;;(z) for 1 < j < N. Letting Qx(2) = ZZ:(Od_l)k o and
recalling that R;, = QxF; — Pj i, Lemma 7 (7) yields

0o min(n,q+k(d—1))
k n
Rix(z)= > ( > iy )>Z
n=p+h+1—k £=0

from which we deduce that, for |z| < 1/C":

|Rix(2)] < H(Qi)(g + k(d = 1) + 1) max(1,C)rHH@D 3=z
n=p+h+1—k
H(Qk‘>(q + k<d B 1) + 1) max(l, C)q+k(d_1)(0|2|)p+h+1_k. (29)

- 1-C|z|

Finally, for j =1,..., N, letting P;;(2) = Zf;%d*l)k ugkgz", we have

min(n,q+(d—1)k)

Z fjvn*mvg’f) :u,gngL n:077p+<d_ 1>k

m=0

It follows that d (1) Pjr(2) € Z[z] for all k > 0 and 1 < j < N.

3 Proof of Theorem 5

We split the proof into two parts: in Section 3.1 we prove a general (and technical) result,
namely Eq. (3.5), from which Theorem 5 will be deduced in Section 3.2.



3.1 Main part of the proof

We keep the notation and assumptions of Section 2 concerning Fi, ..., Fn, A, D, d, C,
D. Without loss of generality, we may assume that C' > 1.
We fix t,x,y € R and a,b, B,m,n, h € Z such that b,m > 1 and
1 1

a 1
1<H i (— — 1<B<U. 0 - N 4.
<13 <m1n<QC’H(D))’ < <0, <y<d, xr > +vy

We also assume that h is sufficiently large; in precise terms, we assume that

h > max <h0, SN2dP, L)
r—N—y
where hyg is the constant in Lemma 7, and we shall also assume below (just before Eq. (3.4))
that h is greater than some other positive constant that could be effectively computed in
terms of Fy, ..., Fy.
We let 8 = b*/" and make one more assumption on these parameters, namely Eq. (3.4)
below. At last, we fix an integer j € {1,..., N}. Then we shall deduce a lower bound on

|Fj(%) — 5% |, namely Eq. (3.5).
Changing 2z to —z in all functions F}, ..., Fly, we may assume that a > 0.

Let zp # 0 be a rational root of D; let us write zy = ro/r; with coprime integers rg, 1.

Then r; divides the leading coefficient of D, so that |r| < H(D) and |z| > ‘T—ll‘ > H(ID).

Therefore a/b is not a root of D.
To apply the constructions of Section 2 we let

p=lzh] and gq=[(N+y)h],

so that
p=q+m.

Let us choose k now. The determinant Ay(z) of Lemma 7 (i7) has degree at most
g+ Np+ (d—1)N(N + 1)/2. We use the vanishing properties of Lemma 7 (i) (since
h > Nd) by susbtracting F;(z) times the zero-th row from the i-th row, for any 1 <i < N.
We obtain that Ay(z) vanishes at 0 with multiplicity at least N(p+h+1) — N(N +1)/2.
Therefore we have

An(z) = 2NEHD-FFEE ()
where Ay(z) has degree < £, with £y = ¢— N(h+1)+dN(N +1)/2, and is not identically
zero. Since a/b is different from 0, its multiplicity as a root of Ay(z) is at most .
Following the proof of [17, Theorem 4.1], we deduce that the matrix

Qolafb) -+ Quenla/h)
Pio(a/b) -+ Pinig(a/b)
Pao(a/b) -+ Pyir(a/b)
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has rank N + 1. Therefore we have nQy(a/b) — Bb™P; ;(a/b) # 0 for some integer k, with
k<ly+N=q— Nh+dN(N +1)/2;
recall that j is fixed in this proof.

By construction of the polynomials P;(2) and Qx(2), there exist two integers U, x, Vi
such that Pj(a/b) = Ujx/(dpsa—1ypb? T4~ 5 %) and Qp(a/b) = V3, /b7 4=Dk  We deduce that

¢ = dpr (@1t IR (nQx(a/b) — BV Pji(a/b))

is a non-zero integer (since p > ¢). Moreover we have assumed that p > ¢+ m so that ¢ is
a multiple of b, and thus
&l > ™.

On the other hand we have
€ = i (Qula/b) (n — BY"Ey(a/b) — BU™ (Pys(a/b) — Qula/b)Fy(a/b))
so that
€1 < dpecaed? (| Quaf)] - |n — BY"Fy(a/b)] + BY"| R, x(af)]).
Comparing this upper bound and the lower bound |£| > ™ we obtain
|Qe(a/b)| - [n = BY"Fi(a/b)| > d, j gy, b7 = B | Ry(a/0)]. (3.1)
We shall prove below that under a suitable assumption (namely Eq. (3.4)) we have

‘R]7k(a/b)‘ < 2d;+(d 1)k b_p_(d—l)kB—l (32)

so that the right hand-side of Eq. (3.1) is positive, and Qx(a/b) # 0. Moreover Eq. (3.1)
yields

~1 —p—(d—1)k
5(5) - e Bt o
"\b B-bvml = 2B|Qk(a/b)] '
Now, recall that
dN(N +1)

p=|zh], ¢g=[(N+y)h], and k < yh + :

Let us denote by O(1) any positive quantity that can be bounded (explicitly) in terms of
Fy, ..., Fy; such a bound may involve, among others, d, N, D, C' or D. We recall that

C,D > 1 and notice that +1 N < N . Then Eq. (2.8) yields

H(Qp) < (22(N+y)+(d—1)yH(D)y(CD)(x+1)N/y)h -(CD(N + y)h)N/y -0(1)
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so that Eq. (2.9) provides, since Ca/b < 1/2:
|Rjxla/b)| <
(22N J(DYY(C D) IN N (Ca f0)" 1) (CD(N + dy)h)+Nv - O(1).

Now let us assume, for simplicity, that y > 8%. Then we have (d — 1)k < dyh since
hy > N2d?, so that
dp+(d—1)kbp+(d_1)k3 < (5(5D)$+dy)h-

Therefore (3.2) holds if h is larger than some effectively computable constant (depending
only on Fy, ..., Fy) and if

> é and 22WNFVFE=Dy (DY (CD)FHINONFY (O /p) TV (D)W B < % (3.4)

Moreover, since a/b < 1, we have

[Qela/b)] < (g4 (d =1k +1)H(Qx)
< (22(N+y)+(d—1)yH(D)y(CD)(erl)N/y)h -(CD(N +dy)h)*™™Mv . 0(1)

so that Eq. (3.3) yields finally (since 1/y < 8d):

FJ(%) _Bébm‘ =

<51(bD)mdy22(N+y)(dl)yH(D)y(CD)(erl)N/y)h . 9N | 0(1) (35)

This is a very general lower bound and in the next section we will proceed to a suitable
choice of the parameters.

3.2 Choice of the parameters and conclusion

In this section we prove Theorem 5 by applying the proof of Section 3.1 to suitable param-
eters.
Let F' be a G-function with F'(z) € Q(z). Let Fy(z) = 1, and denote by N the least

1
positive integer for which there exist ag(z),...,ay(z) € Q(z) such that
FM () =an(2)FY V() + ..+ az(2) F'(2) + a1(2)F(2) + ao(2).

We have N > 1, and N = 1 may hold (it does for instance with F(z) = log(1l — z)).
By construction and since F(z) ¢ Q(z), the G-functions Fy = 1, Fy = F, F, = F', ...,
Fy = FIN=D are linearly independent over Q(z). We are in position to apply the results
of Sections 2 and 3.1; as in Section 3.1 we may assume a > 0 and C' > 1.

We let
¢, = 4H(D)(CD)*N1C and ¢y = 3(N + 2).

12



We take c5 = max(hg, hi, ho, 8N?d?, 4t) where hg is the constant implied in Lemma 7 (77),
hy is the effectively computable constant defined just before Eq. (3.4), and hy is another
effectively computable constant to be defined below; these three constants depend only on
F and t. Then we assume

log(b
3 log(cia)
this is a consequence of our assumption m > c3 lolgo(ga(i)l) provided c3 is large enough.
We choose
1 1 log(b) m
= - = — d h = _— .
Y 4(d+1)’ Y73 log(c1a) an xr—N-1

Then (1.3) implies > N + 2, and (3.6) yields h > ¢;.
Let us check that (3.4) holds. We notice that 3 < b4 since h > c; > 4t. Since

Y= m and x > N + 1, the left hand side of (3.4) is less than

22N+1H(D)(CD)SNd(x-i—l)Cx+N+2Dx+1aa:+1b—1/2 < (Cla)$+1b—1/2 < 1/2’

indeed we have used the definition of x and the lower bound li(g)?éfl) > 9 which follows from

x > N + 2 > 3. Therefore all the assumptions made in Section 3.1 hold.
We set

d 8N41 1 AN(N+3)(d+1)
g = DT @ 2ints H(D)awEn@En (CD)~ vz

Using (3.5) and the various conditions on z and y, we readily obtain

a n —h _wtl
N > —h [ pz+dy x .1~ 9Nd | > -1 N1 ™ .
‘F(b> o~ bm‘ > 3 <b c6) W9 O(1) > B~ (beg) 7N (3.7)

provided h > hy, where hs is effective. Now we have

r+1 _1+N+2 1
rt—N-1 r 14

log(cya)
log(b)
1 _log(b)

3 Tog(c1a) > N + 2. It is trivial matter to check that for any v > 1 and any

v > e, we have log(uv) < 2log(u + 1)log(v). Since ¢; > 4 > e (because we always have
H(D)>1,C >1and D > 1), we can apply this with u = a, v = ¢; and we get

x+1 log(a + 1)
N | =X
r—N-—-17 o log b

with ¢; = 6(N + 2)2log(cy). Hence, we deduce from (3.7) that

<1+3(N+2)?

because z =

LORHE S
b)  B-vm| = B-vm(at L)emap = B-bm(a + 1)am

where
log(cs)

log(2)

log(2cg)
Cg =
log(2)
This completes the proof of Theorem 5.

c; and cs=cg+
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Remark. Let us compute the constants c;, co and ¢4 in the case of the G-function Liy. The
vector Y (z) = *(1, Li;(z), Lis(2)) is solution of the differential system

Y'(2) = Y (2).

ni= O O
o O O

0
1
1—z

0

Hence D(z) = 2(1 —2), HD)=1,d=2, N =2, C =1 and D = ¢*. With the constants
as defined in the proof just above, we obtain ¢; = 4€%, ¢, = 12 and

~ 1201779 1185019

= 396 log(2) < 10%78,
“="35 T 3logp) T O0M0s2)

The constant c3 could be computed as well, but we did not try to do so because it is not
important for the application to Theorem 6.

It follows that Theorem 5 can be applied with F(z) = Liy(z) when b > ¢¥|a|'? > 0.
Furthermore, Theorem 6 can be applied for any integer s such that b° > €5%]a|'? > 0 and
b* > (la| + 1)%4/¢. In particular, if @ = 1, b > 2 and 0 < € < 1, Theorem 6 applies to
Liy(1/b°) for any integer s > 10508 /e. We have not tried to optimize our general constants
which in this case could be decreased.

4 Proof of Theorem 6

In this section we deduce Theorem 6 from Corollary 1 stated in the introduction.
Let £ = F(a/b®), g, = 0" 1(b* — 1), and
o= (0" = D" ] + apnb™ 4 a1 b7 A A
Then the b-ary expansion of

Pn L Y S Y e S S

n o pn—1 bn—l(bt _ 1)

has the same n + tN,(€,t,n) — 1 first digits as the b-ary expansion of . Therefore we have

b—1
— prttNp(Etn)

_Dn
L

Now Corollary 1 with b* for b, B = b' — 1 and m = [ 21| yields

s

1

Z =1 .71, "
pLE=LIs(1+e)

Pn
-2
an

The comparison of both inequalities enables us to conclude the proof.
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5 Concluding remarks

In Section 2, we assumed that the degrees of the polynomials satisfy p > ¢ and in fact
p > g + m, which was crucial to prove Theorem 5. The case ¢ > p also provides some
informations, but not in the exact situation of Theorem 7. Indeed, with the notation of
Section 2.1 the polynomials P;;(z) with 1 < j < N depend on Pi(2), ..., Py(z) and also
on Py(z) = Q(z) (see Eq. (2.2)). In order to be able to bound the degree of Pj (%) in
terms of p only (independently of ¢), we need to deduce from (2.2) a relation analogous
o (2.3), namely an expression for the polynomials P;x(z) in terms of Pi(z), ..., Pn(2)
only. This follows easily under the additional assumption that the zero-th row of A(z) is
identically zero, i.e. that '(Fy,..., Fy) is a solution of an homogeneous linear differential
system. Following the same method as in the case p > ¢, this enables us to prove the
following result.

Theorem 8. Let F be a G-function with rational Taylor coefficients and t > 0. Let us
assume that F(z) is solution of a linear differential equation of order N with coefficients
in Q(z) and that 1, F(2), F'(2),..., FN=Y(2) are linearly independent over Q(z). Then
there exist some positive effectively computable constants ¢y, o, €3, ¢4, depending only on
F (and t as well for ¢3), such that the following property holds. Let a # 0 and b, B > 1 be
integers such that

b > (¢1|a))® and B < b (5.1)
Then F(a/b) # 0 and for any n € Z and any m > C3i— o1y (|a(‘J)rl) we have
! L, L (5.2)
F($) B-bm| = B-bm™-(la] + 1)cm '

Analogues of Corollary 1 and Theorem 6 for 1/F(a/b) hold as well. These results
can be applied to the functions log(1 — 2) + /1 — z and /1 — zlog(1 — z) for instance,
but not to log(1 — z). Actually the proof of Theorem 8 (and of all other results in this
paper) can be generalized to number fields, at least to multiply B with a fixed non-zero
algebraic number (and all implied constants would depend on this number), by replacing
the algebraic number ¢ defined in Section 3.1 with its norm over the rationals. Applying
Theorem 8 to v/1 — zlog(1l — z) with B multiplied by /1 — a/b and canceling out this
factor shows that Theorem 5, Corollary 1 and Theorem 6 hold with 1/log(1 —a/b) instead
of F(a/b).

A natural problem is to obtain an analogue of Theorem 5 when the F}’s are E-functions
and not G-functions. With the same notations as in Section 2, the polynomials @)} would
still have integer coefficients, but the denominators of the coefficients of the polynomials
P; , would no longer be bounded by dp q—1)r but by (p+ (d—1)k)!d,+ (4—1)%- As the reader
may check, this cancels the benefits of havmg non-diagonal Padé type approximants if we
follow the same method of proof as in Section 3. We don’t know if this problem can be
fixed to prove analogues of Theorems 5 and 6 for E-functions. Very few results are known
on b-ary expansions of values of E-functions (see [1], [13], [14]). From a conjectural point
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of view, the situation is not clear either: values of E-functions do not behave like generic
numbers with respect to rational approximation, as the continued fraction expansion of e

shows.
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