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Abstract

A fully parallel iterative thinning algorithm called
MB2 is presented. It favourably competes with the best
known algorithms regarding homotopy, mediality;
thickness, rotation invariance and noise immunity, while
featuring a speed improvement by a factor two or more
owing to a smaller number of operations to perform. MB2
is grounded on a simple physics-based thinning principle
that conveys both quality, efficiency and conceptual
clarity. It is particularly suited to data parallel execution.

1 - Introduction

Machine vision has often to deal with elongated
shapes, of which the length is much larger than the
thickness. Exemplary applications are found in character
recognition or medical imaging. It is often worth rep-
resenting these elongated objects by simple lines, i.e. one-
pixel-thick connected sets of pixels. This allows a lighter
representation easing further pattern analysis. Hence, the
notion of skeleton has been introduced, which most
usually applies to binary images.

It is often considered that everything has been said
about this subject on which hundreds of papers have been
published over the last thirty years. Still, skeletonisation
algorithms are usually exploited as recipes with an
imprecise knowledge of their characteristics and
properties. Actually, the latter are often appreciated on a
pure experimental basis [1]. This is all the more
surprising that there are only a few readily understandable
requirements that a skeleton should fulfil. Then one could
expect a rigorous characterisation of any skeletonisation
algorithm with respect to them. Here are the usual ones:
• Homotopy: the skeleton must preserve the topology of

the original image (any hole must remain).
• One-pixel-thickness: the skeleton should be made of

curves, i.e. one-pixel-thick objects.
• Mediality: the skeleton should lie in the middle of the

shape, with every point of the skeleton the same
distance from the two closest borders of the object.

• Rotation invariance: skeletonisation and object rotation
should commute. Due to spatial discretisation, this can
only be true for rotation angles multiples of π/2. But
this should also be approximately satisfied for arbitrary
rotation angles.

• Noise immunity: the skeleton should be fairly
insensitive to noise on the image (boundary pixels
added or removed).

It is well-known that some of these requirements are
contradictory. But this must not be an excuse for lack of
clarity and precision in the characterisation of a skele-
tonisation algorithm. Furthermore, these antagonisms are
not that strong. We will actually explain in section 2 how
to get away with them.

Beside intrinsic quality and characterisation clarity,
computational speed is another important matter. As a
low level image processing operator, skeletonisation can
take advantage of parallelism. The most common way to
do so is to implement skeletonisation as a thinning
procedure that iteratively peels objects. Then massive
data parallelism [2] proves particularly suitable due to the
locality of the thinning procedure: only the values of the
closest neighbours are necessary to decide whether a pixel
can be removed or not. The number of iterations is
determined by the maximal object thickness (the radius of
the largest ball contained in the image). Another key
advantage of data parallelism is that it allows an intrinsic
isotropy of the thinning procedure, which is most
important to ensure mediality. This is a point where many
sequential algorithms fail.

As will be detailed in section 3.6, we measure the
speed of a parallel iterative algorithm (such as thinning)
by the total number of Boolean operations performed per
pixel before convergence. We call it the Shannon measure
due to its obvious relationship to circuit complexity. Its
main advantage is its universality.

In this paper, we present a parallel iterative thinning
algorithm called MB2 which favourably competes with
the best known algorithms regarding the five above
criteria, while featuring a speed improvement by a factor
two or more. Like its predecessor MB [3] which was even
faster but with limited rotation invariance, MB2 is
grounded on a unified thinning principle that conveys
both efficiency and clarity. Section 2 recalls some
preliminaries before exposing our strategy to get a
rational trade-off between the different skeletonisation
criteria. The MB2 algorithm is presented in section 3
under both pattern matching and procedural forms. Then
it is analysed formally and experimentally.

2 - Which skeleton ?

Several properties are desirable for a skeleton, which
have been previously listed. The present section recalls
definitions and results related to them before discussing
their compatibility.  This discussion leads to strategic
choices that allow to best satisfy all criteria.



2.1 - Basics

Let us first recall that binary images can be considered
as subsets of Z2 (Z is the set of integers). These subsets
are always supposed finite (this formally corresponds to
images that have pixels with value 1 only in a finite
window). A digital topology on Z2 is defined by
adjacency relationships between pixels. For k=4 or 8, the
"k-topology" designates the topology for which a pixel is
adjacent to its k closest neighbours (for the Euclidean
distance). Expressions like k-adjacent or k-neighbour
directly follow from this definition. The k-topology
induces a distance δk: δ4 is called the square distance on
Z2 and δ8 the diamond distance, owing to the ball shape
they induce (cf. Def.2 in §2.3). δ4 is also known as the
Manhattan distance. Adjacency relationships are readily
extended from points (pixels) to subsets of Z2 (images).
A⊂Z2 and B⊂Z2 are said k-adjacent if there exist a∈A
and b∈B such that a and b are k-adjacent. X⊂Z2 is said to
be a k-CC (k-connected component) if there does not
exist any partition of X into two non k-adjacent subsets.
x∈X⊂Z2 is said k-interior to X if all its k-neighbours
belong to X.

2.2 - Homotopy (connectivity preservation)

Homotopy is a concept which is more naturally defined
in the continuous real plane R2 than in the discrete integer
plane Z2. In particular, in R2, Jordan's theorem tells that a
simple closed arc partitions the plane into two
unconnected regions: the interior and the exterior. In Z2,
this important result no longer holds. To overcome this
difficulty and most of its harmful consequences, the most
appropriate and common solution is to use the k-topology
(k=4 or 8) for the foreground of the image (the objects)
and the k'-topology for the background, with k'=12-k. In
the rest of this paper, and in particular for the MB2
algorithm, the choice is k=8 and k'=4. The 8/4 notation
will recall this fact.

Two (finite) subsets of Z2 are homotopic if there exists
a one-to-one mapping F between their respective k-CCs
and another one B between the respective k'-CCs of the
background, such that the tuple (F,B) preserves the
adjacency relationships between connected components.
Calling C∞ the only k'-CC that extends to infinity in the
background of any finite subset, a supplementary
condition is B(C∞)=C∞.

An image and its skeleton must be homotopic. Since
skeletonisation only removes points from the foreground,
this implies inclusion relationships which actually make
homotopy simpler to express: when removing points, k-
CCs of the foreground must neither split nor be erased
and k'-CCs of the background must neither merge nor be
created. A point (respectively a set of points) which can
be removed while meeting these criteria is called a simple
point (respectively a simple set). A parallel algorithm will
preserve connectivity iff (if and only if) the several points
it removes simultaneously at each iteration form a simple
set. A well-known difficulty is that reunions of simple
points are generally not simple sets. Here are some formal
characterisations of simple points and sets.
Notations: Logical and arithmetic operators are
represented using the C-language syntax. Signs &, |, ^

respectively stand for the logical AND, OR and XOR.
Sign + designates standard arithmetic addition. Following
a usual set theory notation, sign \ stands for ANDNOT.
Given a binary image X,  x stands for the binary value of
an arbitrary pixel and xN, xNE, xE, xSE, xS, xSW, xW, xNW
stand for the values of its eight closest neighbours
(designated using the cardinal points).

Definition 1: Given an image X, the connectivity
number (for k=8 and k'=4) of a pixel is C8/4(x) =
(xN|xNE)\xE+(xE|xSE)\xS+ (xS|xSW)\xW + (xW|xNW)\xN

Theorem 1  [4]: A point x is simple iff C8/4(x) = 1.
But how to guarantee that a thinning algorithm

removes only simple sets ? Here is an answer.
Theorem 2 (adapted from [5]): For a parallel thinning
algorithm to preserve 8/4 connectivity, it is sufficient to
simultaneously respect the three following conditions:

(a) all pixels removed are simple;
(b) an 8-CC contained in a 2×2 square cannot be

completely deleted;
(c) any pair of 4-adjacent pixels removed simultane-

ously would also be removed sequentially.

2.3 - Mediality

Mediality is a geometrical notion which can only be
based on the choice of a distance δ. For the sake of
rotation invariance, the Euclidean distance δe would be
the best choice. However the square and diamond
distances δ4 and δ8 come out much more naturally within
the frame of iterative thinning procedures. Here are now a
few classical definitions and results that precise the notion
of mediality.
Definition 2: Let δ a distance. The δ-ball B(x,r) of
centre x and radius r is the set { y∈Z2 ; δ(x,y)≤r }.

For δ= δ4 (respectively δ8) we will simply note 4-ball
(respectively 8-ball). Now, let X⊂Z2 a binary image.
Definition 3: Let δ a distance. A maximal δ-ball in X is
a δ-ball B⊂X with no other δ-ball B' (but itself) such that
B⊂B'⊂X.

The centres of maximal δ-balls are the points that lie in
the middle of the shape from the viewpoint of distance δ.
The following results tell how to find them.
Definition 4: Let δ  a distance. The distance map
associated with X is the function Φδ from Z2 to N (or R+)
such that Φδ(x) = δ(x,Xc) = min{ δ(x,y) ; y∉X }.

For δ= δ4 (respectively δ8), we will simply note Φ4
(respectively Φ8).
Theorem 3: The centres of the maximal k-balls (k=4 or
8) in X are the local maxima of Φk over their k-neighbor-
hood, i.e. the set { x∈X / ∀y∈Bk(x,1) Φk(x) ≥ Φk(y) }

2.4 - Homotopy versus one-pixel-thickness
and mediality

Figure 1a shows a binary image (each square is a pixel)
from which no black pixel can be deleted without creating
a white 4-CC or merging two. It is an exemplary case
which shows that homotopy may imply arbitrary large
thickness. Figure 1b presents another case where thinning



could produce a one-pixel-thick skeleton but would
violate mediality. The skeleton is actually meaningless for
such images. Fortunately, these unwanted pathological
situations can be characterised and even detected. But this
goes beyond the scope of the present paper, in which we
will simply not apply our thinning algorithm on such
pathological images.

(a)            (b)

Figure 1: Pathological images.

2.5 - Mediality and rotation invariance versus
one-pixel-thickness

Even in the absence of pathological configurations,
mediality is in itself an obstacle to one-pixel-thickness.
Considering a square-shaped object of size 2×2, each of
the 4 pixels are local maxima. Therefore, none should be
removed, as is also dictated by rotation invariance.
Actually, mediality and rotation invariance only allow
two-pixel-thickness. Requiring one-pixel-thickness every-
where would amount to force the thinning algorithm to
make arbitrary choices. We think that a more rational
approach is to accept the two-pixel-thickness limitation as
an inherent characteristics of a skeleton. By the way, this
is perfectly consistent with the implicit isotropy that only
a data parallel thinning algorithm may feature, like MB2.
Passing from two-pixel-thickness to one-pixel-thickness
is then only a matter of simple post-processing (simpler
than a single thinning iteration).

2.6 - Homotopy,  mediality, noise immunity

Homotopy and mediality are fundamentally anta-
gonistic with noise immunity. A single pixel added or
removed may completely alter the connectivity and
therefore the skeleton. Likewise, a single pixel added at
the boundary of an object featuring a simple shape will
often be a local maxima far from any other, therefore
deeply changing a skeleton subject to the mediality
constraint. Still MB2 proves experimentally (for under-
stood reasons) to be more noise-immune than other high-
quality algorithms. But for a large part, we believe that
noise immunity cannot be the responsibility of a thinning
algorithm. It is rather the matter of some application-
dependent pre-, post- or concurrent processing.

2.7 - Putting it all together

The goal of section 2 was to determine the best
possible trade-off between the different desirable
properties of a skeleton. A main concern was genericity,
which goes with conceptual clarity and hopefully
efficiency. It turns out that homotopy, mediality and 2-or-
1-pixel-thickness are the three prime compatible
constraints once some peculiar and meaningless
configurations are excluded. Then mediality is governed
by the explicit or implicit choice of a distance, which also
affects rotation invariance and, to a lesser extent, noise

immunity. This strategy proves fully consistent with a
data parallel framework, from which both isotropy and
speed are expected.

3 - The MB2 thinning algorithm

3.1 - Principles

α1 α2 β

Figure 2: The MB2 patterns (which come
with all their π/2 rotated versions).

The MB2 algorithm is a parallel iterative algorithm that
deletes points corresponding to certain neighborhood
conditions. The latter are based on patterns displayed on
figure 2. In these patterns, black and grey pixels belong to
the foreground and white pixels to the background. Given
an image, it is said that pixel x matches some pattern if,
putting that pattern on the image with the black pixel on
x, there is an exact coincidence of the image with the
whole pattern. It is also considered that each pattern may
be rotated by any multiple of π/2.

Definition 5: The MB2 iteration consists in
removing simultaneously all pixels that match α1
or α2, but not β. The MB2 algorithm repeats the
MB2 iteration until stability is reached.

Considering the αi patterns (i=1 or 2), it appears that a
point is removed by the MB2 iteration if it lies exactly
between the background and a 4-interior point in the
foreground to which it is n-adjacent, with n=4 for α1 and
n=8 for α2. Actually, the αi patterns convey the physics
of the thinning action and this is the strong conceptual
originality of the algorithm. We believe this is responsible
for the remarkable behavior of the algorithm as the next
sections will show.

Another unusual feature of the MB2 patterns is their
size. As α1 and α2 rotate around their origin (the black
point), the whole centered 5×5 neighbourhood, but its
four corners, is described. This contrasts with the other
algorithms which attempt to minimise the size of this
working neighbourhood [6]. This is certainly crucial for
computations performed using look-up tables, but
meaningless otherwise. For us, the point was to choose
the patterns that minimise computational complexity (cf.
section 3.6).

3.2 - MB2 procedure

Let B4=B4(o,1) be the unity 4-ball (o is the origin of
Z2), as shown on figure 3. Note that B4 (translated)
appears in the foreground part of both α1 and α2. Let us
also recall a basic notion of mathematical morphology:



the erosion of an image X by B⊂Z2, denoted XΘB, is the
set of all points x∈Z2 such that the translated set of B by
x (acting as a vector) is completely included in X.

Table 1 presents an optimised procedure that performs
the MB2 iteration in a data parallel framework: any
computation with the local binary variables a1, a2, b, etc.,
is performed on the whole corresponding images A1, A2,
B, etc. The notations used are those presented in section
2.2. Variable names have been chosen to be as explicit as
possible, as explained in the table caption.

e4 = xN & xE ;
e4 = e4 & e4SW & x ;
a1 = (e4W\xE) | (e4E\xW) | (e4N\xS) | (e4S\xN) ;
d1 = x | xSW ;
d2 = x | xSE ;
a2 = (e4SE\d1N) | (e4NW\d1E)
      | (e4SW\d2N) | (e4NE\d2W) ;
b = x ^ xN ;
b = b & bE & (x ^ xE) ;
b = b | bS ;
b = b | bW ;
x = x \ ( ( a1 | a2 ) \ b ) ;

Table 1: A data parallel procedure that
performs the MB2 iteration. Variable
names correspond to the following
outcomes of the procedure: E4 = XΘB4
while A1∩X, A2∩ X and B∩X respectively
contain the points of X that match α1, α 2
and β . Those points are removed from X
in the last line.

The compactness of the MB2 procedure results from
different features of the MB2 patterns: (a) their small
number, (b) their simplicity, (c) their regularity, which
allows the use of spatial decomposition techniques to
compute them. Also, some redundancy between the
patterns has been removed. In particular, the upper-left
white point in pattern α2 is useless since pattern β would
reject a black point there. Finally, the number of Boolean
operations required by an MB2 iteration is as low as 28.
Before comparing with the cost of other algorithms,
quality is first to be examined, as the next sections do. As
far as the memory requirement is concerned, the MB2
procedure uses 7 binary variables per pixel for readability
purposes; but some of them could have been reused, thus
lowering their number to 5 including image X.

3.3 - Homotopy

MB2 removes points in parallel all around the image. It
is therefore called a fully parallel (FP) algorithm. This
contrasts with a large family of thinning algorithms which
remove points in several (4 or 2) directional (D) sub-
iterations [7, 8] (only pixels located on a particular side of
the objects are removed at a time). For the latter
algorithms, satisfying homotopy is a simpler issue [9]. On
the other hand, MB2 needs Theorem 2 to prove that it
preserves homotopy.

Condition (a) of Theorem 2 asks that every pixel remo-
ved is simple. Considering Theorem 1 and Definition 1, it

can be shown that a point which is not simple necessarily
matches either of the three patterns shown on figure 3 (or
their rotated versions). But MB2 forbids β while α1 and
α2 prevent points from matching B4 or γ.

γ�

β�
Β

�
4

Figure 3: Non simple patterns

Condition (b) is met since the foreground parts of α1
and α2 extend beyond a 2×2 square.

Condition (c) requires three cases to be examined:
• If the two 4-adjacent pixels simultaneously removed

both match α1 (respectively α2), then the only possible
situation is that of figure 4a (respectively 4b) with all
its rotations. It appears that if one is removed first, the
other remains removable.

• If one point matches α2 and the other α1, then the only
possible situation is that of figure 4c. In that case, if the
point that matches α2 is removed first, the other
remains removable.

(a� ) (b
�
) (c� )

Figure 4: Simultaneous removal
of a pair of 4-adjacent pixels.

This ends the proof that MB2 is homotopic. From the
details of the proof, it turns out that much of the
homotopy is inherently conveyed by patterns αi. For us,
this is yet another virtue of their physical meaning.

3.4 - Rotation invariance and mediality

The MB2 algorithm is 4-isotropic: the thinning action
is exactly the same in the four cardinal directions (N, E,
S, W). This results from the perfectly symmetrical
expressions used in the MB2 procedure and from the full
parallellism of the algorithm (no anisotropy induced
through the order in which pixels are examined). Then
exact rotation invariance is guaranteed for angles
multiples of π/2. This 4-isotropy is also the reason why
the MB2 skeleton is 2-pixel-thick in some places.

Actually, these nice properties were already featured
by the predecessor of MB2, namely MB [3] of which
sample outputs are presented on figure 6b and 7b. MB is
only based on patterns α1 and β. As illustrated on figure
6, MB preserves all centres of maximal 4-balls. Thus the
skeleton produced by MB is medial from the viewpoint of
distance δ4. However, δ4 is not the ideal distance. Neither
is δ8, on which the JC algorithm [7] (cf. figure 7a) is
based. In order to improve rotation invariance, it is
desirable to be less biased by either of these two
distances. The additional pattern α2 used concurrently
with α1 by MB2 was introduced for this purpose. As a
first outcome, MB2 — unlike MB — reduces 4-balls as
well as 8-balls to their centres. Actually, all shapes shown



on figure 5 (where each black square is a pixel) are
reduced to a single point (superimposed in white). We
call them fuzzy balls. Here are some more precise
definitions and results.

Figure 5: Fuzzy balls.

Notation: Given two points a and b of Z2, let BB(a,b)
be their bounding box, i.e. the smallest rectangular area
(with vertical and horizontal edges) including a and b.
Definition 6: X is a fuzzy ball iff (∃x∈Z2)(∃r∈N)
B4(x,r) ⊂ X ⊂ B8(x,r) and (∀y∈X) BB(x,y) ⊂ X. If so,
point x is called its centre, and r its radius.

Then the notion of maximal ball (cf. definition 3) may
be straightforwardly extended to fuzzy balls with direct
application to the characterization of the MB2 algorithm.
Theorem 4: The centres of maximal fuzzy balls in X is
the set { x∈X / ∀y∈B8(x,1) Φ4(x) ≥ Φ4(y) }.
Theorem 5 : MB2 reduces any fuzzy ball to its centre.

   (a) centres of              (b) MB                   (c) exact
maximal 4-balls           skeleton                 reconstruction

   (d) centres of               (e) MB2           (f) approximate
maximal fuzzy balls       skeleton             reconstruction

Figure 6: MB2 versus MB.

Theorem 4 (note the difference with theorem 3) and
theorem 5 explain why MB2 does not preserve all centres
of maximal 4-balls, but only those of maximal fuzzy balls
(cf. figure 6abde). However, this results into a better
isotropy, though the influence of δ4 is still predominant
(the MB2 skeleton is included in the MB skeleton).

Figure 7 allows to appreciate the different characte-
ristics of the MB2 algorithm versus some renowned
thinning algorithms proposed within the last ten years:
"JC" stands for the Jang & Chin algorithm [7], "St" for
the Stewart algorithm [10] and "AFP3" is the best of 3
algorithms jointly presented in [11].

3.5 - Noise immunity and reconstructibility

Thanks to theorem 5, MB2 features significant noise
immunity. Figure 8 shows the behavior of several

algorithms on an elementary shape which is noise
corrupted (right) or not (left). MB2 proves to feature
levels of immunity comparable to that of AFP3. The main
difference between them lies in the thickness, which is
arbitrarily forced to 1 in the case of AFP3.

(a) JC (b) MB (c) St

(d) AFP3  (e) MB2

Figure 7: Comparison of 5 thinning
algorithms on simple rotated shapes.

However noise immunity implies information loss.
Now, for some applications, the skeleton is expected to
allow the reconstruction of the shape. For this purpose,
every point in the skeleton is weighted with the iteration
number at which it has been reached by the thinning
process. For a point which is a local maximum, this gives
the radius of the maximal ball it is the centre of. On figure
6cf, the radius of a skeleton point is represented by its
grey level. In the case of MB2, it is not possible however
to know if the ball to be regenerated from a skeleton point
is for the δ4 or δ8 distance. A solution is to use octagonal
balls as intermediate shapes between squares and
diamonds. This provides an approximate reconstruction
shown on figure 6f whereas the original shape appears on
figure 6c. This allows to better understand the very nature
of the noise immunity featured by MB2 or AFP3.

Original

JC

MB

St

AFP3

MB2

Figure 8: Comparative noise immunity.



3.6 - Speed

As mentioned in section 3.2, an MB2 iteration needs
28 Boolean operations with two binary operands. In
practice, we have just counted the number of symbols &,
|, ^ and \ that appear in table 1. This measure of computa-
tional complexity represents the number of two-input
logic components that are needed to perform the
computation. It has actually been proposed by Shannon
[12] in the early times of logic synthesis to define the
complexity of Boolean functions. It is still the reference
in the field of Boolean complexity. The Shannon
complexity of a data parallel procedure represents its
minimal execution time on a basic cellular automata
machine, such as the one developed in cooperation with
the authors, under the form of a Programmable Artificial
Retina [13]. However, the Shannon measure makes sense
for any software or hardware implementation as it is
related to Area-Time complexity. It also represents the
minimal amount of energy required to perform the
computation of a digital function, as every operation
between two bits of information physically consumes
some energy quantum, whatever the computation
medium.

Table 2 compares the complexity of several parallel
algorithms. However, some of them are directional (D)
and it takes them 2 to 4 passes to do the same work as
fully parallel (FP) algorithms.  This is often a source of
confusion when comparing algorithm speed. To avoid
that, table 2 gives the Shannon complexity per pixel of
the overall skeletonisation process as a function of R, i.e.
the radius of the biggest ball contained in the image. The
MB and MB2 algorithms feature the best computational
efficiency. In fact they are the first fully parallel
algorithms to beat directional ones.

Algorithm Refe-
rence

Type Neighb.
Size

Shannon
complexity

JC [7] D 7 32×R
— [8] D 7 40×R
St [10] FP 19 60×R
— [14] FP 11 60×R

AFP3 [11] FP 11 80×R
MB [3] FP 13 18×R

MB2 — FP 21 28×R

Table 2: Computational complexity for
several parallel thinning algorithms.
Some complexities are only estimations
as the quoted papers did not always
provide a minimal Boolean expression of
their algorithm.

4 - Conclusion

We have described a fully parallel thinning algorithm
which features the quality of AFP3 [11], one of the best
algorithms, at the speed of JC [7], the fastest one we were
aware of before MB [3]. Furthermore, MB2 is based on a
clear thinning principle that follows a strategy defined at

the beginning of the paper. Thanks to the algorithm
genericity, recent work by the authors has allowed to
extend it to 3D [15] and even to nD [16]. Ongoing work
should lead to a formal characterisation of the algorithm.
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