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Abstract—The Compressed Sensing (CS) framework outper-
forms the sampling rate limits given by Shannon’s theory. This
gap is possible since it is assumed that the signal of interest
admits a linear decomposition of few vectors in a given sparsifying
Basis (Fourier, Wavelet, ...). Unfortunately in realistic operating
systems, uncertain knowledge of the CS model is inevitable and
must be evaluated. Typically, this uncertainty drastically degrades
the estimation performance of sparse-based estimators in the low
noise variance regime. In this work, the Off-Grid (OG) and Basis
Mismatch (BM) problems are compared in a Bayesian estimation
perspective. At first glance, we are tempted to think that these two
acronyms stand for the same problem. However, by comparing
their Bayesian Cramèr-Rao Bounds (BCRB) for the estimation
of a L-sparse amplitude vector based on N measurements, it is
shown that the BM problem has a lower BCRB than the CS one
in a general context. To go further into the analysis we provide for
i.i.d. Gaussian amplitudes and in the low noise variance regime
an interesting closed-form expression of a normalized 2-norm
criterion of the difference of the two BCRB matrices. Based on the
analysis of this closed-form expression, we obtain two conclusions.
Firstly, the two uncertainty problems cannot be confused for
a non-zero mismatch error variance and with finite N and L.
Secondly, the two problems turn to be similar for any mismatch
error variance in the large system regime, i.e., for N,L → ∞
with constant aspect ratio N/L→ ρ.

Keywords—Compressed Sensing with Uncertainty, Off-Grid ef-
fect and Basis Mismatch, Bayesian estimation

I. INTRODUCTION

Compressed Sensing (CS) has been a hot research domain
in the last decade [1], [2]. CS potentially outperforms the limit
sampling rate predicted by classical sampling theory. This is
done by exploiting the a priori knowledge that many natural
measurement signals admit a sparse representation in a given
redundant dictionary. In today’s world that has to face more
and more data, this technique has opened many perspectives on
a wide panel of application domains as for instance direction
of arrival estimation, sparse radar, etc. The CS framework has
thus driven the design of a plethora of sparse-based estimation
algorithms as for instance OMP [3], CoSAMP, LASSO or
BPDN [4], etc.

In the context of non-ideal CS, there exists two types of
uncertainty. The first-one is the well-known Off-Grid (OG)
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problem [5], [6] which occurs in sparse estimation. In this
case, the continuous estimation parameters cannot match with
high probability the pre-fixed discretization of the parameter
set. Consider a redundant dictionary obtained from the pre-
fixed discretization: as the parameters of interest do not belong
to the grid, it appears a ”quantization error”-type [7]. To take
into account this effect the measurement vector, denoted by
ỹ, is given by a linear combination of few vectors extracted
from the initial dictionary corrupted by an additive perturbation
while the initial dictionary is known. The Basis Mismatched
(BM) problem [8], [6] is described in the following way.
The measurement vector, denoted by y, is given by a linear
combination of few vectors extracted from the initial dictionary
but we dispose of an uncertain knowledge of the initial
dictionary or equivalently it is assumed the knowledge of
a corrupted dictionary. As a consequence, the sparse-based
estimators exhibit very poor estimation accuracies [7] even if
the noise variance is low and the support is perfectly estimated
(or a priori known). Note that the interest of the CRB in the
context of noisy CS with deterministic amplitudes and with
a perfect knowledge of the support has been demonstrated
in references [9], [10], [11]. In particular it is demonstrated
that the CRB can be reached by some sparse-based estimators
knowing only the support cardinality L and in the low variance
regime. We think that this context is well adapted to the BM
and OG problems. Based on these arguments, the main concern
of this work is to compare these two types of uncertainty in the
Bayesian estimation point of view, i.e. based on the derivation
and the analysis of each BCRB associated with the OG and
BM problems.

In the second section we present both uncertainty models,
and derive the corresponding BCRB in section 3. First this
BCRB is derived for the general case, then we consider the
case of an i.i.d. gaussian amplitude vector in the low noise
variance regime and finally we compare both bounds. In the
fourth section we show by simulation the difference of both
bounds.

II. COMPRESSED SENSING MODELS WITH UNCERTAINTY

Assume that the dictionary is corrupted according to H̃ =
H + E where H is a random but time-invariant matrix [10]
whose entries are i.i.d. zero-mean and of variance 1/N where
N is the number of measurements i.e. the number of lines
of H. Matrix E modelizes the mismatched error following a
Gaussian pdf of zero-mean and of variance σ2

eI. In addition,



we define the two following observations

BM problem : y = Hx + n = H̃x−Ex + n

known by the estimator: H̃

whose entries are stochastic processes

OG problem : ỹ = H̃x + n = Hx + Ex + n,

known by the estimator: H

whose entries are random but non-stochastic

The two models are described on Fig. 1.

Fig. 1. (a) BM problem, (b) OG problem

In the two above models, the noise term Ex + n is data-
dependent due to the mismatched error E. At first glance the
two above observations seem to describe the same formalism
and intuitively, we are tempted to conclude that the two
considered frameworks are related to the same estimation
problem. We will show in the sequel that this is a wrong
intuition.

III. BCRB WITH UNCERTAINTY

The VanTrees’ Bayesian bound [12] is a benchmark against
which any Bayesian estimator can be compared. More pre-
cisely, let x̂ be an estimate of x, the BMSEs for each the two
contexts of interest are

BMSEOG = Eỹ,x|H ‖x− x̂(ỹ)‖2 ≥ TrBOG (1)

BMSEBM = Ey,H̃,x

∥∥∥x− x̂(y, H̃)
∥∥∥2 ≥ TrBBM (2)

where for 1 ≤ i, j ≤ L,

[B−1OG]ij =

[
Var

(
∂ log p(y,x|H)

∂x

)]
ij

, (3)

[B−1BM]ij =

[
Var

(
∂ log p(y, H̃,x)

∂x

)]
ij

. (4)

where Var (x) is the variance of x.

A. BCRB in case of the off-grid problem

The off-grid problem is described according to the follow-
ing scenario: Estimate the amplitude vector x based on the
observation ỹ knowing the uncorrupted dictionary H. So, the
conditional observation is

ỹ|H,x ∼ N
(
Hx,R = (σ2

e ||x||2 + σ2)I
)
. (5)

Using the Slepian-Bang formula [13], we obtain the fol-
lowing Fisher Information Matrix (FIM):

FOG =
HTH

σ2
e ||x||2 + σ2

+
2σ4

eNxxT

(σ2
e ||x||2 + σ2)2

(6)

and thus the BCRB takes the following expression

BOG =
(
HTHP(σ2

e , σ
2) + Σ(σ2

e , σ
2) + Px

)−1
(7)

where Px = Var
(
∂ log p(x)

∂x

)
and

P(σ2
e , σ

2) = Ex
1

σ2
e ||x||2 + σ2

, (8)

Σ(σ2
e , σ

2) = Ex
2σ4

eNxxT

(σ2
e ||x||2 + σ2)2

. (9)

B. BCRB in case of the Basis Mismatched (BM) problem

The Basis Mismatched (BM) problem is described accord-
ing to the following scenario: Estimate the amplitude vector x
based on the observation y knowing the corrupted dictionary
H̃. The log-joint pdf is given by

log p(y, H̃,x) = log p(y|H̃,x) + log p(H̃) + log p(x) (10)

where the conditional observation is given by

y|H̃,x ∼ N
(
H̃x, (σ2

e ||x||2 + σ2)I
)
. (11)

Observe that ∂ log p(H̃)/∂x vanishes [14] and thus the
BCRB matrix is given by

BBM =
(
Ex,H̃(FBM) + Px

)−1
(12)

where the FIM FBM is given by the Slepian-Bang formula
according to

FBM =
H̃T H̃

σ2
e ||x||2 + σ2

+
2σ4

eNxxT

(σ2
e ||x||2 + σ2)2

. (13)

Noting that x and H̃ are two multidimensional independent
processes, we have

Ex,H̃(FBM) = Ex
EH̃(H̃T H̃)

σ2
e ||x||2 + σ2

+ Ex
2σ4

eNxxT

(σ2
e ||x||2 + σ2)2

(14)

where EH̃(H̃T H̃) = HTH + σ2
eI. Finally, we obtain

BBM =
((

HTH + σ2
eI
)
P(σ2

e , σ
2) + Σ(σ2

e , σ
2) + Px

)−1
. (15)

C. Comparaison

Result 3.1: From expressions (7) and (15), we deduce

BBM < BOG (16)

for σ2
e 6= 0.

Proof: The proof is direct considering that all the matrices
involved in the two bounds are positive and definite.

Remark that we verify the trivial property that if σ2
e → 0,

then BBM = BOG. The above result shows that for a given
noise power, the BM problem exhibits a better accuracy
than the OG problem. In the following sections, we provide
qualitative analytic expressions to precisely characterize the
”distance” between the two studied uncertainty problems. To
reach this goal we add some realistic assumptions.



D. Closed-form expressions for i.i.d. Gaussian amplitude vec-
tor in the low noise variance regime

In this section,

A1. We consider the low noise variance regime since it
is well known that the uncertainty context including
the Off-Grid and Basis Mismatched problems appears
only in the regime where the noise variance is suffi-
ciently low to be dominated by σ2

e . This fact directly
implies that any sparse-based estimator in this context
cannot be statistically efficient. As this property is a
highly desired feature in the context of the estimation
theory, the reader can measure the importance of the
analysis of this context. At contrary, when the noise
variance is high with respect to σ2

e , the uncertainty
context cannot be measured and thus can be ignored.

A2. The last assumption is to assume that the L ampli-
tudes belonging to the support, i.e. taking non-zeros
values follow an i.i.d. centered Normal distribution
with variance σ2

x/L. So, the sparse amplitude vector,
denoted by x̃, is composed by K−L zeros-values and
L random non-zero amplitudes. In this case, the prior
matrix of the BIM is given by Px = L

σ2
x
IL.

Lemma 3.2: In the low noise variance regime, we have

lim
σ2→0

P(σ2
e , σ

2) =
L

(L− 2)σ2
eσ

2
x

, (17)

lim
σ2→0

Σ(σ2
e , σ

2) =
2N

(L− 2)σ2
x

IL. (18)

Proof: For centered i.i.d. Gaussian amplitudes of variance
σ2
x, we have 1/||x||2 ∼ Inv − χ2

L where Inv − χ2
L stands for

an Inverse Chi-squared distribution of L degrees of freedom.
Thus, for L > 2, Ex

1
||x||2 = L

σ2
x(L−2)

. Using the fact that
limσ2→0 P(σ2

e , σ
2) = 1

σ2
e
Ex

1
||x||2 we obtain expression (17).

It is easy to see that Ex
xxT

||x||4 is a diagonal matrix pro-

portional to the identity matrix, i.e. Ex
xxT

||x||4 = t IL. Note

that TrEx
xxT

||x||4 = Ex
1
||x||2 = L

(L−2)σ2
eσ

2
x

. Thus, we obtain t =
1

(L−2)σ2
x

. Using the fact that limσ2→0 Σ(σ2
e , σ

2) = 2NEx
xxT

||x||4
we obtain expression (18).

Using the above Lemma, we can give the following result.

Result 3.3: For i.i.d. Gaussian amplitude vector and in the
low noise variance regime, the traces of the BCRB matrices
are given by

TrBOG =
σ2
x(L− 2)

L
Tr

[(
HTH

σ2
e

+ SN,LI

)−1]
, (19)

TrBBM =
σ2
x(L− 2)

L
Tr

[(
HTH

σ2
e

+(SN,L + 1)I

)−1]
. (20)

respectively, where SN,L = 2NL − 2 + L.

E. Comparaison of the two bounds

Based on the above Result, we can easily compare the two
bounds. Define the following normalized 2-norm criterion:

η
def.
=
∥∥B−1BM(BBM −BOG)

∥∥
2
. (21)

To compare BBM and BOG the 2-norm of the difference
BBM − BOG is naturally used. However this 2-norm can be
numerically small even for distant bounds due to the small
value of BBM and BOG. Thus, to improve the robustness of
the 2-norm criterion, we normalize the difference by B−1BM
which takes large values when the bounds are too small to
obtain the criterion in (21).

Result 3.4: The normalized 2-norm criterion introduced in
(21) takes the following simple form:

η =
σ2
e

λmin(HTH) + σ2
eSN,L

(22)

where λmin(·) stands for the minimal singular values.

Proof: Taking into account BBM =(
B−1OG + L

σ2
x(L−2)

I
)−1

and using the definition of the
2-norm involving the maximal singular value, denoted by
λmax(·), we obtain

η =
L

σ2
x(L− 2)

‖BOG‖2 = λmax

((
1

σ2
e

HTH + SN,LI

)−1)
.

Now using the fact λmax

(
Q−1

)
= 1/λmin (Q) in the

above expression, we obtain (22).

1) Analysis of η wrt. σ2
e with finite N and L: As intuitively

expected, one can verify limσ2
e→0 η = 0. For growing σ2

e ,
recalling that as L < N we have λmin(H

TH) > 0, expression
(22) is a monotonically increasing function. This result means
that the two considered uncertainty problems are not equivalent
for sufficient σ2

e with finite N and L.

2) Asymptotic behavior of η in the large system scenario
: In the Random Matrix Theory (RMT) [15], [16], [17], it is
assumed that N,L → ∞ with N/L → ρ. It is also usual to
assume in the CS framework that dictionary H is a random and
time-invariant matrix whose entries follow a given distribution
with zero-mean and variance 1/N . This construction verifies
the RIP with high probability [2], [1]. We can now give the
following result:

Result 3.5: For any σ2
e and if N,L→∞ with N/L→ ρ,

then η → 0. This means that the OG and BM problems are
identical in the Bayesian estimation point of view in the large
system scenario.

Proof: It is well-known that λmin(H
TH)→

(
1−

√
1
ρ

)2
in almost sure convergence [15], [16], [17], meaning that
λmin(H

TH) converges to a finite value. Now, remark that
sequence SN,L > L due to the fact that for avoiding the
singularity of the FIM we have L < N . So, for infinite
L, sequence SN,L diverges. Thus, criterion given in (22)
converges to 0 for any σ2

e .



IV. NUMERICAL ILLUSTRATIONS

In this section, we assume i.i.d. Gaussian amplitude vector
and the low noise variance regime. On Fig. 2, it is compared
the trace of expressions (7) and (15) obtained thanks to 2000
Monte-Carlo trials to the expressions (20) and (19) obtained
under the assumption of low noise variance. We can verify
the good agreement of our approximations in the low noise
variance regime. It is also possible to numerically check Result
(16). In addition, we can see that the two bounds tend to be
very close for small σ2

e , as intuitively expected.

10
−3

10
−2

10
−1

10
0

10
1

10
−3

10
−2

10
−1

10
0

σ
e

2
 [log scale]

T
r−

B
C

R
B

 [
lo

g
 s

c
a

le
]

 

 

OG in (7)
BM in (15)
OG in (21)
BM in (22)

Fig. 2. Trace-BCRB Vs. σ2
e with N = 20 measurements, L = 4 non-zero

amplitudes with σ2
x = 1. Expressions (7) and (15) are obtained thanks to 2000

Monte-Carlo trials.

On Fig. 3 are compared expression (21) obtained by
means of Monte-Carlo simulations and expression (22). As
noticed before, quantity η increases when the error variance
σ2
e increases. Furthermore, Fig. 3 shows that expression (22)

corresponds to the observed Monte Carlo results.
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Fig. 3. Criterion η Vs. σ2
e .

V. CONCLUSION

In this work, we compare two non-ideal CS frameworks in
a Bayesian estimation perspective. More precisely, we focus
our study on two well-known uncertainty models known under
the acronyms of Off-Grid (OG) and Basis Mismatch (BM)
problems. These two problems degrade drastically the estima-
tion accuracy of any sparse-based estimator even if the noise
variance is low and the support set of the non-zero amplitudes
is perfectly estimated or a priori known. At first glance, the
OG and BM problems seem sharing more similarities than

differences. In this work, we first show that the BM problem
has a better estimation accuracy than the OG problem in
a general context. In a second part, we provide a closed-
form expression of a normalized 2-norm for i.i.d. Gaussian
amplitude vector and in the low noise variance regime. This
closed-form expression allows us to precisely quantify the
difference between these two problems and show that these two
problems cannot be confused even for small mismatch error
variance and for a finite number of measurements and support
cardinality. Finally, we also show that these two problems
turn to be identical in the Bayesian estimation perspective if
the number of measurements and support cardinality grow to
infinity with a constant ratio.
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