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Abstract—Compressed sensing theory promises to sample
sparse signals using a limited number of samples. It also resolves
the problem of under-determined systems of linear equations
when the unknown vector is sparse. Those promising applications
induced a growing interest for this field in the past decade. In
compressed sensing, the sparse signal estimation is performed
using the knowledge of the dictionary used to sample the signal.
However, dictionary mismatch often occurs in practical applica-
tions, in which case the estimation algorithm uses an uncertain
dictionary knowledge. This mismatch introduces an estimation
bias even when the noise is low and the support (i.e. location
of non-zero amplitudes) is perfectly estimated. In this paper we
consider that the dictionary suffers from a structured mismatch,
this type of error being of particular interest in sparse estimation
applications. We propose the Bias-Correction Estimator (BiCE)
post-processing step which enhances the non-zero amplitude
estimation of any sparse-based estimator in the presence of a
structured dictionary mismatch. We give the theoretical Bayesian
Mean Square Error of the proposed estimator and show its
statistical efficiency in the low noise variance regime.

Keywords—Compressed Sensing with Uncertainty, Basis Mis-
match, Oblique projectors

I. INTRODUCTION

Many natural signals are sparse either naturally, or after
projecting them over an appropriate basis. Taking advantage
of this property, compressed sensing allows to sample those
signals with much less samples than requested by Shannon’s
sampling theory. To do so, the signals are sampled using a mea-
surement matrix and reconstructed using a sparse-promoting
criterion [1], [2], [3]. Many efficient algorithms efficiently
handle this problem as for instance the OMP [4], CoSAMP
[5], BPDN and LASSO, ...

However in practical context, the dictionary may not be
perfectly known [6]. This is the case for example in digi-
tal data hiding applications [7], [8] or compressed wireless
communication [9], [10], where the dictionary needs to be
transmitted such that the receiver can decode the signal.
Dictionary mismatch can also occur if the basis is constructed
using a discretization of a given parameter space, in which
case the receiver may not know exactly this discretization and
reconstruct a slightly shifted grid which results in a dictionary
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mismatch at the estimation step. The effect of dictionary
mismatch has been studied in [11], [12], it has been shown that
even for a small mismatch error, the accuracy of the amplitude
estimation is drastically limited even for a low noise variance
and a perfectly estimated support [13].

To mitigate the considered problem, we propose a new es-
timation scheme, called the Bias-Correction Estimator (BiCE),
which is a post-processing adapted to any sparse-based estima-
tor. The BiCE allows to efficiently mitigate the Basis mismatch
effect for an acceptable extra computational cost.

II. STRUCTURED MISMATCH BASIS PROBLEM

A. Compressed Sensing modelization

Let Ψ be a N ×K sensing/measurement matrix with N <
K. In compressed sensing (CS), the N×1 noisy measurements
y [1], [3] are given by:

y = Ψs + n (1)

in which s
def.
= Φθ where matrix Φ is a K ×K orthonormal

dictionary and θ is a L-sparse amplitude vector. We assume
that the support, S, is of cardinality L, and that the non-zero
amplitudes in vector θ, denoted by θS , are i.i.d. with zero
mean and a variance of σ2

θ . Finally, the noise n is a centered
circular Gaussian white noise of unknown covariance σ2I. The
CS model (1) is given by

y = ΨΦθ + n
def.
= HSθS + n (2)

where HS is the L columns extracted from the N × K
dictionary matrix H corresponding to support S .

Ideally, if H satisfies the Restricted Isometry Property
(RIP) [3], [2] and is perfectly known, it is possible to estimate
θ using the convex l1 norm sparse promoting constraint.
However, in practical scenario only a mismatched version
of the dictionary, denoted by H̃, can be available. We are
interested in this scenario, especially in the case where the
mismatched error is structured.

B. Structured dictionary mismatch

Dictionary based estimation is one of the common way to
take profit of compressed sensing theory: in sparse estimation
the sparsity promoting basis Φ is created by a discretization
of a known continuous function/kernel φ(t), function which



is dependent of the signal model of the specific application
of interest (Radar [14], DoA estimation [15], ...) . Let TS
be the sampling period, we have [Φ]kk′ = φ(t)|t=τk′−kTS

where 1 ≤ k, k′ ≤ K and τ = [τ1, · · · , τK ]
T is the given

dicretization of the parameter set. The most common case is
the uniform discretization of the grid with τk′ = k′TS . Using
this type of dictionary, the mismatch on the basis matrix Φ̃
comes from a uncertain discretization of function φ(t), defined
as τ̃ = [τ̃1, · · · , τ̃K ]

T where τ̃k′ = τk′ +ek′ . For a sufficiently
small mismatched error, the first-order Taylor approximation
of the basis Φ̃ is given by

[Φ̃]kk′ = φ(t)|t=τ̃k′−TSk

= φ(t)|t=τk′−TSk
+
∂φ(t)

∂t

∣∣∣∣
t=τk′−TSk

ek′ +O(e2k′).

An equivalent formalism for k′ ∈ S is Φ̃S ≈ ΦS +

Φ̇Sdiag(eS) where [Φ̇S ]kk′ = ∂φ(t)
∂t

∣∣∣
t=τk′−TSk

and eS =

[. . . ek′ , . . .]
T where k′ ∈ S . In term of the dictionary, we

have the following approximation:

H̃S = ΨΦ̃S ≈ ΨΦS +ΨΦ̇Sdiag(eS) = HS + ḢSdiag(eS).
(3)

This structured dictionary mismatch modelization has been
largely adopted in the literature (see [16] for instance and the
references therein).

III. BICE FOR A STRUCTURED MISMATCHED DICTIONARY

Here after, the BiCE is introduced and its theoretical
accuracy is derived.

A. Description of the BiCE

The BiCE is designed as an efficient and computational
attractive post-processing which improves standard sparse re-
covery estimators. The general description of the BiCE is given
on Fig. 1. This algorithm is based on the estimation of vector
θ̂ computed by any standard sparse estimators, denoted on Fig.
1 by A(·), to perform a corrected amplitude vector estimation.
This is done through an ad-hoc oblique projector based only on
the knowledge of the corrupted dictionary, H̃Ŝ , and its first-
order derivative, ˙̃HŜ . We recall that in the Basis mismatch
problem, the knowledge of the initial uncorrupted dictionary
is not available. As demonstrated in the sequel, our strategy
allows to mitigate the dictionary mismatch with a limited
additional computational workload.

B. Analysis of the accuracy of the BiCE

Result 3.1: In the regime where the support set has been
estimated without error and for sufficiently small σ2σ2

e , the
conditional bias vector and the BMSE can be approximated
according to

Bias( ˆ̄θS |θS) ≈ σ2
eH
†
SEHSḢS

ḦSθS , (7)

BMSE( ˆ̄θS) ≈ σ2FS + σ2
θ m

4
e F̄S (8)

Data: y, H̃, L, φ(t)

Result: BiCE-A(y, H̃, L, φ(t)) estimate: ˆ̄θŜ
1) Run the sparse-based estimator ie.,

A(y, H̃, L, φ(t))→ θ̂. (4)

2) Compute ˙̃H = Ψ ˙̃Φ where [ ˙̃Φ]kk′ =
∂φ(t)
∂t

∣∣∣
t=τ̃k′−TSk

.

3) From θ̂ compute Ŝ.
4) Using the support set estimation Ŝ, compute H̃Ŝ

and ˙̃HŜ .
5) Compute the oblique projector [17] for range

space 〈H̃Ŝ〉 and null space 〈 ˙̃HŜ〉 :

E
H̃Ŝ

˙̃HŜ
= H̃Ŝ

(
H̃T
ŜP⊥˙̃HŜ

H̃Ŝ

)−1
H̃T
ŜP⊥˙̃HŜ

.

(5)
6) Finally, compute

ˆ̄θŜ = H̃†
Ŝ
E

H̃Ŝ
˙̃HŜ

y (6)

where † stands for the Moore-Penrose pseudo-
inverse.

Algorithm 1: BiCE-A(y, H̃, L, φ(t))

where m4
e = E(e4i ) stands for the 4-th order moment and

FS = Tr

[(
HT
ŜP⊥

ḢŜ
HŜ

)−1]
, (9)

F̄S = Tr

[
ḦT
SP⊥

ḢS
HS

(
HT
SP⊥

ḢS
HS

)−2
HT
SP⊥

ḢS
ḦS

]
.

(10)

Proof: Due to the lack of space, only a sketch of the proof
is provided here. The aim is to derive ˆ̄θS − θS . To do this,
the fist step is to use ˙̃H ≈ Ḣ + Ḧdiag(e) in measurement
y. The second step will be to exploit a first-order Taylor
approximation of the orthogonal projector P⊥˙̃HŜ

[18]. After

some derivations, the bias vector and the BMSE are given by
(7) and (8).

Thanks to Result 3.1., we can give the following important
remark.

Remark 3.2: For the scenario where there is no mis-
matched error (σ2

e → 0), we have:

• The BiCE is conditionally unbiased.

• The BMSE of the BiCE converges toward

σ2Tr

[(
HT
ŜP⊥

ḢŜ
HŜ

)−1]
. According to [19],

this expression is in fact the Expected Cramér-Rao
Bound (ECRB) for the projected observation y onto
the subspace 〈ḢS〉⊥.

Remark 3.3: In the low noise variance regime (σ2 → 0),
the order of magnitude of the BMSE of the BiCE is given by
the 4-th order moment of the mismatched error. To illustrate
this property, recall that the 4-th order moment for an error
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Fig. 1. Description of the BiCE-A. Note that algorithm A(·) stands for any sparse-based estimators.

following a Gaussian random variable of variance σe is 3σ4
e

which is rather small compared to the error without correction
which is of order of σ2

e . This key property of the BiCE is
illustrated in the simulation part.

C. Evaluation of the dominating computational cost in Flops

In this section, the dominating computational cost of the
BiCE is given and compared to the OMP computational cost.
The OMP complexity is in O(LNK) [20] for large K. The
OMP is known to have a relatively low computational cost
with respect to other sparse-based estimators.
The BiCE involves as a first step, the computation of a (N−L)-
rank orthogonal projector, P⊥

ḢS
which can be evaluated at the

cost O((N−L)NL) which is the cost of a reduced-rank SVD.
The second step is the projection Z = P⊥˙̃HS

H̃S which can be

evaluated in O(N2L) and finally, the last step is the resolution
of an ordinary LS criterion given by ZTZˆ̄θS = Zy which is
evaluated in O(NL2). So, we can conclude that the dominating
cost of the BiCE is O(N2L). As N � K by assumption, we
can conclude that the BiCE dominating computational cost is
much lower than the dominating cost of the OMP.

IV. APPLICATION TO NON-BANDLIMITED SIGNAL
SAMPLING

A. Sampling of a stream of pulses

To illustrate the potential improvements due to the
BiCE post-processing, we consider the sampling of a non-
bandlimited signal constituted by a stream of L weighted and
delayed pulses [21] given by x(t) =

∑
l∈S θlδ(t−τl) where τl

and θl are the unknown time-delay and amplitude of the l-th
pulse, respectively and δ(t) is the Dirac delta function. The
sample sequence is given by

ck =
∑
l∈S

θlφ(τl − (k − 1)TS) + nk, 1 ≤ k ≤ K (11)

where TS is the sampling interval, φ(t) is chosen to be the Sinc
sampling Kernel [21] and nk is a real discrete white Gaussian
noise having zero-mean and a variance of σ2. In the sequel,
the basis K × K matrix is computed according to [Φ]kk′ =

φ
(
τk′
TS
− (k − 1)

)
.

Interestingly and to the best of our knowledge, the sampling
of non-bandlimited signals has never been presented in the
CS framework, i.e. when the K-length sample sequence is

randomly mapped onto a size-compressed N -length signal,
denoted by yn. We think that the CS theory is well adapted
to the considered sampling problem. Consequently, the initial
sample sequence c = [c1 · · · cK ]

T is ”compressed” according
to y = Ψc where Ψ is a ”fat” N ×K random matrix. To do
so, the non-bandlimited signal sampling problem follows the
CS model given in (1).

B. Simulation results

Two popular sparse-based estimators, namely, the OMP
[4] and the CoSaMP [5], are considered in this simulation
part to estimate the time-delays and the amplitudes based
on the compressed measurements y. We apply the BiCE
for each algorithms and we name the enhanced version of
these algorithms by BiCE-OMP and BiCE-CoSaMP. As a
benchmark, we compare the BMSE measurements obtained
by Monte Carlo simulations with the ”oracle” ECRB [22]
given by E||θS − θ̂S ||2 ≥ ECRB = σ2Tr

[(
HT
SHS

)−1]
.

Term ”oracle” means that the dictionary is known and for the
true support S. Thus, this Bayesian lower bound gives the
lowest accuracy that can be reached and will be compared
with the theoretical BMSE of the BiCE given in (8). The SNR
in the Bayesian context is defined by E(||θS ||2)/E(||n||2).

On Fig.2, the ideal scenario without mismatch error is
considered. We can see that the OMP and the CoSaMP
estimators are statistically efficient (i.e. reach the ECRB) when
the noise variance is small enough. Note that the BiCE-OMP
and BiCE-CoSaMP schemes do not modify the ”behavior” of
the OMP and CoSaMP algorithms in case of null mismatch
error. It was crucial to check this fact to show that the proposed
solutions can be used in any situations. On Fig.3, the mismatch
error variance is fixed to σ2

e = 1e− 3. In this case, the OMP
and the CoSaMP estimators show a ”saturated” BMSE in the
low noise variance regime and even if the support is perfectly
estimated. We can also note that the BiCE strategy is efficient
for the two tested sparse-based estimators since the BMSE of
BiCE-OMP and BiCE-CoSaMP now reach the ECRB. Also,
note that the simulated BMSE for the BiCE-OMP and the
BiCE-CoSaMP match the theoretical BMSE given in (8) in
the low noise variance regime.

V. CONCLUSIONS

Compressed Sensing with uncertain knowledge of the
model is an important challenge since this scenario is realis-



−20 0 20 40 60 80

10
−10

10
−5

10
0

SNR [dB]

B
M

S
E

 [
lo

g
 s

c
a

le
]

 

 

OMP
BiCE−OMP
CoSaMP
BiCE−CoSaMP
ECRB
BMSE cf. equa. (8)

Fig. 2. BMSE Vs. the SNR [dB] with N = 200, K = 500, L = 10,
σ2
e = 0.
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Fig. 3. BMSE Vs. the SNR [dB] with N = 300, K = 1000, L = 10,
σ2
e = 1e− 3.

tic in operating context. Unfortunately, standard sparse-based
estimators suffer from a limited estimation accuracy in the
low noise variance regime and even if the support is perfectly
estimated. In this paper, we proposed a general enhancement
strategy called Bias Correction Estimator (BiCE) to improve
the estimation of a sparse vector in presence of a dictio-
nary mismatch. The BiCE is an extra/post layer estimation
refinement which can be used for any sparse-based estimator.
We derived the theoretical BMSE of the BiCE and illustrated
by numerical simulations the improvement that we can hope.
Specifically, when the sparse-based estimators suffer from a
BMSE limitation, the combination between these schemes with
the BiCE allows to obtain enhancement estimation schemes
reaching the oracle ECRB which is the lowest estimation
accuracy that we can expect. As a by product, the BiCE has
a low computational complexity cost.
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