
HAL Id: hal-01245378
https://hal.science/hal-01245378

Submitted on 25 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Additive Normal Forms and Integration of Differential
Fractions

François Boulier, Joseph Lallemand, François Lemaire, Georg Regensburger,
Markus Rosenkranz

To cite this version:
François Boulier, Joseph Lallemand, François Lemaire, Georg Regensburger, Markus Rosenkranz.
Additive Normal Forms and Integration of Differential Fractions. Journal of Symbolic Computation,
2016. �hal-01245378�

https://hal.science/hal-01245378
https://hal.archives-ouvertes.fr

Additive Normal Forms and Integration of
Differential Fractions

François Boulier1, Joseph Lallemand2, François Lemaire1,
Georg Regensburger3, and Markus Rosenkranz

1 Univ. Lille, CRIStAL, UMR 9189, 59650 Villeneuve d’Ascq, France
{francois.boulier,francois.lemaire}@univ-lille1.fr

2 ENS Cachan, 61 av. du Président Wilson, 94235 Cachan, France
joseph.lallemand@ens-cachan.fr

3 Johann Radon Institute for Computational and Applied Mathematics, Austrian
Academy of Sciences, Altenbergerstraße 69, 4040 Linz, Austria

georg.regensburger@ricam.oeaw.ac.at
4 School of Mathematics, Statistics and Actuarial Science, University of Kent,
Canterbury CT2 7NF, England, United Kingdom M.Rosenkranz@kent.ac.uk

Abstract. This paper presents two new algorithms for integrating frac-
tions of differential polynomials. In a previous work, the authors pre-
sented a method for decomposing a fraction as a fraction (the “non in-
tegrable part”) plus the derivative of another fraction. In this paper,
we rigorously formalize this notion of “non integrable part” and intro-
duce a new normal form for decomposing a fraction as a sum of iterated
derivations of fractions.

Keywords: Differential algebra, differential fraction, integration.

1 Introduction

This paper defines a new normal form of differential fractions, which are frac-
tions of two differential polynomials, in differential algebra [1, 2]. The differential
polynomial ring R considered in this paper is as follows: one of its derivation is
denoted δ ; one assumes that there exists an element x of R such that δx = 1 ;
and K is its field of constants w.r.t. δ (see Section 2 for the rigorous assump-
tions on R). A major result of the paper is Proposition 14 which shows that any
differential fraction F ∈ S can be decomposed as a sum:

F = P +
∞∑
i=0

δiWi , (1)

where P ∈ K [x] is a polynomial, the Wi are differential fractions in the set SF ⊂
S of the so-called “functional ” fractions, and where only a finite number of Wi

are nonzero. Moreover, we provide Algorithm IteratedIntegrate for computing (1)
and prove in Proposition 14 that Decomposition (1) is unique and additive, i.e.

that, if

F̄ = P̄ +

∞∑
i=0

δiW̄i

is the unique decomposition of some differential fraction F̄ ∈ S then

F + F̄ = (P + P̄) +

∞∑
i=0

δi(Wi + W̄i)

is the unique decomposition of F + F̄ . More precisely, in terms of vector spaces,
Proposition 14 shows that

S = K [x]⊕SF ⊕ δSF ⊕ δ2SF ⊕ · · ·

where S is seen as a K -vector space.
These results improve those of [3] since the decomposition provided in [3]

depends on the implementation of Algorithm [3, integrate] and is not additive.
Moreover, Algorithm [3, integrate] is flawed since it may not terminate over some
inputs (see [4]). Our results also extend [4], which fixes the flaw in [3, integrate]
but does not address the additivity property.

Even without the additivity property, algorithms for computing (1) are im-
portant: they permit to reduce the size of formulas in the output of differential
elimination methods (when polynomials are solved w.r.t their leading deriva-
tives, the left-hand sides become differential fractions), they give more insight
to understand the structure of an equation, and they lead to better numerical
schemes in the context of parameter estimation problems over noisy data, from
the input-output equations, because they permit to replace, at least partially,
numerical derivation methods by numerical integration ones. See [4] for details.
It is worth mentioning that working with fractions instead of polynomials yield
more freedom by adjusting the denominators. Indeed, Decomposition (1) highly
depends on the denominator of F , i.e. the decomposition of F/Q, where Q is a
polynomial, can be completely different from the decomposition of F . Finding a
suitable Q is a difficult task and depends on the application (in the context of
[3], the goal was to obtain order zero Wi).

Variants of Decomposition (1) can be easily obtained, e.g. by bounding the
value of i. Bounding i by 1, a unique decomposition of a fraction F can be
defined by

F = W + δR (2)

where W is a functional fraction, and R is a fraction. Actually, Decomposition (1)
is in practice obtained by iterating Decomposition (2). Note that Decomposi-
tion (2) is related to the decomposition of ordinary differential polynomials [5,
6] in the particular case where F is polynomial and W is zero.

The additional additivity property is also very interesting since it provides
more intrinsic (i.e. not algorithm dependent) formulas and makes it simpler to
study linear dependencies between differential fractions (see Remark 8): given k

differential fractions F1, F2, . . . , Fk, how to find k coefficients α1, α2, . . . , αk in
K such that

F = α1 F1 + α2 F2 + · · ·+ αk Fk

is the derivative δ G of some unknown differential fraction G ? Thanks to the
additivity property, it is now sufficient to decompose each Fi as Wi + δRi as
in (2), and look for coefficients in K such that

α1W1 + α2W2 + · · ·+ αkWk = 0 .

Suitable techniques for finding linear dependences between fractions is described
in [7]. Moreover, this might give an alternative for the problems addressed in [8].

More generally, the additivity property is a further step towards an algo-
rithmic elimination theory of integro-differential polynomials, as stated in the
conclusion of [3].

Finally, all algorithms presented in this paper were implemented in Maple,
using the DifferentialAlgebra package [9].

The rest of the paper is organized as follows. Basic notions of differential
algebra, the decomposition of a multivariate fraction and a slight variant of the
Hermite method for decomposing a fraction in the univariate case are reviewed
in Section 2.

Section 3 is mainly a generalization of [10] to the context of differential al-
gebra (partial derivations and general rankings are handled). Functional mono-
mials and polynomials are defined. The section finally introduces Algorithm
polyIntegrate which performs Decomposition (2) in the polynomial case (i.e. when
F is a polynomial in R).

Section 4 provides proofs of the existence and uniqueness of Decomposi-
tion (2) for differential fractions, and presents Algorithm Integrate for computing
it. As opposed to the polynomial case, the fractional case is surprisingly difficult.
Functional fractions are defined in Section 4.1. The term R in (2) is defined up
to a constant. In order to make it unique, the notions of polynomial part and
constant term of a fraction are introduced in Section 4.2. Algorithm Integrate is
presented in Section 4.3, as well as its proof.

Finally, the existence and uniqueness of Decomposition (1) is proved in Sec-
tion 5 (Proposition 14), and Algorithm IteratedIntegrate, which computes it, is
presented.

2 Preliminaries

2.1 Differential Algebra Tools

Reference textbooks are [1] and [2]. A differential ring R is a ring endowed with
finitely many, say m, derivations δ1, . . . , δm, i.e., unary operations satisfying the
following axioms, for all A,B ∈ R:

δ(A+B) = δ(A) + δ(B) , δ(AB) = δ(A)B +Aδ(B) ,

and which commute pairwise. The derivations generate a commutative monoid
w.r.t. composition denoted by

Θ = {δa11 · · · δamm | a1, . . . , am ∈ N} ,

where N stands for the nonnegative integers. The elements of Θ are called
derivation operators. If θ = δa11 · · · δamm is a derivation operator then ord(θ) =
a1 +· · ·+am denotes its order, with ai being the order of θ w.r.t. derivation δi. In
order to form differential polynomials, let us introduce a set U = {u1, . . . , un}
of n differential indeterminates. The monoid Θ acts on U , giving the infinite set
ΘU of derivatives. For readability, we often index derivations by letters like δx
and δy, denoting also the corresponding derivatives by these subscripts, so uxy
denotes δx δy u.

In the rest of the paper, δ is a distinguished derivation. Without loss of
generality, we assume that δ = δ1. Let us assume there exists an independent
variable x such that δx = 1 and δix = 0 for all i ≥ 2. We consider the differential
ring R = K [{x} ∪ ΘU] where K is a field containing Q such that δa = 0 for
all a in K . Due to axioms of derivations, the derivative δ acts on elements of R
in the following way:

δ =
∂

∂x
+
∑

w∈ΘU

(δw)
∂

∂w
· (3)

A ranking is a total ordering on ΘU that satisfies the two following axioms:

1. v ≤ θv for every v ∈ ΘU and θ ∈ Θ,
2. v < w ⇒ θv < θw for every v, w ∈ ΘU and θ ∈ Θ.

Rankings are well-orderings, i.e., every strictly decreasing sequence of elements
of ΘU is finite [2, §I.8]. From now on, we assume a ranking is fixed. In the sequel,
it will sometimes be emphasized that some notions are ranking dependent by
referring to this fixed ranking. Let P be a differential polynomial in R \K [x].
The leading derivative, or leader, of P , denoted ld(P), is the highest derivative v
such that d = deg(P, v) is nonzero. The monomial vd is the rank of P . The
leading coefficient of P w.r.t. v is the initial of P , and it is denoted iP . The
differential polynomial ∂P/∂v is the separant of P . A rank ud is said to be lower
than a rank ve if u < v or both u = v and d < e. The ordering on the ranks is
also a well-ordering.

Differential fractions are defined as quotients of differential polynomials i.e.
elements of S = K ({x} ∪ ΘU). The leader of a differential fraction F in
S \ K (x) is defined as the greatest derivative v such ∂F

∂v 6= 0. Let F be a
polynomial in some variable y. One denotes val(F, y) the valuation of F w.r.t. y
i.e. the minimum degree in y of all monomials occurring in F , if F 6= 0, and∞ if
F = 0. Let F/G be a nonzero fraction and y a variable (in the differential context,
a variable is either the independent variable or a derivative). The degree of F/G
w.r.t. y is defined by deg(F/G, y) = deg(F, y) − deg(G, y). If the fraction F is
zero, then deg(F, y) = −∞. One easily notices that the definition of the degree of

a fraction does not depend on the chosen representative of the fraction. Moreover,
as in the polynomial case, for any fractions A and B, one has

deg(A+B, y) ≤ max{deg(A, y),deg(B, y)} (4)

with equality if deg(A, y) 6= deg(B, y). Finally, polynomials and fractions are
denoted with uppercase letters (A,B, . . .), and derivatives as well as independent
variables are denoted with lowercase letters (u, v, . . . , x, y1, . . .).

2.2 Multivariate Partial Fraction Decomposition

Since an antiderivative (or primitive) is only defined up to a constant, we intro-
duce the constant term of a multivariate fraction as well as its polynomial part.
These notions rely on the generalization to multivariate fractions of the partial
fraction decomposition [11]. We present a slight modification of Stoutemyer’s
multivariate decomposition of a fraction in order to guarantee some uniqueness
property. We however do not recall the complete algorithm since we will only
need to compute constant terms and polynomial parts of fractions.

Following essentially [11], we consider multivariate partial decompositions for
multivariate fractions in the variables yi ordered by y1 > y2 > · · · > ys. Accord-
ingly, the main variable of a polynomial p is defined as the highest variable yi
such that deg(p, yi) > 0. In order to completely normalize the representative of
a reduced fraction, it suffices to normalize one of its coefficients. This is achieved
using the notions of admissible orderings and leading coefficients in the Gröbner
basis sense [12, chap. 2].

Definition 1 (Multivariate partial fraction). Consider a field A of char-
acteristic 0 and an admissible ordering. Take an irreducible fraction P/Q in
A (y1, . . . , ys) with Q = Qa11 · · ·Qarr where each Qi is an irreducible factor in
A [y1, . . . , ys] and each ai is a positive integer. The fraction P/Q is called a
multivariate partial fraction if it satisfies the conditions:

1. i 6= j implies Qi and Qj have different main variables (for the chosen order-
ing y1 > y2 > · · · > ys),

2. the leading coefficient of each Qi for the admissible ordering is equal to 1,
3. for each 1 ≤ i ≤ r, one has deg(P, ȳ) < deg(Qi, ȳ) where ȳ is the main

variable of Qi.

Lemma 1. Consider a field A of characteristic 0 and an admissible ordering.
Any multivariate fraction F of A (y1, . . . , ys) can be written as a unique sum of
multivariate partial fractions with pairwise distinct denominators. The sum is
called the multivariate partial decomposition of F .

Proof. See [11]. ut

Remark 1. Lemma 1 slightly strengthens [11] by ensuring a unique decomposi-
tion as well as making the P and Q unique (thanks to the item 2 of Definition 1).

Remark 2. The condition deg(P, ȳ) < deg(Qi, ȳ) could be relaxed to deg(P, ȳ) <
deg(Qaii , ȳ), following the remark of [11, page 208] stating: “In that case, ’degree
of P ’ should be replaced with ’degree of Pn’ in property b of Definition 1”. In
practice, this relaxed condition leads to fewer terms in the decomposition.

Example 1 sketches the computation of the decomposition of some fraction.

Example 1. In this example, A = Q and the admissible ordering is the lexi-
cographic ordering given by y1 > y2. The decomposition of F = y2

(y21+1)(y1+y2)

is

F =
y2

(y1 + y2)(y2
2 + 1)

+
1

y2
1 + 1

+
−y1 y2 − 1

(y2
1 + 1)(y2

2 + 1)
·

It is obtained by first computing a partial fraction decomposition w.r.t. y1 yield-
ing

F =
y2

(y1 + y2)(y2
2 + 1)

− (y1 − y2)y2

(y2
1 + 1)(y2

2 + 1)

and then computing a partial fraction decomposition w.r.t. y2 on each term after
removing the factor in y1 in the denominator (i.e. computing a partial fraction

decomposition w.r.t. y2 on y2
y22+1

and (y1−y2)y2
y22+1

).

Remark 3. Please note that unlike in the univariate case, the irreducible factors
of the denominators in the decomposition of a fraction F do not necessarily
divide the denominator of F . In Example 1 the factor (y2

2 + 1) in the final
decomposition does not divide the denominator of F .

Definition 2 (Polynomial part and constant term of a multivariate
fraction). Keep the assumptions of Lemma 1 and take F ∈ A (y1, . . . , ys). The
unique multivariate partial fraction P/Q of the multivariate decomposition of F
satisfying Q = 1 is called the polynomial part of F (it belongs to A [y1, . . . , ys]).
The term of degree 0 w.r.t. the yi of the polynomial part of F is called the
constant term of F (it belongs to A).

Remark 4. The polynomial part as well as the constant term of a fraction F do
not depend on the admissible ordering. However, they depend on the ordering
y1 > · · · > ys. Consider the fraction F whose multivariate decomposition for
y1 > y2 is

y1y2 +
y2

y1 + y2
·

Its polynomial part and its constant term are equal to y1y2 and 0 for y1 > y2.
However, the polynomial part and the constant term of the same F for the
ordering y2 > y1 are y1y2 + 1 and 1 since the decomposition of F for y2 > y1 is

y1y2 + 1− y1

y1 + y2
·

Lemma 2. Consider a field A of characteristic 0 and an admissible ordering.
Take two fractions F and G in A (y1, . . . , ys) and consider a linear combination
H = αF + βG for some α and β in A . Denote

∑s
i=1 Fi and

∑t
j=1Gi the

respective multivariate partial fraction decompositions of F and G. By grouping
the Fi and Gj with the same denominators, the multivariate partial fraction
decomposition of H can be obtained from those of F and G as follows:

H =
∑

(i,j)∈IFG
αFi+βGj 6=0

(αFi + βGj) +
∑
i∈IF

αFi +
∑
j∈IG

βGj (5)

where

– IFG is the set of couples (i, j) such that Fi and Gj have the same denomi-
nators

– IF is the set of the integers 1 ≤ i ≤ s such that (i, j) /∈ IFG for all 1 ≤ j ≤ t
– IG is the set of the integers 1 ≤ j ≤ t such that (i, j) /∈ IFG for all 1 ≤ i ≤ s.

Proof. By construction of IFG and IF , each integer 1 ≤ i ≤ s is either in the first
component of an element of IFG or belongs to IF . With a similar argument on
IFG and IG, the right hand side of Equation (5) equals αF +βG. It is also clear
that each term of the form αFi + βGj is a multivariate partial fraction because
Fi and Gj have the same denominators. Thus Equation (5) is the multivariate
partial fraction decomposition of H. ut

Corollary 1. The polynomial part and constant term operations are A -linear.

Proof. This is a direct consequence of Lemma 2. ut

2.3 The Hermite Algorithm

Let us first borrow two definitions from [13, Definition 1.7.1 and Definition 1.7.2].

Definition 3 (Squarefree polynomial). Consider a unique factorization do-
main A and a polynomial P in A [y]. The polynomial P is said squarefree
(w.r.t. y) if there exists no Q ∈ A [y] \A such that Q2 divides P in A [y].

Definition 4 (Squarefree factorization). Consider a unique factorization
domain A and a polynomial P in A [y]. A squarefree factorization of P is
a factorization of the form P = P1P

2
2 · · ·P tt where each Pi is squarefree and

gcd(Pi, Pj) ∈ A for i 6= j.

Our integration problem contains as a subproblem the well known problem
of integrating a univariate fraction. Indeed, integrating ∂F

∂u w.r.t. u to retrieve F

can be done by integrating ux
∂F
∂u w.r.t. x since δF = ux

∂F
∂u . Given a univariate

fraction F in the variable u, the Hermite reduction computes two fractionsW and
R such that F = W + ∂R

∂u , deg(W,u) < 0, and W has a squarefree denominator.
See for example the different variants of Algorithm HermiteReduce given in [13,
page 40], [13, page 41], and [13, page 44].

In order to ensure the uniqueness of the Hermite reduction (R,W), we also
require that R has a zero constant term w.r.t. the variable u (in the sense of
Definition 2). In the univariate case, this last condition is equivalent to the simple
condition: if R is a polynomial in u, the term of degree 0 of R is zero ; if R = A/B
is a fraction with deg(B, u) > 0, by writing R = P + Ā/B where P and Ā are
polynomials such that deg(A, u) < deg(B, u), the term of degree 0 of P is zero.

This paper relies on Algorithm Hermite, based on a slight modification of
[13, Algorithm HermiteReduce, page 44]. Algorithm Hermite performs an extra
division to ensure that R has a zero constant term, since we could not easily
deduce from the code of [13, Algorithm HermiteReduce, page 44] whether this
last condition is true or not.

Input: F a univariate fraction in u
Output: the unique pair of fractions (W,R) such that F = W + ∂R

∂u
,

deg(W,u) < 0, the denominator of W is squarefree, and R has a zero
constant term.

1 begin

2 compute (W, R̄) using [13, HermiteReduce, page 44] such that F = W + ∂R̄
∂u

;
3 remove from R̄ its constant term (w.r.t u) (e.g. using an Euclidean division)

thus obtaining R ;
4 return (W,R)

Algorithm 1: Hermite(F, u)

Algorithm Hermite is actually a non differential algorithm, and it will be
called later by Integrate with a parameter u which can be either a derivative or
the independent variable x.

Example 2. Take F =
k2keVe
y + ke

+
keVeẏ

(y + ke)2
seen as a univariate fraction in y.

Then Hermite(F, y) = (W,R) where W =
k2keVe
y + ke

and R = − keVeẏ
y + ke

· One easily

checks that F = W + ∂R
∂y , deg(W, y) < 0, W has a square free denominator and

R (seen as a univariate fraction in y) has a zero constant term.

3 Polynomial Integration

This section is mainly a generalization of [10] to the context of differential alge-
bra. In particular, partial derivations and general rankings are handled.

The differential ring R can be seen as a K -vector space. The set δR is
trivially a proper vector subspace of R; it represents the set of all differential
polynomials which are derivatives of some differential polynomial.

Suppose we fix a complementary vector space F to δR in order to have
R = F ⊕ δR. Then integrating a differential polynomial P can be seen as

projecting P on F and δR, yielding a unique decomposition (W,Q) ∈ F × δR
such that P = W + Q, where W is the “non integrable” part, and Q is the
integrable part. The vector space F is not unique and has to be chosen. In this
section, we show that F can be chosen as RF which denotes the set of functional
polynomials (see Definition 6). The choice of the letter F in RF comes from the
term functional which is used by [10] after being introduced by [14].

3.1 Functional and Integrable Monomials

We must distinguish between the integrable and functional (= non integrable)
parts of a differential polynomial. In the case of differential polynomials, the
most natural way to achieve this is on a monomial-by-monomial basis, guided
by the following discussion. Consider a monomial M = xevd11 · · · vdss where e ≥ 0,
s > 0, the di are positive, the vi are derivatives sorted by v1 > v2 > · · · > vs
for a chosen ranking. Due to the axioms of rankings, δM is equal to M2 =
d1x

e(δv1)vd1−1
1 vd22 · · · vdss plus other monomials with leaders strictly less than

δv1. The monomial M2 has very special properties. Its leader δv1 appears with
an exponent 1 and it belongs to δ(ΘU). Moreover, ldM2 = δv1 ≥ δv for all
derivatives v occurring inM2 such that v 6= ldM2. This discussion leads naturally
to the following definitions.

Definition 5 (Functional and integrable monomials). Consider a ranking.
Consider a monomial M = xevd11 · · · vdss where e ≥ 0, the di are positive, the vi
are derivatives sorted by v1 > v2 > · · · > vs for the considered ranking. The
monomial M is said to be integrable w.r.t. x and the ranking, if

(s = 0) or
(
v1 ∈ δ(ΘU) and d1 = 1 and (s = 1 or δv2 ≤ v1)

)
, (6)

In the opposite case, that is if

(s ≥ 1) and
(
v1 /∈ δ(ΘU) or d1 > 1 or (s ≥ 2 and δv2 > v1)

)
, (7)

M is said to be functional w.r.t. x and the ranking.

Definition 6 (Functional polynomial). Consider a ranking. A differential
polynomial P is said to be functional w.r.t. x and the ranking if it can be writ-
ten as a linear combination over K of functional monomials w.r.t. x and the
ranking. The set of functional polynomials is denoted by RF .

Example 3. Consider the ranking u < v < ux < vx < uy < vy < uxx < · · · . The
monomials xv, u2

xu, uxv, vyuy are functional (w.r.t. x and the ranking). The
monomials x, uxu, vxu, uxxv, xvxxu

2
xu are integrable (w.r.t. x and the ranking).

The notion of functional monomial clearly depends on the chosen x and the
chosen ranking, so a monomial may be functional for some x and some ranking,
but not for another choice of x or another ranking. In the rest of the paper, the

dependency w.r.t. x and the ranking will be simply omitted when there is no
ambiguity.

The following example gives some insight on how the functional and integral
parts of a polynomial will be extracted.

Example 4. Following Example 3, each of the integrable monomials uxu, vxu,
uxxv, vxxu

2
xux can be rewritten as the derivative of some monomial (times a

constant) plus a linear combination of monomials with smaller leaders:

– uxu = 1
2δ(u

2), vxu = δ(vu)− uxv, uxxv = δ(uxv)− vxux,
– xvxxu

2
xu = δ(xvxu

2
xu)− 2xvxuxxuxu− xvxu3

x − vxu2
xu.

Note that some functional monomials can be written in a similar way. An
example is given by: uxv = δ(uv) − vxu where uxv is functional. However, one
has ld(uxv) = ux < vx = ld(vxu). Continuing the process would lead to an
infinite loop since uxv = δ(uv) − vxu = δ(uv) − (δ(uv) − uxv) = uxv = · · · . In
order to achieve a finite rewriting process (as Algorithm polyIntegrate will do),
it is better not to rewrite the functional monomials.

3.2 The polyIntegrate Algorithm

Proposition 1. We have RF ∩ δR = {0}.

Proof. Let us assume P ∈ RF ∩δR and P 6= 0. We show that P involves at least
one integrable monomial. This contradiction with the hypothesis P ∈ RF will
prove the proposition. Since P ∈ RF and P 6= 0, one has P /∈ K [x] (condition
s ≥ 1 in (7)). Denote v = ldP . Since P ∈ δR, there exists P̄ with leader v̄ such
that P = δP̄ and, by the axioms of rankings, v = δv̄. Consider the formula

P = δP̄ = v
∂P̄

∂v̄
+

∑
w∈E,w 6=v̄

(δw)
∂P̄

∂w
+
∂P̄

∂x
(8)

where E denotes the set of the derivatives occurring in P̄ . Consider any mono-
mial M occurring in P , such that ldM = v (such a monomial exists since v =

ldP). By the axioms of rankings, M must occur in v ∂P̄∂v̄ . Thus deg(M, v) = 1.
Moreover, any derivative w 6= v such that deg(M,w) > 0 satisfies w ≤ v̄ hence,
by the axioms of rankings, δw ≤ v. The monomial M is thus integrable since all
conditions of (6) are fulfilled (v playing the role of v1 in (6)), contradicting the
hypothesis P ∈ RF . ut

We now introduce Algorithm polyIntegrate and prove its correctness and ter-
mination.

Proposition 2. Algorithm polyIntegrate terminates.

Proof. The algorithm terminates trivially if P ∈ K [x]. Suppose now that P /∈
K [x]. Any strictly decreasing sequence of ranks is finite [2, Chapter 0, §17,
Lemma 15]. Thus, the algorithm terminates since each recursive call is made on

Input: P a differential polynomial in R
Output: The unique pair of differential polynomials (W,R) in RF ×R such

P = W + δR and R (viewed as a polynomial over K) has no degree
zero term.

1 begin
2 if P ∈ K [x] then
3 return (0,

∫ x
0
P dx) ;

4 else

5 vd := rankP ;
6 if (d > 1) or (v /∈ δΘU) then
7 // addition is performed componentwise

8 return (iP v
d, 0) + polyIntegrate(P − iP vd) ;

9 else
10 let v̄ such that δv̄ = v ;
11 write iP as iP≤ + iP> where iP> is the polynomial involving all

monomials of iP whose leaders are strictly greater than v̄ ;

12 R :=
∫ v̄

0
iP≤ dv̄ ;

13 return (iP>v,R) + polyIntegrate(P − iP>v − δR) ;

Algorithm 2: polyIntegrate(P)

a polynomial either in K [x] or of strictly smaller rank than that of P . Indeed,
the first call at line 8 calls polyIntegrate with P − iP vd. The second call at line 13
calls polyIntegrate with P − iP>v − δR, which is free of v: δR has the form iP≤v
plus terms with leader strictly smaller than v, thus the term iP v of P is canceled
by iP>v + δR. ut

Proposition 3. Algorithm polyIntegrate computes a pair (W,R) in RF×R such
that P = W + δR, and R (viewed as a polynomial over K) has no degree zero
term.

Proof. The proposition is proven by induction on the rank of P . The proposi-
tion holds for any polynomial in K [x]. Assume the proposition holds for any
polynomial in K [x] and any polynomial in R whose rank is strictly less than
vd. Let us prove it also holds for P ∈ R with rank vd.

Suppose that the condition at line 6 is true. Thus, iP v
d is a functional

polynomial. Denote (W̄ , R̄) = polyIntegrate(P − iP v
d), which is properly de-

fined thanks to Proposition 2. By induction, one has P − iP v
d = W̄ + δR̄

where R̄ has no degree zero term. The algorithm returns (iP v
d + W̄ , R̄). Then,

(iP v
d + W̄) + δR̄ = iP v

d + (W̄ + δR̄) = iP v
d + (P − iP v

d) = P . Since W̄
is a functional polynomial, so is iP v

d + W̄ . This concludes the case when the
condition at line 6 is true.

Suppose now that the condition at line 6 is not true. Then, the derivative v̄ is
well defined at line 10, and the rank of P is v. Denote (W̄ , R̄) = polyIntegrate(P−
iP>v − δR). By induction, one has P − iP>v − δR = W̄ + δR̄ where R̄ has no

degree zero term. The algorithm returns (iP>v+ W̄ ,R+ R̄). Then (iP>v+ W̄) +
δ(R + R̄) = (iP>v + δR) + (W̄ + δR̄) = (iP>v + δR) + (P − iP>v − δR) = P .
Since iP>v is a functional polynomial, so is iP>v + W̄ . Moreover, R and R̄ have
no degree zero terms. This concludes the induction proof. ut

Proposition 4. We have R = RF ⊕ δR.

Proof. Proposition 1 shows that RF ∩δR = {0}. Proposition 3 gives a construc-
tive proof that R = RF + δR. Consequently, R = RF ⊕ δR. ut

Proposition 5. Algorithm polyIntegrate is correct.

Proof. Proposition 3 shows that P = W + δR. The terms W and δR are unique
by Proposition 4. Moreover R is unique since it has no degree zero term. ut

Example 5. Take the ranking u < v < ux < vx < uy < vy < uxx < vxx < uxy <
· · · and take K = Q(a, y).

– polyIntegrate(uxv) = (uxv, 0),
– polyIntegrate(vxu) = (−uxv, uv),
– polyIntegrate(a+ x2 + vxxu+ u2) = (−vxux + u2, ax+ x3/3 + uvx),
– polyIntegrate(uxu+ axvx) = (−av, u2/2 + axv),
– polyIntegrate(uxy + 2uy) = (2uy, ux).

4 Fraction Integration

The algorithm presented in [3] is not additive, as shown by [3, Example 4].
This issue is solved in this section. The development of this section is similar
to that of Section 3. Section 4.1 introduces the so-called functional monomial
fractions (resp. the set SF of functional fractions) which are the generalization
of the functional monomials (resp. the set RF of functional polynomials) for
the differential fractions. After defining the polynomial part, the nondifferen-
tial polynomial part and the constant term of a differential fraction, Algorithm
Integrate (Algorithm 4) is presented. It is the generalization of polyIntegrate for
differential fractions. Anticipating slightly on the definitions, for any fraction F
of S , Integrate(F) returns the unique couple (W,R) such that F = W + δR, W
is a functional fraction and R has a zero constant term (to ensure uniqueness of
R). The main difficulty was to find a proper definition of functional fractions, as
well as the associated algorithm Integrate.

4.1 Functional Fractions

Definition 7 (Functional monomial fraction, FMF). Consider a ranking.
A (irreducible) fraction M/Q in S where M is a monomial is said to be a
functional monomial fraction (FMF in short) w.r.t. x for the ranking if one of
the following cases is satisfied:

C1 both M and Q are in K [x], deg(M,x) < deg(Q, x), and Q is squarefree,

C2 M is a functional monomial and Q is in K [x],

C3 Q is not in K [x] (denote its leader by v), deg(M,v) < deg(Q, v). Moreover,
one of the following subcases is satisfied:

C3.1 M is a functional monomial,

C3.2 M is an integrable monomial, M /∈ K [x], ld(M) = δv and Q is
squarefree w.r.t. v,

C3.3 M is an integrable monomial and either M ∈ K [x] or ld(M) < δv.

In this paper, we have chosen not to introduce any logarithm. For this reason,
fractions of type C1 are functional.

Example 6. Take the ranking u < v < ux < vx < uy < vy < uxx < vxx < uxy <

· · · . The fraction 3x
x2−2 is a FMF of type C1. The fractions

u2
x

(1+x)2 and uxvx
(x2−2)(1+x)

are FMF of type C2. The fraction uxvx
(1+ux)2 is a FMF of type C3.1. The fraction

uxx
1+u2

x
is a FMF of type C3.2. The fraction

vy
1+u2

x
is a FMF of type C3.3.

Definition 8 (Functional fraction). A fraction is said to be functional if it
can be written as a linear combination of FMF over K . The set of functional
fractions is denoted SF .

Remark 5. Functional monomials are special cases of FMF of type C2 (by taking
Q ∈ K). Consequently, the functional polynomials are special cases of functional
fractions (i.e. RF ⊂ SF).

Remark 6. Unlike the functional monomials, the FMF are not linearly indepen-
dent over K , as shown by the following example, involving only FMF of type
C2:

0 =
u

(x− y)(y − z)
+

u

(y − z)(z − x)
+

u

(z − x)(x− y)
·

As a consequence, the FMF do not form a K -basis of the functional fractions.
However, this does not raise any problem in our paper. Indeed, we are mainly
interested in computing functional fractions, but we do not need to decompose
those functional fractions in a basis.

Checking that a fraction is functional is not immediate as opposed to the poly-
nomial case, because of Remark 6. To this extent, we will need to rely on Algo-
rithm Integrate and admit for the moment the following consequences of Propo-
sition 13:

– for any differential fraction F , Algorithm Integrate computes a couple (W,R)
where W and R are differential fractions, F = W + δR, and W is functional

– a fraction F is functional if and only if Algorithm Integrate returns (F, 0)
(i.e. W = F and R = 0)

Example 7. Take the ranking u < v < ux < vx < uy < vy < uxx < vxx < uxy <

· · · . The fraction F1 = u2v2−v4+2uvx
u2−v2 is a functional fraction since it is equal to

v2 + vx
u−v + vx

u+v , which is a sum of three FMF. The fraction F2 = vx(u2v2−v4+2u)
u2−v2

can be written as vxv
2 + vx

u−v + vx
u+v · The fraction F2 is not functional. Indeed

Algorithm Integrate rewrites F2 as F2 = W + δR where W = vx
u−v + vx

u+v and

R = v3

3 · Thus F2 is not functional since R 6= 0.

Example 7 shows that it does not seem straightforward to directly define
functional fractions by comparing leading derivatives and degrees as in Defini-
tion 7. Indeed, fractions F1 and F2 in Example 7 have similar properties in terms
of degrees and have the same denominator, but F1 is functional whereas F2 is
not.

Example 8. Consider the fraction F = vxx
ux+1 + u

ux−1 · Algorithm Integrate com-
putes F = W + δR, where W = uxxvx

(ux+1)2 + u
ux−1 and R = vx

ux+1 · Thus, F is not

functional since R 6= 0.

Example 8 shows that FMF cannot be defined by simply assuming that the
denominator is squarefree.

Proposition 6. A FMF satisfies exactly one case among C1, C2 and C3.
Moreover, a FMF satisfying C3 satisfies exactly one of the subcases among
C3.1, C3.2 and C3.3.

Proof. Cases C1 and C3 are independent because of the conditions Q ∈ K [x]
(C1) and Q /∈ K [x] (C3). The same applies for C2 and C3. Since a functional
monomial cannot lie in K [x], cases C1 and C2 are independent. Now consider
the subcases for C3. Cases C3.1 and C3.2 are independent because M is func-
tional in C3.1 and is not in C3.2. The same applies for C3.1 and C3.3. Finally
cases C3.2 and C3.3 are independent because of the conditions δv = ld(M)
(C3.2) and ld(M) < δv (C3.3). ut

Even if the FMF do not form a K -basis (see Remark 6), the cancellations
that can occur between FMF is not totally random, mainly because of the degree
conditions in Definition 7. This statement is made precise in Proposition 7 below.

Lemma 3. Consider a FMF F = M/Q ∈ S \K (x) and take u = ld(F). Thus
F cannot be of type C1 since F /∈ K (x). Then, denoting d = deg(F, u), exactly
one of the two following conditions is satisfied:

Case d ≥ 1: u = ldM , deg(M,u) = d and F has the form udM̄/Q where M̄/Q
is free of u,

Case d < 0: deg(M,u) < deg(Q, u).

Proof. First assume that Q is free of u. Then one necessarily has u = ld(M),
deg(F, u) = deg(M,u) = d and F has the form udM̄/Q where M̄/Q is free of u.
This shows the case d ≥ 1. Now assume that Q involves u, which implies that
ld(Q) = u. By the degree condition of C3, one has deg(M,u) < deg(Q, u) so
d = deg(F, u) < 0. ut

Lemma 4. Consider a variable y, a polynomial F+ in y with val(F+, y) > 0,
some element F 0 free of y, and a fraction F− with deg(F−, y) < 0, such that
F+ + F 0 + F− = 0. Then F+ = F 0 = F− = 0.

Proof. Assume that F+ is non zero. Then its degree is positive. It implies
deg(F 0 +F−, y) > 0 which contradicts deg(F 0 +F−, y) ≤ 0 (by Condition (4)).
Thus, F+ is necessarily zero. Assume now that F− is non zero. It implies that
the degree of F− is negative and different from −∞, which implies deg(F 0, y)
is not −∞. This contradicts the assumption that deg(F 0, y) = −∞ since F 0 is
free y. Consequently F− is also zero, and F 0 is zero as well. ut

Proposition 7. Consider a linear combination F =
∑s
i=1 αiFi over K , where

the Fi are FMF. If all Fi are of type C1 and F is free of x, then F is zero.
Similarly, if all Fi are of type C2 or C3 with the same leader v, and F is free
of v, then F is zero.

Proof. Assume all Fi are of type C1 and F is free of x. Because of the degree
condition of C1 in Definition 7 and by Condition (4) of page 5, if F is non
zero, then it is necessary a fraction of negative degree in x. This leads to a
contradiction since F is free of x, so F has to be zero.

Now assume that all Fi are of type C2 or C3 and have the same leader v.
By viewing the Fi as univariate fractions in v (with coefficients in some fraction
field), and using Lemma 3, each Fi is either a monomial in v with a positive
degree or a fraction with a negative degree. Without loss of generality, assume
that the t first Fi are the monomials in v and the other Fi are the fractions in
v. Then F −

∑t
i=1 αiFi −

∑s
i=t+1 αiFi = 0. By applying Lemma 4 with F+ =

−
∑t
i=1 αiFi, F

0 = F , F− = −
∑s
i=t+1 αiFi and y = v, one has F 0 = F = 0

which concludes the proof. ut

Proposition 8. Take a nonzero fraction F in SF . If F ∈ K (x), then F can
be written as a linear combination over K of FMF of type C1. Otherwise, F
can be written as a linear combination over K of FMF either in K (x) or with
leaders less than or equal to ld(F).

Proof. Take F in K (x) ∩ SF . If F is a linear combination of FMF of type
C1 only, then the proof is completed. Otherwise, suppose that F is a linear
combination involving at least a FMF of type C2 or C3. Denote v the highest
leader of the FMF of type C2 or C3 in the combination. By grouping the FMF
with leaders less than v, one has F = F̄ +

∑p
i=1 αiFi where F̄ is a fraction free

of v, the αi are in K , and where all the Fi are FMF of type C2 or C3 with
leaders v. Since both F and F̄ are free of v, Proposition 7 ensures that F = F̄ .
Consequently, F can be written as a linear combination of FMF in K (x) or
with leaders strictly less than v. By an induction argument, since F ∈ K (x), F
can be written as a linear combination of FMF of type C1.

A similar induction process can be applied when F /∈ K (x). ut

4.2 Polynomial Parts and Constant Term of a Differential Fraction

To make the output of Integrate canonical, we ensure that the value of the
integrated part has a zero constant term: a notion which needs to be defined
for differential fractions.

Definition 9 (polynomial part, nondifferential polynomial part, and
constant term of a differential fraction). Consider a ranking. Extend the
ranking by taking x smaller than any derivative. Take F ∈ S and consider F as
a fraction in x and ΘU over the field K . The polynomial part and constant
term of the differential fraction F w.r.t. x and the ranking are defined as in
Section 2.2, by taking A = K and Y = {x,ΘU }, and by using the extended
ranking mentioned above. They respectively belong to K [x,ΘU] and K . More-
over, the nondifferential polynomial part of F , denoted nondiffPolyPart(F), is
defined as the zero degree term of the polynomial part of F seen as a polynomial
in the ΘU . It belongs to K [x].

The computation of the nondifferential polynomial part will be needed for
ensuring the termination of the iterated integration presented in Section 5 (since
a polynomial in x can be integrated infinitely many times). The notions defined
in Definition 9 depend on x and the ranking, as the polynomial part and the
constant term of a multivariate fraction depend on the ordering (see Remark 4).
From now on, this dependency will not be mentioned if there is no possible
confusion.

Example 9. Take the ranking u < ux < uy < uxx < uxy < · · · and consider
K = Q(a, b, y) where a and b are constant w.r.t. δ. Take F = A

xab(ux2+b) where

A = u2x2abu2
x + u2x2ab2 + xbu2

x + xb2 + x3au2
x+

x3ab+ b3xau2
x + b4xa+ abu2

x + ab2 + uxxab.

The multivariate partial decomposition of F (w.r.t. x and the ranking) is

F = u2 x+
x2

b
+ b2 +

1

a
+

1

x
+

ux
u2
x + u

,

the polynomial part is u2 x+ x2

b + b2 + 1
a , the nondifferential polynomial part is

x2

b + b2 + 1
a , and the constant term is b2 + 1

a ·

Remark 7. Following Corollary 1, the polynomial part, nondifferential polyno-
mial part and constant term operations are K -linear.

Example 10. Consider the ranking y < ẏ < ÿ < · · · (where the dot denotes the
derivation) and the input-output equation in [3, Example 5]

p =(y2 + ke)
2 ÿ + ((k1 + k2) y2 + 2 ke(k1 + k2) y + k2

e(k1 + k2) + ke Ve) ẏ+

y k2 ke Ve + y2 k2 Ve.

Take the fraction Fio =
p

(y2 + ke)2
. The multivariate decomposition of Fio is

ÿ + (k1 + k2)ẏ + k2Ve −
k2keVe
y + ke

+
keVeẏ

(y + ke)2
,

its polynomial part is ÿ + (k1 + k2)ẏ + k2Ve, its nondifferential polynomial part
is k2Ve and its constant term is also k2Ve.

The nondifferential polynomial part can be computed by Algorithm 3, which
avoids computing the multivariate partial fraction decomposition. Indeed, we
follow the method from [11], but only compute the polynomial part at each
step (using Euclidean division of polynomials), thus ignoring terms with a non
constant denominator.

Input: F a differential fraction
Output: the nondifferential polynomial part of F

1 begin
2 G := F ;
3 while denom(G) /∈ K [x] do
4 // quo(P,Q, x) is the remainder of the Euclidean division of P by Q

with respect to variable x
5 G := quo(numer(G), denom(G), ld(denom(G))) ;

6 G := quo(numer(G),denom(G), x) ;
7 return the zero degree term of G viewed as a polynomial in ΘU , with

coefficients in K (x);

Algorithm 3: NondifferentialPolynomialPart(F)

Lemma 5. Let F = vnA
B be a fraction (with n > 0) where v is a derivative

in ΘU such that deg(A, v) = deg(B, v) = 0 (this condition holds in particu-
lar if v is strictly greater than all derivatives involved in A and B). Then, the
nondifferential polynomial part and the constant term of F are zero.

Proof. The hypothesis deg(A, v) = deg(B, v) = 0 ensures that if Q and R are the
quotient and remainder of A by B w.r.t. ld(denom(B)), then vnQ and vnR are
the quotient and remainder of vnA by B. Following Algorithm 3, the polynomial
G after line 6 has the form vn P , where P is a polynomial. Thus, both the
nondifferential polynomial part and the constant term are zero. ut

Corollary 2. If F =
∑d
i=1

Ai
Bi
vi, and if deg(Ai, v) = deg(Bi, v) = 0 for each

1 ≤ i ≤ d, then the nondifferential polynomial part and the constant term of F
are zero.

Proof. This is a direct consequence of Lemma 5 and the linearity of the nondif-
ferential polynomial part (see Remark 7). ut

Lemma 6. If F is a FMF then its nondifferential polynomial part is zero.

Proof. It is clear for fractions of type C1 because deg(M,x) < deg(Q, x). If F
has type C2, then M depends on at least one derivative of ΘU (see condition (7)
of Definition 5) and the proof follows from Corollary 2. Suppose F has type C3.
Apply Algorithm 3. The fraction G is zero after only one loop because of the
condition deg(M,v) < deg(Q, v). ut

Lemma 7. Consider a differential fraction R ∈ S \ K (x) and denote v =
ld(R). If R seen as a univariate fraction in v has a zero constant term w.r.t v
(in the sense of Definition 2), then R has a zero nondifferential polynomial part.
As a consequence, if R has been computed by a call to Algorithm 1, then R has
a zero nondifferential polynomial part, hence a zero constant term.

Proof. Since R seen as a univariate fraction in v has a zero constant term w.r.t v
(in the sense of Definition 2), R can be written in the form

∑d
i=1

Ai
Bi
vi + F ,

where F is either zero, or a fraction with leader v such that deg(F, v) < 0. By

Corollary 2,
∑d
i=1

Ai
Bi
vi has a zero nondifferential polynomial part. If F is zero,

the lemma is proven. Now assume F is not zero. Following Algorithm 3 and using
the assumption deg(F, v) < 0, the fraction G is zero after the first execution of
Line 5. Thus F has a zero nondifferential polynomial part, and the lemma is
proven. ut

4.3 The Integrate Algorithm

This section proves that S = SF ⊕ δS . Moreover Algorithm Integrate is pre-
sented and proven.

Proposition 9. Let G = P
Q be a univariate irreducible fraction in A (x) where

A is a unique factorization domain and Q satisfies deg(Q, x) > 0. Denote by
Q = A1A

2
2 · · ·Att a squarefree factorization of Q (see Definition 4 in Section 2.3).

Then dG
dx can be written as P̄

A2
1A

3
2···A

t+1
t

where gcd(P̄ , A2
1A

3
2 · · ·At+1

t) ∈ A . As a

consequence dG
dx cannot be written as a fraction with a squarefree denominator.

Proof. From

dG

dx
=

dP
dxQ− P (dA1

dx
Q
A1

+ 2dA2

dx
Q
A2

+ · · ·+ tdAtdx
Q
At

)

Q2

=
dP
dx − P (dA1

dx /A1 + 2dA2

dx /A2 + · · ·+ tdAtdx /At)

Q
,

one has dG
dx = P̄ /Q̄ where

P̄ =
dP

dx
A1 · · ·At−P (

dA1

dx
A2 . . . At+ 2A1

dA2

dx
A3 · · ·At+ · · ·+ tA1 · · ·At−1

dAt
dx

)

and Q̄ = A2
1A

3
2 · · ·At+1

t . The proof is finished by showing that gcd(P̄ , Q̄) ∈ A .
Since A1, . . . , At come from a squarefree factorization, gcd(Ai, Aj) ∈ A when

i 6= j. Thus, it is sufficient to show that gcd(P̄ , Ai) ∈ A for any i. For any
i, one has gcd(P̄ , Ai) = gcd(A1 · · ·Ai−1

dAi
dx Ai+1 · · ·At, Ai) = gcd(dAidx , Ai). By

a classical argument gcd(dAidx , Ai) ∈ A because Ai is squarefree. Consequently,
gcd(P̄ , Q̄) ∈ A . ut

Proposition 10. SF ∩ δS = {0}.

Proof. We consider an irreducible fraction F = δG in SF ∩ δS with F 6=
0, and prove that it yields a contradiction. Suppose that G ∈ K (x). Then
F = δG = ∂G

∂x . Since F is in SF , and using Proposition 8, F can be written
as a linear combination over K of FMF of type C1. As a consequence, the
denominator of F is squarefree. Since F is nonzero, F necessarily involves x
in its denominator. By Proposition 9, the denominator of ∂G

∂x is not squarefree,
which yields a contradiction. Thus F = 0.

Now suppose that G /∈ K (x) and denote v̄ = ld(G). Necessarily, F is not
in K (x) either, and its leader v = ld(F) satisfies v = δv̄, for some derivative v̄.
Then

F = δG = v
∂G

∂v̄
+

∑
w∈E,w 6=v̄

(δw)
∂G

∂w
+
∂G

∂x
, (9)

where E is the set of derivatives in ΘU occurring in G. Since F is in SF , and
using Proposition 8, F can be written as a linear combination F =

∑t
i=1 αiFi

where the αi are in K , and the Fi are FMF either in K (x), or with leaders less
than or equal to v. The rest of the proof shows that v ∂G∂v̄ can be written as a
linear combination of FMF, which in turn yields a contradiction.

Let us group the Fi by considering their degrees w.r.t. v. On the one hand,
we have

F =
∑
i∈I1

αiFi︸ ︷︷ ︸
deg(Fi,v)>1

+
∑
i∈I2

αiFi︸ ︷︷ ︸
deg(Fi,v)=1

+
∑
i∈I3

αiFi.︸ ︷︷ ︸
deg(Fi,v)≤0

(10)

On the other hand, F can be written as

F = v
∂G

∂v̄
+H (11)

with deg(H, v) ≤ 0. By Lemma 3, one has val(Fi, v) > 1 for i ∈ I1 and
val(Fi, v) = deg(Fi, v) = 1 for i ∈ I2. Since G is free of v (and consequently
∂G
∂v̄ is free of v) and deg(H, v) ≤ 0, the terms of degree 1 between Equations (10)
and (11) can be identified. This yields

v
∂G

∂v̄
=
∑
i∈I2

αiFi.

Each FMF Fi, for i ∈ I2, can be written as vNi
Qi

where Ni
Qi

is free of v. Assume

that some Ni
Qi

involves a derivative strictly greater than v̄, and denote ṽ the

highest derivative occurring in the Ni
Qi
· The expression v ∂G∂v̄ can be decomposed

in two sums of FMF

v
∂G

∂v̄
=
∑
i∈I4

αi
vNi
Qi︸ ︷︷ ︸

ld(Ni/Qi)=ṽ

+
∑
i∈I5

αi
vNi
Qi
·︸ ︷︷ ︸

Ni/Qi∈K (x) or ld(Ni/Qi)<ṽ

Consider vNi
Qi

for some i ∈ I4. Either Ni or Qi involves ṽ. If Qi involves ṽ,

then vNi
Qi

is necessarily of type C3 and deg(Ni, ṽ) < deg(Qi, ṽ). If Qi does

not involve ṽ, then Ni necessarily does and in that case val(vNi, ṽ) > 0 since
vNi is a monomial. Moreover ∂G

∂v̄ is free of ṽ (since ld(G) = v̄ < ṽ) and the

sum
∑
i∈I5 αi

vNi
Qi

is also free of ṽ. By Applying Lemma 4 with y = ṽ, F 0 =

−∂G∂v̄ +
∑
i∈I5 αi

vNi
Qi

and splitting the sum
∑
i∈I4 αi

vNi
Qi

into F+ (resp. F−)

the sum of the fractions with positive (resp. negative) degree in ṽ, one has
F+ = F− = 0, which implies that

∑
i∈I4 αi

vNi
Qi

= 0. By an easy induction on

ṽ, and because rankings are well-orderings, one can assume that v ∂G∂v̄ can be
written as combinations of vNi/Qi where the Ni and Qi do not involve any
derivative strictly greater than v̄:

v
∂G

∂v̄
=

∑
i∈I6

αi
vNi
Qi
·︸ ︷︷ ︸

Ni/Qi∈K (x) or ld(Ni/Qi)≤v̄

As a consequence, a monomial vNi when i ∈ I6 cannot be functional since
v = δv̄, deg(vNi, v) = 1 and Ni does not involve a derivative strictly greater
than v̄. This shows that, for i ∈ I6, Fi cannot be of type C2 or C3.1. Moreover,
vNi/Qi when i ∈ I6 cannot be of type C3.3 since vNi /∈ K [x] and ld(vNi) =
v = δv̄ ≥ δ ld(Qi).

Consequently, v ∂G∂v is a linear combination of FMF of type C3.2. As a conse-

quence, for each i ∈ I6, one has v = δ ld(Qi) which implies ld(Qi) = v̄. Since ∂G
∂v̄

is not zero (since ld(G) = v̄), the sum
∑
i∈I6 αi

Ni
Qi

(which is equal to ∂G
∂v̄) is not

zero either. Moreover, since each Qi is squarefree, and deg(Ni/Qi, v̄) < 0 for any
i ∈ I6, the sum

∑
i∈I6 αi

Ni
Qi

, seen as a univariate fraction in v̄, can be written as
a nonzero fraction with a negative degree and with a squarefree denominator in
v̄.

Assume the denominator of G does not involve v̄. Then ∂G
∂v̄ is a polynomial

in v̄. Applying Lemma 4 with y = v̄, F− =
∑
i∈I6 αi

Ni
Qi

, and writing −∂G∂v̄
as F 0 + F+, where F 0 is the zero degree term in v̄, one has ∂G

∂v̄ = 0, hence

a contradiction. Thus the denominator of G involves v̄. By Proposition 9, ∂G
∂v̄

has a non squarefree denominator, which yields a contradiction since the sum∑
i∈I6 αi

Ni
Qi

can be written as a fraction with a squarefree denominator as seen
in the paragraph above.

In summary, both cases G ∈ K (x) and G /∈ K (x) yield a contradiction. As
a consequence, the assumption F 6= 0 yields a contradiction, which proves the
proposition. ut

To help understanding the termination and correctness proofs of Algorithm
Integrate (Propositions 11 and 13), let us see the output of Integrate on some
examples.

Example 11. Take the ranking u < ux < uy < uxx < uxy < · · · and consider
K = Q(y).

Consider F ∈ K (x). Integrate simply behaves as the Algorithm Hermite.

Consider a FMF F of type C2. Integrate returns (F, 0) either at line 9 or at
line 14 (because iN≤ = 0 and iN> = iN).

Consider F = xux
x+1 which is not a FMF. Lines from 11 to 14 will be executed.

One has vN = ux, v̄ = u, iN = iN≤ = x and iN> = 0. Then R = xu
x+1 . Finally,

δR = ux(x2+x)+u
(x+1)2 and F − δR− iN>vN/Q = −u

(x+1)2 which is a FMF of type C2.

Thus Integrate returns
(
−u

(x+1)2 ,
xu
x+1

)
.

Consider F = x
(ux+1)2 or F = ux

(ux+1)2 . Then F = A/T and Integrate returns

(F, 0) at line 24.

Consider F =
u2
x

(u+1)2 or F =
uyy
u+1 . Then F = A/T = iAv

d
A/T and Integrate

returns (F, 0) at line 28.

Consider F =
(1+uxx)uxy

(u+1)2 . Then F = A/T with A = (1 +uxx)uxy, T = (u+ 1)2.

Lines starting from 30 are executed and Integrate returns at line 34. One has
vdA = uxy, v̄ = uy, iA = (1 + uxx), iA≤ = 1, iA> = uxx. Then R =

uy
(u+1)2 .

Finally, δR =
uxy(u+1)−2uxuy

(u+1)3 and F − δR − iA>vA/T =
2uxuy
(u+1)3 . Consequently,

Integrate returns
(
uxxuxy
(1+u)2 ,

uy
(u+1)2

)
+ Integrate

(
2uxuy
(u+1)3

)
where

2uxuy
(u+1)3 is a FMF.

Further computations show that Integrate(F) =
(

2uxuy
(u+1)3 +

uxxuxy
(1+u)2 ,

uy
(u+1)2

)
·

Finally consider F = uux
(u+2)2 . Then F = A/T with A = uux, T = (u+ 2)2. Lines

starting from 30 are executed and Integrate returns at line 37. One has vdA = ux,
v̄ = u, iA = iA≤ = u, iA> = 0. Then (W,R) = (1

u+2 ,
2

u+2). Finally, δR = −2ux
(u+2)2 .

Consequently (A − iA>vA)/T − δR −W vA = uux
(u+2)2 −

−2ux
(u+2)2 −

ux
(u+2) = 0 so

Integrate(F) =
(
ux
u+2 ,

2
(u+2)

)
·

Proposition 11. Integrate terminates.

Proof. The algorithm terminates when both N and Q are in K [x] since there
is no recursion (line 5). First assume that N /∈ K [x] and Q ∈ K [x]. Then both
recursive calls at lines 9 and 14 are made on a fraction with a denominator in
K [x] as well. Moreover, the rank of the numerator is strictly decreasing. Thus

Input: F a differential fraction
Output: The unique couple of differential fractions (W,R) such that (W, δR) is

the decomposition of F on SF ⊕ δS and R has a zero constant term.
1 begin
2 write F as an irreducible fraction N/Q ;
3 if N ∈ K [x] and Q ∈ K [x] then
4 (W,R) := Hermite(F, x) ;
5 return (W,R) ;

6 elif Q ∈ K [x] then

7 vdN := rank(N) ;
8 if d > 1 or vN /∈ δΘU then

9 return (iNv
d
N/Q, 0) + Integrate(F − iNvdN/Q) ;

10 else
11 let v̄ such that vN = δv̄ ;
12 write iN as iN≤ + iN> where iN> is the polynomial involving

all monomials of iN whose leaders are strictly greater than v̄ ;

13 R := 1/Q
∫ v̄

0
iN≤ dv̄ ;

14 return (iN>vN/Q,R) + Integrate(F − δR− iN>vN/Q) ;

15 else
16 // Q is not in K [x]
17 vQ := ld(Q) ;
18 let S1 (resp. S2) be the quotient (resp. remainder)

of a pseudo-division of N by Q w.r.t. vQ ;
19 // thus iαQN = S1 Q+S2, for some nonnegative integer α ; consequently

F = N
Q

= S1
iα
Q

+ S2
iα
Q
Q

and deg(S2, vQ) > 0 since N/Q is irreducible

20 compute an irreducible fraction A/T such that A/T = S2/(i
α
QQ) ;

21 // thus F = S1
iα
Q

+ A
T

and ld(T) = vQ since 0 < deg(S2, vQ) < deg(Q, vQ)

22 IS1 = Integrate(S1/i
α
Q) ;

23 if A ∈ K [x] or ld(A) < δvQ then
24 return IS1 + (A/T, 0) ;

25 else

26 vdA := rankA ;
27 if (d > 1 or vA /∈ δΘU) then

28 return IS1 + (iAv
d
A/T, 0) + Integrate((A− iAvdA)/T) ;

29 else
30 take v̄ s.t. vA = δv̄ ;
31 write iA as iA≤ + iA> where iA> is the polynomial involving

all monomials of iA whose leaders are strictly greater than v̄ ;
32 if vA > δvQ then

33 R := 1/T
∫ v̄

0
iA≤ dv̄ ;

34 return
IS1 + (iA>vA/T,R) + Integrate((A− iA>vA)/T − δR);

35 else
36 (W,R) := Hermite(iA≤/T, v̄) ;

37 return IS1 + (W vA + iA>vA/T,R) +
Integrate((A− iA>vA)/T − δR−W vA) ;

Algorithm 4: Integrate(F)

the algorithm terminates when the denominator is in K [x]. Indeed, the rank of
N trivially decreases at line 9. The term δR only involves derivatives less than
or equal to δv̄ = vN , and the subtraction at line 14 of δR + iN>vN/Q cancels
the rank iNvN of N (since d = 1), thereby reducing the rank of N .

Assume now that Q is not in K [x]. Let us show that the algorithm performs
one or two recursive calls, and that in both cases either the leader of the denom-
inator strictly decreases, or it remains the same but the rank of the numerator
strictly decreases. This last situation can only occur finitely many times: indeed,
the lexicographic order on the Cartesian product of the sets of derivatives by
the set of ranks is a well-ordering (because a ranking and the ordering on the
ranks are well-orderings). Consequently, the algorithm eventually reaches the
case where Q is in K [x].

Recursive call at line 22. Since iαQ is free of vQ, the leader of denominator strictly
decreases.

Recursive call at line 28. The rank of the numerator obviously strictly decreases
in the recursive call.

Recursive call at line 34. One has

δR = δ

(
1

T

)
P︸ ︷︷ ︸

S1

+
1

T
δP︸ ︷︷ ︸
S2

where P denotes
∫ v̄

0
iA≤ dv̄.

From ld(T) = vQ and vA > δvQ, and because P involves derivatives smaller
than v̄, the first term S1 has a leader strictly less than vA. The second term
S2 has a leader equal to vA. One has δP = iA≤vA + U with U in K [x] or
ld(U) < vA. Consequently

A− iA>vA
T

− δR =
A− iAvA − U

T
− δ

(
1

T

)
P. (12)

From δ
(

1
T

)
= − δTT 2 , and since δvQ < vA, Equation (12) can be written as Ā/T 2

where Ā is free of vA. Consequently, the rank of the numerator has dropped.
Please note that in that recursive call, the degree of the denominator in the
variable vQ might increase.

Recursive call at line 37. One has vA = δvQ due to the conditions at lines 23
and 32. Since vA = δv̄, one has v̄ = vQ. Moreover W + ∂R

∂v̄ = iA≤/T . Both
R and W involve derivatives less than or equal to v̄ (since iA≤/T also involves

derivatives less than or equal to v̄ and ld(T) = vQ = v̄). Thus, δR = vA
∂R
∂v̄ + R̄

where R̄ involves derivatives strictly less than vA. It follows that δR +W vA =
vA

∂R
∂v̄ +R̄+W vA = iA≤vA/T +R̄. Consequently (A−iA>vA)/T)−δR−W vA =

(A − iAvA)/T − R̄. Thus, the rank of the denominator drops since R̄ involves
derivatives strictly less than vA. ut

Proposition 12. Integrate(F) computes a couple (W,R) in SF ×S such that
F = W + δR. If F ∈ K (x), then W and R are also in K (x). Otherwise, if
F /∈ K (x), W is either in K (x) or satisfies ld(W) ≤ ld(F), and R is either in
K (x) or satisfies δ ld(R) ≤ ld(F).

Proof. The conditions on the leaders of W and R, and the fact that F = W +δR
are immediate to prove. The main issue consists in proving that W is indeed a
functional fraction.

The term W computed at line 4 is a linear combination of FMF of type C1
because of the specification of Algorithm 1. The contribution iNv

d
N/Q at line 9 is

a linear combination of FMF of type C2 since d > 1 or vN /∈ δΘU . The contri-
bution iN>vN/Q at line 14 is also a linear combination of FMF of type C2, since
all monomials of iN> involve a derivative ṽ such that δṽ > vN . The contribution
A/T at line 24 is a linear combination of FMF of type C3.1 or C3.3. The con-
tribution iAv

d
A/T at line 28 is a linear combination of FMF of type C3.1. The

contribution iA>vA/T at line 34 is a linear combination of FMF of type C3.1.
Finally, if the term W computed at line 36 is not zero, it is necessarily a fraction
with a squarefree denominator whose leader is vQ. Moreover, the leader of W
cannot be greater than vQ since ld(iA≤/T) = vQ = v̄. Consequently, ld(W) = vQ
and WvA is a linear combination of FMF of type C3.2. Finally, the contribution
iA>vA/T is a linear combination of FMF of type C3.1.

All contributions to W were discussed. This shows that W is a functional
fraction, which ends the proof. ut

Proposition 13. Integrate is correct.

Proof. Together, Propositions 10 and 12 show that S = SF ⊕ δS . It only
remains to prove that the couple (W,R) returned by Integrate is uniquely defined
and that the fraction R computed by Integrate has a zero constant term.

We first prove that the fraction R computed by Integrate has a zero constant
term. It is true for line 5 thanks to the specification of Algorithm 1. The con-
tribution for R is zero at lines 9, 24 and 28. The contributions for R at lines 14
and 34 have a zero constant term thanks to Corollary 2. The contribution for R
at line 37 has a zero constant term by Lemma 7.

Let us now prove that (W,R) is uniquely defined. From S = SF ⊕ δS , it
is clear that W and δR are uniquely defined. Assume a fraction F is written as
F = W + δR = W + δR̄. Thus δ(R − R̄) = 0. This proves that R − R̄ ∈ K .
If both R and R̄ have zero constant terms, then R − R̄ is necessarily zero, so
R = R̄ and R is uniquely defined. ut

Remark 8 (Finding “exact” derivatives). Suppose one has a (possibly infinite)
family of fractions Fi and that one looks for a fraction F =

∑
αiFi (i.e. a linear

combination over K) such that F = δG for some fraction G. One can proceed
in the following manner: compute (Wi, Ri) = Integrate(Fi) and look for a linear
combination

∑
αiWi = 0. Indeed, if

∑
αiWi = 0, then Integrate(

∑
αiFi) =∑

αi(Wi, Ri) = (0,
∑
αiRi) so F = δ(

∑
αiRi) and the expected G can be

chosen as G =
∑
αiRi.

5 Iterated Integration

[3, Algorithm 4] presents an algorithm which roughly speaking iterates the inte-
gration until one gets a coefficient as defined in [3] (i.e. a fraction free of ΘU).
[3, Algorithm 4] takes as an input a fraction F0 and returns a decomposition
F0 = W0 + δW1 + · · · + δtWt where all Wi are also fractions (satisfying some
further properties). [3, Algorithm 4] is not additive as shown by the simple
following example ; it decomposes x into x, ux into 0 + δu, but ux + x into
0 + δ(u + x2/2). On this example, the problem comes from the polynomial x
which can be integrated infinitely many times.

We prevent this problem by isolating the nondifferential polynomial part in
x at each step.

Proposition 14 (Iterated integration decomposition). Let F be a differ-
ential fraction. Then F can be written in a unique way as F = P +

∑∞
i=0 δ

iWi

where

1. P is a polynomial of K [x],
2. each Wi is a functional fraction,
3. only a finite number of Wi are nonzero.

Moreover, S = K [x] ⊕ SF ⊕ δSF ⊕ δ2SF ⊕ · · · where S is seen as a
K -vector space.

Please note that in the special case where F is in K [x], then the iterated
integration decomposition of F is F itself (i.e. all the Wi are zero).

Proof. Let us first admit the existence of such a decomposition which is proven
in Proposition 16 based on Algorithm 5. Let us now prove the uniqueness by
considering two decompositions of the same fraction F = P̂ +

∑∞
i=0 δ

iŴi =
P̄ +

∑∞
i=0 δ

iW̄i. Since both decompositions involve a finite number of terms, and
by subtracting the two decompositions, 0 = P + W0 + δW1 + · · · + δtWt for
some t ≥ 0, where P = P̂ − P̄ is in K [x] and the Wi = Ŵi − W̄i are in SF .
Let us now prove that all Wi are zero. Since P is in K [x], it also belongs to
δS , and P = δP1 for some polynomial P1 in K [x]. Thus, 0 = W0 + δ(P1 +
W1 + δW2 + · · · + δt−1Wt). Since SF ∩ δS = {0}, one has W0 = 0. Since we
assumed in the paper that δa = 0 for all a ∈ K , there exists a constant c1 in
K , such that c1 = P1 + W1 + δW2 + · · · + δt−1Wt, which can be rewritten as
0 = (P1 − c1) + W1 + δW2 + · · · + δt−1Wt. By an induction process, all Wi are
zero, and consequently P = 0. Thus, both decompositions of F are equal.

It remains to prove that S = K [x] ⊕ SF ⊕ δSF ⊕ δ2SF ⊕ · · · . The sets
K [x],SF , δSF , δ2SF , . . . are obviously K -vector spaces. The existence of the
decomposition shows that S = K [x]+SF +δSF +δ2SF + · · · . The uniqueness
ensures that the sum is direct i.e. S = K [x]⊕SF ⊕ δSF ⊕ δ2SF ⊕ · · · . ut

Proposition 15. Algorithm IteratedIntegrate terminates.

Input: F a differential fraction
Output: The unique pair (P, [W0, . . . ,Wt]) satisfying P ∈ K [x], the Wi are in

SF , F = P +
∑t
i=0 δ

iWi, and Wt 6= 0 when the list [W0, . . . ,Wt] is
not empty

1 begin
2 P := NondifferentialPolynomialPart(F) ;
3 G := F − P ;
4 i := 0 ;
5 while G 6= 0 do
6 (Wi, R) := Integrate(G) ;
7 P̄ := NondifferentialPolynomialPart(R) ;

8 P := P + ∂i+1P̄
∂xi+1 ;

9 G := R− P̄ ;
10 i := i+ 1 ;

11 return (P, [W0, . . . ,Wi−1])

Algorithm 5: IteratedIntegrate(F)

Proof. Let us first prove the following loop invariant: nondiffPolyPart(G) =
0. Indeed, it is true just before entering the loop, since nondiffPolyPart(G) =
nondiffPolyPart(F)−nondiffPolyPart(P) ; moreover nondiffPolyPart(P) = P =
nondiffPolyPart(F). After line 9, one has nondiffPolyPart(G) = 0 since G is
equal to R minus the polynomial part of R. This proves the invariant.

Suppose that the algorithm does not terminate. If G is not initially in K (x),
then the leader of G decreases at each loop using Proposition 12. Since the leader
of G cannot decrease infinitely many times, G eventually lies in K (x). At this
point, each call to Integrate is a call to Hermite. Each call to Hermite reduces the
degree of the denominator (see [13, last formulae of page 39]). For this reason, G
must eventually become a polynomial. When G becomes a polynomial of K [x],
it must be equal to its polynomial part, and thus must be zero, thanks to the
loop invariant. This leads to a contradiction, so the algorithm terminates. ut

Proposition 16. For any fraction F , Algorithm IteratedIntegrate computes a
pair (P, [W0, . . . ,Wt]) such that F = P + W0 + · · · + δtWt, P ∈ K [x], the Wi

are functional fractions, and Wt 6= 0 when the list [W0, . . . ,Wt] is not empty.

Proof. All the Wi are in SF since they are computed by Integrate. The polyno-
mial P is an element of K [x] by construction. Finally, let us prove the following

loop invariant: F = P + δiG+
∑i−1
j=0 δ

jWj . The invariant is true when entering
the loop since F = P +G and i = 0. Suppose the invariant is true at some step.

After line 7, one has G = Wi + δR and P̄ = nondiffPolyPart(R). Thus

F = P + δiG+

i−1∑
j=0

δjWj = P + δiWi + δi+1R+

i−1∑
j=0

δjWj

= (P +
∂i+1P̄

∂xi+1
) + δi+1(R− P̄) +

i∑
j=0

δjWj

since ∂i+1P̄
∂xi+1 = δi+1P̄ .

Consequently the invariant is true after line 10 (i.e. after updating the values
of P , G and i). By Proposition 15, IteratedIntegrate terminates and the invariant
plus the property G = 0 imply F = P +

∑t
j=0 δ

jWj . ut

Proposition 17. Algorithm IteratedIntegrate is correct.

Proof. This is a direct consequence of Propositions 14 and 16. ut

Example 12. The iterated integration of Fio (see Example 10) is P+W0+δtW1+

δ2
tW2 where P = k2Ve, W0 = −k2keVey+ke

, W1 =
(k1+k2)(y2−k2e)−keVe

(y+ke)
, and W2 = y.

This decomposition is almost the same as in [3] except the constant term k2Ve

has been isolated. At first sight, one could believe that W1 =
(k1+k2)(y2−k2e)−keVe

(y+ke)

is not a functional fraction because the degree in y of the numerator is 2, and
the one of the denominator is 1. However, it is a functional fraction since W1 =
(k1 + k2)y − keVe

y+ke
(where y and 1

y+ke
are FMF).

Remark 9. At first, the authors had tried to collect from the beginning the non-
differential part of F , hoping that all following calls to Integrate would return
a pair (W,R) where R would have a zero nondifferential polynomial part. How-
ever, this does not work because taking the nondifferential polynomial part and
applying δ do not commute.

For example, take F = u+uxx
ux

, and G = δF . The nondifferential polyno-
mial part of F is zero. However the nondifferential polynomial part of G = δF

is 1 and not 0, since δF = 1 + uxxx
ux
− uxx(uxx−u)

u2
x

· This shows the calls to

NondifferentialPolynomialPart at line 7 are needed.

Remark 10. The iterated integration decomposition can lead to some variants.
For example, a nonnegative integer t can be fixed and the infinite sum in Proposi-
tion 14 can be replaced by

∑t
i=0 δ

iWi. In that case, the condition 3 can obviously
be discarded, and the condition 2 needs to be replaced by “Wt, δWt, . . . , δ

t−1Wt

have a zero constant term and Wi is a functional fraction for any 0 ≤ i ≤ t−1”.
By fixing t = 1, Algorithm Integrate is obtained.

Remark 11. Remark 8 can be generalized to find a linear combination F =∑
αiFi such that F = δ2G for some fraction G. By using t = 2 in Remark 10,

and by using IteratedIntegrate, it suffices to cancel both the W0 and W1 parts of
the Fi.

6 Conclusion

We presented in this paper a new normal form for differential fractions. The
integration w.r.t. general differential operators (linear combinations of partial
derivations for example) instead of simply δ could be investigated. We also hope
that the normal form presented will be an ingredient for constructing an elimi-
nation method for integro-differential polynomials or fractions.

References

1. Ritt, J.F.: Differential Algebra. Dover Publications Inc., New York (1950) http:

//www.ams.org/online_bks/coll33.
2. Kolchin, E.R.: Differential Algebra and Algebraic Groups. Academic Press, New

York (1973)
3. Boulier, F., Lemaire, F., Regensburger, G., Rosenkranz, M.: On the integration

of differential fractions. In: Proceedings of the 38th International Symposium on
Symbolic and Algebraic Computation. ISSAC ’13, New York, NY, USA, ACM
(2013) 101–108

4. Boulier, F., Korporal, A., Lemaire, F., Perruquetti, W., Poteaux, A., Ushirobira,
R.: An algorithm for converting nonlinear differential equations to integral equa-
tions with an application to parameters estimation from noisy data. In: Proceed-
ings of CASC 2014. Volume 8660 of Lecture Notes in Computer Science., Springer
(2014) 28–43

5. Gao, X., Zhang, M.: Decomposition of ordinary differential polynomials. Appl.
Algebra Eng. Commun. Comput. 19(1) (2008) 1–25

6. Gao, X.S., Zhang, M.: Decomposition of differential polynomials with constant
coefficients. In: Proceedings of the 2004 International Symposium on Symbolic
and Algebraic Computation. ISSAC ’04, New York, NY, USA, ACM (2004) 175–
182

7. Boulier, F., Lemaire, F.: Finding first integrals using normal forms modulo dif-
ferential regular chains. In: Proceedings of CASC 2015. Volume 9301 of Lecture
Notes in Computer Science., Springer (2015) 101–118

8. Raab, C.G.: Integration of unspecified functions and families of iterated integrals.
In: Proceedings of the 38th International Symposium on Symbolic and Algebraic
Computation. ISSAC ’13, New York, NY, USA, ACM (2013) 323–330

9. Boulier, F., Cheb-Terrab, E.: Help Pages of the DifferentialAlgebra Package. In
MAPLE 14 (2010)

10. Bilge, A.H.: A REDUCE program for the integration of differential polynomials.
Computer Physics Communications 71 (1992) 263–268

11. Stoutemyer, D.R.: Multivariate partial fraction expansion. ACM Commun. Com-
put. Algebra 42(4) (February 2009) 206–210

12. Cox, D., Little, J., O’Shea, D.: Ideals, Varieties and Algorithms. An introduction
to computational algebraic geometry and commutative algebra. Undergraduate
Texts in Mathematics. Springer Verlag, New York (1992)

13. Bronstein, M.: Symbolic Integration I. Springer Verlag, Berlin, Heidelberg, New
York (1997)

14. Gel’fand, I., Dikii, L.: Fractional powers of operators and hamiltonian systems.
Functional Analysis and Its Applications 10(4) (1976) 259–273

