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An efficient Jacobi-like deflationary ICA algorithm:
application to EEG denoising

Sepideh Hajipour Sardouie,Student Member, IEEE,Laurent Albera,Senior Member, IEEE,
Mohammad Bagher Shamsollahi,Senior Member, IEEE,and Isabelle Merlet

Abstract—In this paper, we propose a Jacobi-like Deflation-
ary ICA algorithm, named JDICA. More particularly, while
a projection-based deflation scheme inspired by Delfosse and
Loubaton’s ICA technique (DelLR) is used, a Jacobi-like opti-
mization strategy is proposed in order to maximize a fourth
order cumulant-based contrast built from whitened observations.
Experimental results obtained from simulated epileptic EEG data
mixed with a real muscular activity and from the comparison in
terms of performance and numerical complexity with the Fas-
tICA, RobustICA and DelL R algorithms, show that the proposed
algorithm offers the best trade-off between performance and
numerical complexity when a low number (∼ 12) of electrodes
is available.

Index Terms—Independent Component Analysis, deflation,
higher order statistics, Jacobi-like optimization, ElectroEn-
cephaloGraphy, denoising, interictal epileptic data.

I. I NTRODUCTION

I NDEPENDENT Component Analysis (ICA) [8], [9] is a
very useful tool in signal processing especially to process

biomedical signals such as ElectroEncephaloGraphic (EEG)
data [1]–[5]. The ICA problem consists of retrieving unob-
served realizations of aP -dimensional random vectors =
[s1, . . . , sP ]

T

from observed realizations of anN -dimensional
random vectorx = [x1, . . . , xN ]

T

that can linearly be modeled
as follows:

x =

P
∑

p=1

apsp + ν = As+ ν (1)

whereν represents anN -dimensional noise independent ofs.
The fundamental assumption of ICA is that theP unknown
random variablessp (called sources) are statistically indepen-
dent, i.e. their joint Probability Density Function (PDF) can
be factorized as the product of their marginal PDFs.

ICA algorithms can be divided into two groups: i) "joint"
or "symmetric" approaches jointly extract the independent
components ii) "deflationary" techniques estimate sourcesone
by one. Joint algorithms seem to converge to the expected
solution in practice, but no theoretical result is available.
On the other hand, the convergence of most of deflationary
algorithms have been proved analytically [4], [6], [10]. In
addition, in deflationary algorithms, a penalty term can be
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added to the contrast function [7] to force the algorithm to
extract the sources of interest during the early steps. Besides
when the number of all sources largely encompasses the
number of sources of interest, the computational complexity
of the deflationary algorithms is greatly reduced.

In this paper, we propose an efficient Jacobi-like Deflation-
ary ICA algorithm, called JDICA, based on second and Fourth
Order (FO) statistics. The deflation procedure of our algorithm
is inspired by [4]. The gradient-based ICA algorithm (called
DelLR throughout this paper) proposed in [4], estimates the
sources one by one using a smart projection-based deflation
scheme. According to its gradient-based structure, the step
size must be precisely chosen to guarantee acceptable results,
especially with noisy data. A multi-initialization procedure
can even be necessary in some practical contexts. In order to
overcome these drawbacks, we propose a Jacobi-like algorithm
to maximize the contrast function computed from the FO
cumulants of the whitened observations.

We have examined the effectiveness of JDICA in denoising
of simulated interictal epileptic data when a low number of
electrodes is available as for children. The comparison in
terms of performance and numerical complexity with classical
deflationary ICA algorithms, namely FastICA [6], RobustICA
[10] and DelLR shows that JDICA offers a better accuracy
than DelLR and a lower numerical complexity than FastICA
and RobustICA.

II. M ETHODOLOGY

We assume that we have some realizations of the real-valued
random vectorx (1). Since JDICA, like a large group of
ICA algorithms, needs a prewhitening step [4] without loss of
generality, we assume that vectorx denotes the prewhitened
observation random vector and matrixA = [a1, ...,aP ] is
a (P × P ) real-valued orthogonal mixing matrix. The aim
of our method is then to estimate theP columnsap of A

and theP corresponding sources such thatsp = a
T

px. More
particularly, vectorap can be identified by maximizing the
following contrast function:

F(g(p)) =
1

4
[C4(yp)]

2 =
1

4
[C4(g

(p)Tx)]2 (2)

with respect tog(p) whereC4(yp) is the FO marginal cumulant
of yp = g(p)Tx. The advantage of defining such a contrast
function is that the arguments of the local maxima ofF on the
unit sphere are the vectors{±ap}p=1,...,P [4]. This property
ensures our maximization (2) to converge to one column of
the matrixA. Consequently one of the sources is extracted.
Thus a projection deflation procedure is applied to subtractthe
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contribution of the extracted source from the mixture. These
two steps require a particular parametrization of the elements
of the unit sphere which is given by:

Lemma 1: Each unit norm column vectorg∈ RP whose
last componentgP is strictly positive can be represented as
the last column of an orthogonal matrix given by:

G(t) = GP−1(tP−1) . . .G2(t2)G1(t1) (3)

where theP − 1 real-valued elements oft = [t1, ..., tP−1]
T

correspond to tangents of uniquely defined angles belonging
to ]−π/2, π/2[ andGp(tp) is a Givens rotation of size(P ×
P ) derived from an identity matrix for which the(p, p)-th,
(P, P )-th, (p, P )-th, (P, p)-th components are replaced with
(1+t2p)

−1/2, (1+t2p)
−1/2, tp(1+t2p)

−1/2 and−tp(1+t2p)
−1/2,

respectively.
Proof derives from [4, lemma 2.2] by expressingcos(θ) and

sin(θ) as a function oft = tan(θ). This parametrization differs
from that of [4] and allows us both to reformulate the contrast
(2) as a rational function and to consider other optimization
strategies such as a Jacobi-like procedure.

To extract the first source, we then propose to compute a
matrix G(1)(t) such that its last column,g(1)(t), maximizes
the contrast function (2) with respect tot. Our Jacobi-like
optimization procedure consists of decomposingG(1)(t) as a
product ofP − 1 elementary Givens rotationsG(1)

p (tp) and of
sequentially identifying theP − 1 corresponding parameters
tp. The (P − 1)-dimensional optimization problem is thus
replaced withP−1 sequential mono-dimensional optimization
problems. In practice, several sweeps of theP − 1 parameters
are necessary to achieve convergence. More precisely, let us
consider thep-th mono-dimensional maximization problem of
a sweep of our Jacobi-like procedure. It consists in computing
matrix G(1+)(tp) defined byG(1+)(tp) = G(1)

p (tp)G
(1−) such

that its last column,g(1+)(tp), maximizes the contrast function
(2), whereG(1−) is the product of all the elementary Givens
rotations estimated previously.

Denoting the last column ofG(1−) by g(1−) =
[g(1−)

1 , . . . , g(1−)

P ]
T

, the last column ofG(1+) can be written
as:

g(1+)(tp) = [g(1+)

1 (tp), . . . , g
(1+)

P (tp)]
T

= (4)

[g(1−)

1 , . . . , g(1−)

p−1, g
(1+)
p (tp), g

(1−)

p+1 , . . . , g
(1+)

P (tp)]
T

where:

g(1+)

p (tp) =
1

√

1 + t2p

g(1−)

p +
tp

√

1 + t2p

g(1−)

P (5)

g(1+)

P (tp) =
−tp

√

1 + t2p

g(1−)

p +
1

√

1 + t2p

g(1−)

P (6)

It appears that only thep-th andP -th components ofg(1+)(tp)
depend ontp. Then, we set the derivative of the contrast
function with respect totp equal to zero to find the appropriate
tp value:

∂C4(y1)
2/4

∂tp
=

1

2
C4(y1)

∂C4(y1)

∂tp
= 0 (7)

which results in simply vanishing∂C4(y1)/∂tp.

Now using the multi-linearity property of cumulants, it is
shown thatC4(y1) can be written as follows:

C4(y1) = d40(g
(1+)

p (tp))
4 + d31(g

(1+)

p (tp))
3(g(1+)

P (tp))+

d22(g
(1+)

p (tp))
2(g(1+)

P (tp))
2 + d13(g

(1+)

p (tp))(g
(1+)

P (tp))
3+

d04(g
(1+)

P (tp))
4 + d30(g

(1+)

p (tp))
3 + d21(g

(1+)

p (tp))
2(g(1+)

P (tp))

+d12(g
(1+)

p (tp))(g
(1+)

P (tp))
2+d03(g

(1+)

P (tp))
3+d20(g

(1+)

p (tp))
2

+ d11(g
(1+)

p (tp))(g
(1+)

P (tp)) + d02(g
(1+)

P )2 + d10(g
(1+)

p )

+ d01(g
(1+)

P ) + d00 (8)

where the coefficientsdij are defined in appendix. Conse-
quently, by computing the derivative of (8), we obtain:

4
∑

m=0

emtmp +
√

1+t2p
(

3
∑

n=0

fnt
n
p

)

=0 (9)

where the coefficientsem and fn are given in appendix.
Equation (9) can be simplified to an8-th degree polynomial
equation as follows:
8

∑

m=0

m
∑

n=0

enem−nt
m
p −(1+t2p)

6
∑

m′=0

m′

∑

n′=0

fn′fm′
−n′tm

′

p =0 (10)

By rooting (10),8 solutionŝtp are obtained. Then we calculate
the contrast function (2) for all real-valued roots and we
choose the root̂t(opt)p which maximizes it. Eventually, we
calculate the matricesG(1)

p (t̂
(opt)
p ) and G(1+)(t̂

(opt)
p ). This

procedure is performed iteratively for allp ∈ {1, ..., P−1} and
for several sweeps until convergence. At this stage, the first
column â1 of the estimated mixing matrix is given by the
last update ofg(1+)(t̂

(opt)
P−1 ) and the first source is estimated by

ŝ1 = â
T

1x.
After estimating the first source, we remove its contribution

from the observations by projecting the observations onto the
subspace orthogonal to that spanned byâ1 by computing
x(1) = Π(1)x whereΠ(1) is a (P − 1× P ) projection matrix
built by stacking vertically theP − 1 first rows of the last
update ofG(1+)(t̂

(opt)
p )

T

. Now to estimate the other sources,
the same procedure should be done by using equations (4) to
(10). The only difference is that the vector of observations
x should be replaced by the observationx(p−1) of reduced
dimension(P − p+ 1) in order to extract thep-th source.

Note that the estimation of FO cumulants is not required
at each iteration of our Jacobi-like procedure. TheN4 FO
cumulantsCn1,n2,n3,n4,x of vector x can be estimated at
the beginning of the procedure and sorted in a(N2 × N2)
matrix, Q

x
, called quadricovariance [1]. The FO cumulants

Cn1,n2,n3,n4,x(p) of vectorx(p) can then be derived using the

following formulaQ
x

(p) = HQ
x
H

T

where:

H =

p−1
∏

i=1

(Π(i) ⊗Π(i)) (11)

with ⊗ the Kronecker product operator.

III. N UMERICAL COMPLEXITY

In this section, we analyze the numerical complexity of
the proposed algorithm in terms of real-valued floating point
operations (flops). A flop corresponds to a multiplication
followed by an addition, but in practice only the number of
multiplications is computed. In the following computations,
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P , N and T are the number of sources, the number of
observation channels and the number of time samples, respec-
tively. f4(P ) = P (P + 1)(P + 2)(P + 3)/24 is equal to the
number of free entries in a fourth order cumulant tensor of
dimensionP enjoying all symmetries.B = min(T N2

2 +4N3

3 +
PNT, 2TN2) is the number of flops required to perform
spatial whitening.R is the complexity required to compute the
roots of a real8-th degree polynomial by using the companion
matrix technique (we may takeR = 972 flops). As a result
the proposed ICA algorithm requiresB +2T +2P +NP 2 +
3Tf4(P ) +

∑P−1
p=2 (2p

2(p− 1)2(p2 − p+ 1)) +
∑P

p=2(p
2T +

pP+(p−1)P 2)+
∑P

p=2 ItP−p+1(R+4p3/3−7p2+62p/3+

195+min((p− 2)T +8(4T +8), 4p+8(2p4+p2+7))) flops
to extract allP sources.

IV. PERFORMANCEANALYSIS ON SIMULATED DATA

A. Data generation

The simulated epileptic EEG was generated using a realistic
model developped in our team [3]. We built a mesh of the
cortical surface from a 3D MRI T1 image of a subject (Brain-
Visa, SHFJ, Orsay, France). This mesh is composed of 40500
triangles of mean surface 5mm2. A current dipole is placed
at the barycenter of each triangle and oriented orthogonally to
the triangle surface, leading to a field of current dipoles. From
this mesh,Pe distributed sources, called "patches", generating
interictal spikes, are defined. Each patch is composed of 100
dipole sources to which we assigned hyper-synchronous spike-
like activities generated from a model of neuronal populations
[3]. From this setup and considering 12 electrodes, namely
Fp1, Fp2, C3, C4, T3, T4, O1, O2, F7, F8, T5 and T6, the
forward problem was then calculated using a realistic head
model made of three nested homogeneous volumes shaping the
brain, the skull and the scalp (ASA, ANT, Enschede, Nether-
lands). The aforementioned electrodes are commonly used to
record EEG in pediatric patients. The epileptic activity atthe
level of these electrodes, namely the signal of interest, was
then obtained by solving the forward problem using a realistic
head model and the Boundary Element Method (BEM). In
this paper, we considered a single patch localized in the left
superior temporal gyrus and 50 Monte Carlo simulations were
generated. In addition a12-dimensional signal of non-interest
extracted from real12-channel EEG and composed of muscle
activity, background EEG and instrument noise was added to
each trial with a specified Signal-to-Noise Ratio (SNR).

B. Results
We compared the performance of the proposed JDICA

algorithm with three deflationary ICA algorithms, namely
FastICA, RobustICA, DelLR. Note that, unlike the three other
algorithms, RobustICA does not require any prewhitening.
The performance was computed as a function of computa-
tional complexity using the Normalized Mean-Squared Error
(NMSE) as defined in [1]. In our experiment, the data length is
fixed to5120 samples and the SNR value is−5 dB. By varying
the number of estimated sourceŝP in the range of2 to 12,
we make vary the computational complexity of each algorithm.
Figure 1 shows then the average Error as a function of flops
at the output of the four algorithms. This figure illustrates

that the JDICA algorithm offers the best compromise between
performance and numerical complexity when a low number
of electrodes is used even if RobustICA converges faster. It
implies that one iteration of RobustICA requires more flops
than one sweep of JDICA.
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Fig. 1. Average Error as a function of flops obtained by varying the number
of estimated sourceŝP with SNR=−5dB.
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Fig. 2. Denoising of real interictal spikes data (a) a noise-free interictal spikes,
(b) an epoch including spikes hidden in muscle activity and (c) EEG denoised
by JDICA. The source localization results at the output of 4-ExSo-MUSIC
are depicted at the bottom of each column.

V. A PPLICATION TO REAL DATA

In this section we evaluate JDICA in the case of real data.
The JDICA algorithm was applied to denoise interictal spikes
obtained from a patient suffering from drug-resistant partial
epilepsy. Scalp-EEG data were acquired from 12 electrodes at
a sampling frequency of 256 Hz. These data were reviewed
in order to isolate an epoch of clean data containing interictal
spikes (figure 2(a)) and an epoch of noisy EEG containing
spikes hidden by muscle activity of high amplitude (figure
2(b)).

The same procedure as for simulated data was applied to
reconstruct the denoised EEG signals by using JDICA (figure
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2(c)). Since we do not know the ground truth to evaluate the
performance of the proposed method, a source localization
process was performed on the original clean signal (considered
as a reference), on the noisy data, as well as on data denoised
by JDICA. The recent 4-ExSo-MUSIC algorithm [2] was
used to achieve source localization. As shown in figure 2,
the epileptic spikes maximal at temporal and frontotemporal
electrodes (T4, F8) on clean data are retrieved at the same
electrodes on denoised data. In addition, the muscle activity
visible on noisy data is strongly reduced by the JDICA
procedure at F8 and T4 and almost entirely removed at other
channels. Source localization (bottom of figure 2 of clean (2a)
and of denoised spikes (2c) is similar (right anterior temporal)
and consistent with the patient pathology. For noisy data, the
spike source is incorrectly localized.

VI. CONCLUSION

In this paper, we proposed a new deflationary ICA al-
gorithm based on a Jacobi-like optimization procedure to
separate independent sources. We examined the effectiveness
of the proposed algorithm in denoising of simulated pedi-
atric epileptic data. The comparison in terms of performance
and numerical complexity with the FastICA, RobustICA and
DelLR algorithms shows that the proposed algorithm offers the
best trade-off between performance and numerical complexity
when a low number of electrodes is available, such as in
pediatric patients. We also examined the feasibility of JDICA
in the case of real interictal data and showed that the JDICA
algorithm is able to properly denoise real data as well as
simulated ones. As a part of our future work, we will examine
the proposed algorithm with higher number of electrodes
which may lead to different results.

APPENDIX A

d40=Cp,p,p,p,x, d31=4CP,p,p,p,x, d22=6CP,P,p,p,x

d13=4CP,P,P,p,x, d04=CP,P,P,P,x

d30=4

P−1
∑

i1 = 1
i1 6= p

Cp,p,p,i1,xg
(1−)

i1
, d21=12

P−1
∑

i1 = 1
i1 6= p

CP,p,p,i1,xg
(1−)

i1

d12=12
P−1
∑

i1 = 1
i1 6= p

CP,P,p,i1,xg
(1−)

i1
, d03 = 4

P−1
∑

i1 = 1
i1 6= p

CP,P,P,i1,xg
(1−)

i1

d20=6

P−1
∑

i1 = 1
i1 6= p

(

Cp,p,i1,i1,x(g
(1−)

i1
)2+2

i1−1
∑

i2 = 1
i2 6= p

Cp,p,i1,i2,xg
(1−)

i1
g(1−)

i2

)

d11=12

P−1
∑

i1=1
i1 6=p

(

CP,P,p,i1,x(g
(1−)

i1
)2+2

i1−1
∑

i2=1
i2 6= p

CP,p,i1,i2,xg
(1−)

i1
g(1−)

i2

)

d02=6

P−1
∑

i1 =1
i1 6=p

(

CP,P,i1,i1,x(g
(1−)

i1
)2+2

i1−1
∑

i2 =1
i2 6= p

CP,P,i1,i2,xg
(1−)

i1
g(1−)

i2

)

d10=4

P−1
∑

i1 =1
i1 6=p

(

CP,i1,i1,i1,x(g
(1−)

i1
)3+3

P−1
∑

i2 =1
i2 6= i1, p

Ck,i1,i1,i2,x(g
(1−)

i1
)2g(1−)

i2

+ 6

i1−1
∑

i2 =1
i2 6=p

i2−1
∑

i3 =1
i3 6=p

Cp,i1,i2,i3,xg
(1−)

i1
g(1−)

i2
g(1−)

i3

)

d01=4

P−1
∑

i1 =1
i1 6=p

(

CP,i1,i1,i1,x(g
(1−)

i1
)3+3

P−1
∑

i2 =1
i2 6= i1, p

CP,i1,i1,i2,x(g
(1−)

i1
)2

g(1−)

i2
+ 6

i1−1
∑

i2 =1
i2 6=k

i2−1
∑

i3 =1
i3 6=p

CP,i1,i2,i3,xg
(1−)

i1
g(1−)

i2
g(1−)

i3

)

d00 =

P−1
∑

i1 =1
i1 6=p
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∑

i2 =1
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∑
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∑
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(1−)
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(1−)

p (g(1−)

P )2 + (3d30 − 2d12)(g
(1−)

p )2g(1−)

P

f1 = (2d12 − 3d30)(g
(1−)

p )3 + (2d21 − 3d03)(g
(1−)

P )3+

(6d03 − 7d21)(g
(1−)

p )2g(1−)

P + (6d30 − 7d12)g
(1−)

p (g(1−)

P )2

− d10g
(1−)

p − d01g
(1−)

P

f2 = d10g
(1−)

P − d01g
(1−)

p + (2d21 − 3d03)(g
(1−)

p )3+

(6d03 − 7d21)g
(1−)

p (g(1−)

P )2 + (7d12 − 6d30)(g
(1−)

p )2g(1−)

P

+ (3d30 − 2d12)(g
(1−)

P )3

f3 = (2d12 − 3d30)g
(1−)

p (g(1−)

P )2 − d10g
(1−)

p − d12(g
(1−)

p )3−

d21(g
(1−)

P )3 − d01g
(1−)

P + (2d21 − 3d03)(g
(1−)

p )2g(1−)

P



5

REFERENCES

[1] L. Albera, A. Kachenoura, P. Comon, A. Karfoul, F. Wendling, L. Sen-
hadji, and I. Merlet, “ICA-based EEG denoising: a comparative analysis
of fifteen methods,”Special Issue of the Bulletin of the Polish Academy
of Sciences, vol. 60, no. 3, pp. 407–418, 2012.

[2] G. Birot, L. Albera, F. Wendling, and I. Merlet, “Localization of
extended brain sources from EEG/MEG: The ExSo-MUSIC approach,”
NeuroImage, vol. 56, no. 1, pp. 102–113, May 2011.

[3] D. Cosandier-Rimélé, I. Merlet, J. M. Badier, P. Chauvel, and
F. Wendling, “The neuronal sources of EEG: Modeling of simultaneous
scalp and intracerebral recordings in epilepsy,”NeuroImage, vol. 42,
no. 1, pp. 135–146, April 2008.

[4] N. Delfosse and P. Loubaton, “Adaptive blind separationof independent
sources: a deflation approach,”Signal processing, vol. 45, no. 1, pp.
59–83, 1995.

[5] A. Delorme, J. Palmer, J. Onton, R. Oostenveld, and S. Makeig,
“Independent EEG sources are dipolar,”PloS one, vol. 7, no. 2, p.
e30135, 2012.

[6] A. Hyvärinen and E. Oja, “A fast fixed-point algorithm forindependent
component analysis,”Neural computation, vol. 9, no. 7, pp. 1483–1492,
1997.

[7] J.-X. Mi, “A novel algorithm for Independent Component Analysis with
Reference and methods for its applications,”PloS one, vol. 9, no. 5, p.
e93984, 2014.

[8] A. Nandi and V. Zarzoso, “Fourth-order cumulant based blind source
separation,”IEEE Signal Processing Letters, vol. 3, no. 12, pp. 312–
314, 1996.

[9] B. Stoll and E. Moreau, “A generalized ICA algorithm,”IEEE Signal
Processing Letters, vol. 7, no. 4, pp. 90–92, 2000.

[10] V. Zarzoso and P. Comon, “Robust independent componentanalysis by
iterative maximization of the kurtosis contrast with algebraic optimal
step size,”IEEE Transactions on Neural Networks, vol. 21, no. 2, pp.
248–261, February 2010.


