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Abstract

In this paper, we consider the large population limit of an age and characteristic-structured
stochastic population model evolving according to individual birth, death and fast charac-
teristics changes during life. Both the large population framework and the fast character-
istics changes assumption are motivated by demographic patterns of human populations
at the scale of a given country. When rescaling the population process, and under some
invariance assumption about the characteristics changes dynamics, the classical determin-
istic transport-renewal McKendrick-Von Foerster equation appears, that describes the time
evolution of the age pyramid driven by equivalent birth and death rates. The proof follows
the work of Méléard and Tran (2012) and Gupta et al. (2014) in which analogous math-
ematical issues are encountered. We further prove that the sequence of processes taking
track of the characteristics distribution is not tight even in the presence of age-independent
demographic rates. To illustrate the use of the limiting model, a set of computable invari-
ant distributions is given, as well as numerical implementation of equivalent birth and
death rates which mimics real demographic data. These results highlight the fact that
characteristics changes frequencies are crucial to understand aggregate demographic rates
at the macroscopic scale.

Keywords: Population dynamics, mathematical demography, age pyramid, hetero-

geneity, multi-state models, birth-death processes, point processes, limit theorems, fast life

trajectories.

1 Introduction

The study of the dynamics of mortality rates at the national level is still a major
issue both in demographics and actuarial science. Whereas national data provides
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estimation of death rates for men and women by age over time, a growing interest
concerns the dynamics of mortality rates at a deeper level, looking at other individual
characteristics. This is crucial to understand the dynamics of mortality, both for
state pension issues and insurance risk assessment. In particular, the statistical
estimation of death rates by individual characteristics can been carried out when
looking at a sample of individuals who share some characteristics which are quite
stable during their life. However in practice, many characteristics of individuals can
vary over time. A possible approach is to estimate a "larger" model including death
rates but also transitions between characteristics or states. The statistical techniques
dedicated to so-called multi-state models address this issue for a class of processes
and observation schemes (see e.g. Boumezoued et al. (2015) and references therein).
In this field however, the statistical estimation remains very challenging, partly due
to the lack of data and the censoring scheme, but also due to the high number
of involved parameters. Another approach could be to deal with an approximate
model. Indeed, among the characteristics which are known to have a real impact on
longevity, many vary very frequently over time: one can think to exposition or not
to some contaminant, alternating a dangerous activity with a safe one, the precise
income, the health status with alternate periods of illness. Those can also have a
huge impact on birth patterns, making the dynamics of the whole population difficult
to analyze. As an example, the time evolution of the age pyramid is a crucial quantity
of interest for decision making in public pension systems. In this context of fast
changing characteristics, it seems difficult to keep track of the population evolution
at the microscopic level and one could be interested in the right "approximation"
of the dynamics, that is, to replace all birth and death rates by characteristics by
an aggregate death rate which depends on the microscopic rates but also on some
stable population composition.

In this paper, we consider a stochastic population model in which individu-
als have an age and characteristics, and can give birth, change their characteris-
tics (event called swap) and/or die. We study the asymptotics of the stochastic
individual-based model under both large population and fast swap patterns; in par-
ticular characteristics change at the fast time scale whereas aging remain at the
slow time scale. Both the large population framework and the frequent character-
istics changes appear naturally when focusing on the demographic evolution of a
human population at the scale of a given country. In this context, and under some
invariance assumption on the swap patterns, the macroscopic behavior is described
by a McKendrick-Von Foerster deterministic equation (see McKendrick (1926) and
Von Foerster (1959)) in which only age is involved and parameters are averaged
over the stable characteristics distribution. Our probabilistic setting is inspired by
Fournier and Méléard (2004), Champagnat et al. (2006), Tran (2008), Ferriere and

Alexandre Boumezoued December 16, 2015
2/31



Tran (2009) and Bensusan et al. (2010–2015). In particular, the birth-death-swap
process representation is based on Bensusan et al. (2010–2015) (see also Bensusan
(2010)).

In the literature, limit theorems for stochastic processes involving several time
scales have been widely studied. As for our framework of interest which concerns
measure-valued population processes, one can find several studies involving two time
scales, for example related to evolutionary mechanisms with rare or accelerated
mutations in characteristics-structured (called trait-structured) population models
(see e.g. Fournier and Méléard (2004), Champagnat et al. (2006), Bovier and Wang
(2013) and Billiard et al. (2014)), prey-predator models (see e.g. Costa et al. (2015)
and Costa (2015)), as well as fast aging structured populations (see e.g. Méléard and
Tran (2012) and Gupta et al. (2014)). To our knowledge, no contribution focused
on measure-valued age and trait-structured population models with fast changing
characteristics and age-dependent birth and death rates. This is the purpose of the
present paper to develop such modeling framework, as well as to highlighting its
contribution to demographic purposes. This work can be seen as the probabilistic
counterpart of aggregation methods for deterministic equations based on time scale
separation techniques (see e.g. Auger et al. (2012) for a review). Concerning the
rescaling techniques, we are specifically interested in Méléard and Tran (2012) and
Gupta et al. (2014) in which analogous mathematical issues are encountered, and
whose techniques are used in the present paper. The link with our result will be
further detailed in the corresponding section.

The remainder of this paper is organized as follows. In Section 2, the birth-
death-swap population process is introduced, as well as the assumptions and our
results. Proofs are given in Section 3. Finally, Section 4 details some examples and
numerical illustration, and we give some concluding remarks in Section 5.

2 Setting and main results

We are interested in the evolution of a population in which each individual has
characteristics x ∈ X , where X is a compact set of Rd, and an age a ∈ R+. In the
population, three kinds of events can occur:
(i) A birth, that is the arrival of an individual with age zero,
(ii) A death, that is the removal of an individual,
(iii) A swap, that is a change of individual’s characteristics.

We want to model the fact that each individual changes its characteristics very
often compared to the times at which it gives birth and dies. This is motivated by
human populations for which one can consider individuals who change their income,
health status, or food condition very often during their life. Each individual with
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2.1 Construction

characteristics x and age a gives birth at rate b(x, a), dies with rate d(x, a), and
changes its characteristics at times given by the swap rate n.e(x, a), where n is the
scale parameter which will be grown to infinity. We are interested in the macroscopic
behavior of such population evolution, so the scale parameter n is also used as the
order of magnitude of the population size.

We consider a reference probability measure l(dx) on the space X of character-
istics. At birth, mutations occur thanks to a kernel kb(x, a, x′)l(dx′). At a time
of swap, the characteristics x of the individual with age a are replaced by new
characteristics x′ drawn according to the kernel ke(x, a, x′)l(dx′).

2.1 Construction

We construct the population processes as solutions to a thinning problem. This
construction for measure-valued birth-death processes can be found in Fournier and
Méléard (2004), Champagnat et al. (2006), Tran (2008), Ferriere and Tran (2009),
as well as in particular Bensusan et al. (2010–2015) for the detailed construction of
a birth-death-swap process. Let (Ω,A,P) a probability space satisfying the usual
conditions. On this probability space, let Q(ds, di, dx′, dθ) be a Poisson point mea-
sure on R+ × N∗ × X × R+ with intensity measure dsn(di)l(dx′)dθ, where n(.) is
the counting measure on N∗, that is n(A) is the number of elements in A. On this
probability space, let us also introduce for each n ∈ N∗ the initial population, rep-
resented by a random point measure Zn

0 (dx, da) =
∑N0

t
i=1 δXi(Z0),Ai(Z0)(dx, da) on the

space X ×R+ which puts a weight on characteristics and ages of individuals present
at time 0. Let (Ft) be the canonical filtration generated by Z0 and Q, which will be
the reference filtration in this paper. The population at time t indexed by the scale
parameter n ∈ N∗ is denoted Zn

t (dx, da) =
∑Nn

t
i=1 δXi(Zt),Ai(Zt)(dx, da), where at any

time individuals are ordered by age. The virtue of the measure representation is that
one can compute a function of the whole population structure using the notation

〈Zn
t , f〉 =

∫
X×R+

f(x, a)Zn
t (dx, da) =

Nn
t∑

i=1

f
(
X i(Zt), A

i(Zt)
)
.

For example, the population size is Nn
t = 〈Zn

t ,1〉, whereas the total population
birth intensity is 〈Zn

t−, b〉. The population process is constructed as the solution to
a thinning problem which can be interpreted as follows: the population at time t is
computed as the population Z0 corrected by all random demographic events which
happened between 0 and t, namely birth, death and swap events. More precisely,
for each n ∈ N∗, the measure-valued process Zn

. (dx, da) is defined as the solution to
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2.1 Construction

the following equation:

Zn
t (dx, da) =

〈Zn0 ,1〉∑
j=1

δ(Xi(Zn0 ),Ai(Zn0 )+t)(dx, da)

+

∫ t

0

∫
N∗

∫
X

∫
R+

1i≤〈Zns−,1〉

(
10≤θ<m1(Zns−,i,x

′)δ(x′,t−s)(dx, da)

+ 1m1(Zns−,i,x
′)≤θ<m2(Zns−,i,x

′)

(
δ(x′,Ai(Zns−)+t−s)(dx, da)− δ(Xi(Zns−),Ai(Zns−)+t−s)(dx, da)

)
− 1m2(Zns−,i,x

′)≤θ<m3(Zns−,i,x
′)δ(Xi(Zns−),Ai(Zns−)+t−s)(dx, da)

)
Q(ds, di, dx′, dθ),

(1)

where m1(Zn
s−, i, x

′) = b(X i(Zn
s−), Ai(Zn

s−))kb(X
i(Zn

s−), Ai(Zn
s−), x′),

m2(Zn
s−, i, x

′) = m1(Zn
s−, i, x

′) + n.e(X i(Zn
s−), Ai(Zn

s−))ke(X
i(Zn

s−), Ai(Zn
s−), x′), and

m3(Zn
s−, i, x

′) = m2(Zn
s−, i, x

′) + d(X i(Zn
s−), Ai(Zn

s−)).

Existence and uniqueness results are given in Subsection 2.3. Note that by
construction the measure-valued process has the Markov property, since the total
intensity at time t is fully determined by the population Zt−. In order to study the
macroscopic behavior, let us first define the renormalized measure

Z̃n
t (dx, da) :=

1

n
Zn
t (dx, da),

that is, the population in which each individual has weight 1/n. The corresponding
age pyramid processes of interest are defined below.

Definition 1. (Age pyramid) The sequence of measure-valued process (Z̄n
t (da))t≥0

defined as the age marginal by: for each f ∈ Cb(R+) (continuous and bounded on
R+),

∫
R+
f(a)Z̄n

t (da) =
∫
X×R+

f(a)Z̃n
t (dx, da) (denoted 〈Z̄n

t , f〉 = 〈Z̃n
t , f〉) is called

sequence of age pyramid processes.

We are interested in the limit as n grows to infinity, so the frequency of swaps
n.e(x, a) increases to infinity whereas the birth and death rates remain the same.
The idea is to separate the time scale of demographic events (birth and death), and
that of characteristics changes. At the same time, the population will be grown to
infinity with n (see Assumption 4 below), so that two effects remain:
(i) As the population grows, the stochastic dynamics averages to a deterministic
pattern,
(ii) As swap events occur more and more frequently, under some invariance as-
sumption, some stable distribution of the characteristics is reached by the whole
population.
Then, in the limit n→ + ∞, the age pyramid process should solve a deterministic
equation in which demographic parameters are averaged over the stable distribution
of the characteristics.
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2.2 Assumptions

2.2 Assumptions

We detail here our assumptions and we discuss their use and interpretation.

Assumption 1. (Bounded intensities and mutation densities) Demographic rates
and mutation kernels are continuous and there exists positive constants k̄, b̄, d̄ and ē
such that for all (x, a, x′) ∈ X ×R+×X , ke(x, a, x′) ≤ k̄, kb(x, a, x′) ≤ k̄, b(x, a) ≤ b̄,
d(x, a) ≤ d̄ and e(x, a) ≤ ē.

Assumption 2. (Control of moments) There exists α > 0 such that

sup
n≥1

E
[(
〈Z̃n

0 ,1〉
)1+α

]
< +∞.

Remark 1. The proof can be adapted (and simplified) in the case where ages lie in
[0, ā], where ā is some limiting age. In this framework, one can check that only the
assumption that supn E

[
〈Z̃n

0 ,1〉
]
< +∞ is required. However, such limit age would

constraint the model and is in fact restrictive for many applications. Therefore, our
aim is to detail a more general convergence result for an unconstrained age space.
This aspect will be discussed in the proof Section 3.

The crucial assumption about the invariance of the swap pattern is given below.
It states that at the individual level, the way characteristics change during life admits
an invariant distribution. Moreover, we propose here a general framework in which
this invariant pattern may depend on age.

Assumption 3. (Invariant measure) For each a ∈ R+, there exists a positive solu-
tion x 7→ g(x, a) such that

∫
X g(x, a)l(dx) = 1 to the Fredholm equation: l(dx)-a.e.,

e(x, a)g(x, a) =

∫
X
g(y, a)e(y, a)ke(y, a, x)l(dy). (2)

Remark 2. (Probabilistic interpretation of Assumption 3) We omit age for the
discussion here. Consider a Markov process with values in X , which jumps from a
state x to a state y with rate e(x)ke(x, y). Its infinitesimal generator is given by
Af(x) = e(x)

(∫
y∈X ke(x, y)f(y)l(dy)− f(x)

)
for each continuous f . It is easy to

see that under Assumption 3, for each continuous f ,
∫
X Af(x)g(x)l(dx) = 0. If

the Markov process is right-continuous, then the measure ν(dx) = g(x)l(dx) is its
unique invariant measure (up to scaling).

Remark 3. Equation (2) is of the form Ψ(x) =
∫
y∈X Ψ(y)ke(y, x)l(dy) (for each

age) and is called homogenous Fredholm equation of the second kind. For the study
of the solutions to such equations, we refer to Zemyan (2012). In Section 4, we
provide examples of solutions both for a mixture kernel and a model with swaps to
the nearest neighbor.
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2.3 Results

Before stating the assumption of convergence of the rescaled population at time
0, we clarify the space of measures and its topology. We will deal with random
measures taking values inMF (E), the space of finite positive measures on E, where
mainly E = R+ or E = X × R+. The space MF (E) can be embedded with the
topology of the vague or weak convergence. Recall that the weak convergence in
MF (E) is defined as: νn

weak→ ν if 〈νn, f〉 → 〈ν, f〉 for each continuous and bounded f .
The vague convergence is defined as νn

vague→ ν if 〈νn, f〉 → 〈ν, f〉 for each continuous
f with compact support. In the case where E is a compact set, for example if a
fixed limiting age is imposed, these topologies are the same, which contributes to
simplify some assumptions (see Remark 1). In our case however, since E = X ×R+

is not compact, these two topologies are strictly included.
In this paper, we denote D([0, T ], (MF (E), w)) (resp. C([0, T ], (MF (E), w)))

the space of càdlàg (resp. continuous) processes on [0, T ] taking values in MF (E)

embedded with the topology of weak convergence.
The last assumption relates to the convergence of the sequence of initial popu-

lations towards a deterministic measure, assessing the repartition of ages and char-
acteristics at initial time 0. This is stated below.

Assumption 4. (Convergence of the initial population) There exists a deterministic
measure ξ̃0 ∈ MF (X × R+) such that the sequence of random measures Z̃n

0 (dx, da)

converges in distribution and for the weak topology onMF (X × R+) to ξ̃0(dx, da).

Note that in the case of Assumption 4, we have in particular 〈Z̃n
0 ,1〉 = 1

n
〈Zn

0 ,1〉
converges to 〈ξ0,1〉 (in distribution thus in probability since the limit is determinis-
tic), therefore the initial sample size 〈Zn

0 ,1〉 is assumed to be of order n.

2.3 Results

Here are detailed the main results of this paper. Proofs are given in Section 3.
We before state the result on existence and strong uniqueness for the stochastic
Equation (1). The reader is referred to Propositions 2.2.5 and 2.2.6 in Tran (2006)
for the proof.

Proposition 1. Under Assumptions 1 and 2, for each n ∈ N∗ and T > 0, there
exists a unique strong solution Z̃n

. (dx, da) ∈ D([0, T ], (MF (X×R+), w)) to Equation
(1).

Our main result is stated below.

Theorem 1. (i) Under Assumptions 1, 2, 3 and 4, the sequence of age pyramid pro-
cesses (Z̄n

. (da))n (see Definition 1) converges in distribution in D([0, T ], (MF (R+), w))
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2.3 Results

towards the unique (deterministic) measure-valued process ξ ∈ C([0, T ], (MF (R+), w))

solution to: for each differentiable f on R+, with continuous derivatives,

〈ξt, f〉 = 〈ξ0, f〉+

∫ t

0

〈ξs, ∂af + b̂− d̂〉ds, (3)

with initial condition ξ0(da) = ξ̃0(X , da), and where

b̂(a) =

∫
X
b(x, a)g(x, a)l(dx), d̂(a) =

∫
X
d(x, a)g(x, a)l(dx).

(ii) For each t > 0, the sequence of random measures (Z̃n
t (dx, da))n converges in

distribution in (MF (X × R+), w) to ξ̃t(dx, da) := g(x, a)ξt(da)l(dx).

Equation (3) states that the macroscopic behavior of the age pyramid evolves
as in a population with ages only, with birth and death rates given by b̂(a) and
d̂(a). The weak formulation of Equation (3) is indeed the classical transport-renewal
equation, known as McKendrick-Von Foerster,

(∂a + ∂t)ξt(a) = −d̂(a)ξt(a),

ξt(0) =

∫ ∞
0

ξt(a)b̂(a)da.

In this model derived in point (i), the transport component states that each gener-
ation is aging and its size is decreased by the number of deaths over time, whereas
the renewal component (initial condition in age) computes the number of newborns
at time t based on the whole population alive at time t. Moreover, point (ii) claims
first that the remaining time dependency only concerns the evolving age pyramid,
and second that at each time t and age a, the characteristics distribution is given
by g(x, a)l(dx). Note also that due to different time scales between birth and swap
events, the mutation kernel at birth does not appear in the macroscopic dynamics.
Let us emphasize that in the macroscopic model, the set of parameters is reduced:
the birth, death and swap rates are "replaced" by birth and death rates which do
not depend on characteristics anymore, driving the evolution of the age pyramid
over time.

Let us describe the analogy with the work of Méléard and Tran (2012) in the
following remark, which is used to establish our result.

Remark 4. In Méléard and Tran (2012), the scaling limit of birth-death measure-
valued processes is considered under some allometric component, that is additional
fast births and deaths with same rate. The asymetry between birth (add an individ-
ual with age 0) and death events (remove an individual with positive age) leads to a
major technical issue, and the problem can be tackled by assuming some fast aging
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phenomenon and extending averaging techniques by Kurtz (1992). In the limit, with
fast birth and death events, the age pyramid reaches an equilibrium at each time.
So, in the limit, the fast age component is stable and a Feller diffusion describes
the evolution of the population structure in terms of characteristics which evolve at
the slow time scale. The tools of Méléard and Tran (2012) are used in the proof of
Theorem 1. In our framework including additional swap patterns, the situation is
reversed: the aging component is at the slow time scale of the system, whereas char-
acteristics evolve at the fast time scale. Analogously, in the limit, the characteristics
structure is stable and a specific equation describes the evolution of the age pyramid.
In our case also, the particularity of the swap phenomenon, which can be seen as
special simultaneous birth and death events, leads to a limiting equation which is
deterministic.

A question which arises with point (ii) that sates a convergence for each fixed
time, refers to the possibility to get the convergence in distribution of the whole
sequence of processes. In fact, it is suggested in Méléard and Tran (2012) that the
sequence of processes can not be tight. The following result is a statement about
the non-tightness of the sequence of the measure-valued processes. This shows that
for reasonable parameters, it is not possible to improve the result of Theorem 1. We
state this results with characteristics only, and we make the following assumption:

Assumption 5. Let us work with age-independent demographic rates and kernels,
namely b(x, a) ≡ b(x), d(x, a) ≡ d(x), e(x, a) ≡ e(x), and ke(x, a, x′) ≡ ke(x, x

′).
We consider ∆ to be the euclidian distance on Rd and for a given set A ⊂ X , we
denote Å its interior for the induced topology on X . Let us assume that there exists
two measurable non-empty and disjoint subsets A and B in X such that
(i) ∆(A,B) = infx∈A,y∈B ∆(x, y) > 0,
(ii) 〈ξ0, e1Å〉 > 0, where 1Å is the indicator of the interior of A,
(iii) ke(A,B) =

∫
x∈A

∫
y∈B ke(x, y)m(dx)m(dy) > 0.

These assumptions are quite natural: to sum up, they state that there exists some
sub-population in the initial macroscopic population whose swap parameters allow
to "escape" from the current characteristics. The non-tightness result is derived
below.

Proposition 2. Under Assumptions 4 and 5, the measure-valued process Z̃n
. (dx, da)

is not tight in D([0, T ],MF (X × R+)).

Alexandre Boumezoued December 16, 2015
9/31



3 Proofs

3.1 Proof of Theorem 1

Semi-martingale decomposition. The semi-martingale decomposition and the
control of quadratic variations are key tools for limit theorems. In the following,
decompositions are performed by compensation of the Poisson Point Measure, which
give further insights on the behavior of the sequence of processes. In the following, we
denote C0,1

b (X×R+) the set of bounded functions, continuous on X and differentiable
on R+ with continuous and bounded partial derivative.

Lemma 1. a) For each f ∈ C0,1
b (X × R+), the semi-martingale decomposition of

the process 〈Z̃n
t , f〉 is given by

〈Z̃n
t , f〉 = 〈Z̃n

0 , f〉+

∫ t

0

〈Z̃n
s , ∂af +Hf,n〉ds+M f,n

t , (4)

where

Hf,n(x, a) = b(x, a)

∫
X
f(x′, 0)kb(x, a, x

′)l(dx′)− d(x, a)f(x, a)

+ n e(x, a)

∫
X

(f(x′, a)− f(x, a))ke(x, a, x
′)l(dx′)

(5)

and M f,n is the local martingale (starting at zero) corresponding to the compensated
Poisson point measure.

b) Let τk = inf{t : 〈Z̃n
t , 1〉 ≥ k}. Then M f,n

.∧τk is a square-integrable martingale
with quadratic variation

〈M f,n〉t∧τk =
1

n

∫ t∧τk

0

ds

∫
X
Z̃n
s (dx, da)

{
b(x, a)

∫
X
f(x′, 0)2kb(x, a, x

′)l(dx′)

+ d(x, a)f(x, a)2 + n e(x, a)

∫
X

(f(x′, a)− f(x, a))2ke(x, a, x
′)l(dx′)

}
.

(6)

Proof of Lemma 1 The result is obtained by applying Equation (1) to a function
f ∈ C0,1

b (X × R+). After integration by parts, the Poisson point measure Q can
be compensated to get a local martingale, and the bracket can be computed. See
Bensusan et al. (2010–2015) and Tran (2008) for more details. �

As stated in Proposition 2, which is proved at the end of this section, the se-
quence of measure-valued processes Z̃n

. (dx, da) is not tight. This is in fact suggested
by the term of order n in Equation (5). The remaining results we hope are
(i) the convergence for fixed t of the sequence Z̃n

t (dx, da),
(ii) the convergence of the sequence of age pyramid processes Z̄n

. (da).
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3.1 Proof of Theorem 1

We now forget characteristics and focus on the age pyramid. By Lemma 1, the
sequence of age pyramid processes verify for each bounded and differentiable h(a),

〈Z̄n
t , h〉 = 〈Z̄n

0 , h〉+

∫ t

0

〈Z̄n
s , ∂ah+ h(0)b− h d〉ds+Mh,n

t , (7)

where Mh,n
.∧τk is a square-integrable martingale with quadratic variation

〈Mh,n〉t∧τk =
1

n

∫ t∧τk

0

〈Z̄n
s , h(0)2b+ h2 d〉ds. (8)

Heuristically, the behavior of the quadratic variation in (8) is of order 1
n
, suggesting

that the noise will vanish in the limit. Let us also remark the link, although not so
obvious, between Equation (7) setting the noise to be zero, and the limit Equation
(3) we want to derive.

Proof of Theorem 1. The proof is divided in seven steps. We follow the reason-
ing of Méléard and Tran (2012).

(i) Let us show that under Assumptions 1 and 2,

sup
n

E
[
sup
t≤T
〈Z̃n

t , 1〉
]
< +∞.

Recall that τk = inf{t : 〈Z̃n
t , 1〉 ≥ k}. Equation (1) implies that

〈Z̃n
t∧τk , 1〉 ≤ 〈Z̃

n
0 ,1〉+

1

n

∫ t

0

∫
N∗

∫
X

∫
R+

1i≤sup0≤u≤s∧τk
〈Zns−,1〉10≤θ<m1(Zns−,i,x

′)Q(ds, di, dx′, dθ).

Take the supremum, then expectation and isometry formula, and finally use As-
sumption 1 to get

E
[

sup
0≤u≤t

〈Z̃n
t∧τk , 1〉

]
≤ E

[
〈Z̃n

0 ,1〉
]

+ b̄E
[∫ t

0

sup
0≤u≤s∧τk

〈Z̃n
s−,1〉ds

]
.

Fubini’s theorem and Grönwall’s lemma thus leads to

E
[

sup
0≤u≤t

〈Z̃n
t∧τk , 1〉

]
≤ E

[
〈Z̃n

0 ,1〉
]

exp(b̄t).

Under Assumption 2, the right hand side is dominated by a constant which does
not depend on n, that is for each n, E

[
sup0≤u≤t 〈Z̃n

t∧τk , 1〉
]
≤ C exp(b̄t). This shows

that τk → +∞ a.s.. Then Fatou’s lemma leads to E
[
sup0≤u≤t 〈Z̃n

t , 1〉
]
≤ C exp(b̄t).

As the r.h.s. does not depend on n, we conclude that supn E
[
supt≤T 〈Z̃n

t , 1〉
]
< +∞.

A direct corollary is that the local martingale (M f,n
t ) with quadratic variation

given by (6) is a square integrable martingale. Indeed,

E
[
〈M f,n〉t∧τk

]
≤ ‖f‖2

∞
(
b̄+ d̄+ 4ē

)
t sup

n
E
[

sup
0≤s≤t

〈Z̃n
s , 1〉

]
< +∞.

Alexandre Boumezoued December 16, 2015
11/31



3.1 Proof of Theorem 1

The last term being independent of k we get E
[
〈M f,n〉t

]
< +∞ by Fatou’s lemma,

using that limk→+∞ τk = +∞.

A second corollary is that for fixed t the family of random variables (M f,n
t )n is

uniformly integrable. Indeed, the previous inequality leads to

sup
n

E
[
(M f,n

t )2
]

= sup
n

E
[
〈M f,n〉t

]
≤ ‖f‖2

∞
(
b̄+ d̄+ 4ē

)
t sup

n
E
[

sup
0≤s≤t

〈Z̃n
s , 1〉

]
< +∞.

(ii) We want to show that the sequence of age pyramid processes Z̄n(da) =∫
X Z̃

n(dx, da) is tight in D ([0, T ],MF (R+)) whereMF (R+) is embedded with the
topology of vague convergence. The extension to weak convergence is carried out in
step (iii) .

According to Roelly-Coppoletta (1986) (Theorem 2.1), it is sufficient to prove
that for each f ∈ Θ ∪ {1}, 〈Z̃n, f〉 is tight in D([0, T ],R) where Θ is a dense
subset of the space C0(R+,R), the space of continuous maps vanishing at infinity,
for the topology of uniform convergence. By Tran (2006), Appendix A.2, the set
Θ = C0(R+,R) ∩ C1

b (R+,R) is dense in C0(R+,R).
Let us show that for f ∈ C0(R+,R) ∩ C1

b (R+,R), the sequence of R-valued
processes

(
〈Z̄n, f〉

)
n∈N∗ is tight in D([0, T ],R). To do this, we use Aldous-Rebolledo

criterion (see Aldous (1978) and Joffe and Métivier (1986)):
since 〈Z̄n

. , f〉 = V n,f
. +Mn,f

. is a semi-martingale (with decomposition given in (7)),
it sufficient to prove that

1. ∀t ∈ [0, T ],
(
〈Mn,f〉t

)
n∈N∗ and

(
V n,f
t

)
n∈N∗

are uniformly tight in R,

2. ∀ε > 0,∀η > 0,∃δ > 0, ∃n0 ∈ N∗ such that for any sequence of stopping times
(Sk)k∈N∗ and (Tk)k∈N∗ verifying a.s. ∀k ∈ N∗, Sk ≤ Tk ≤ T ,

sup
n≥n0

P
(∣∣〈Mn,f〉Tk − 〈M

n,f〉Sk
∣∣ ≥ η, Tk < Sk + δ

)
≤ ε,

sup
n≥n0

P
(∣∣∣V n,f

Tk
− V n,f

Sk

∣∣∣ ≥ η, Tk < Sk + δ
)
≤ ε.

(9)

To prove the first point, it is sufficient to show that

sup
n∈N∗

E
[

sup
0≤t≤T

〈Mn,f〉t
]
< +∞ and sup

n∈N∗
E
[

sup
0≤t≤T

∣∣∣ V n,f
t

∣∣∣] < +∞.

According to (8) and step (i),

sup
n∈N∗

E
[

sup
0≤t≤T

〈Mn,f〉t
]
≤ sup

n∈N∗
E
[

sup
0≤t≤T

〈Z̃n
t , 1〉

]
T (b̄+ d̄) ‖f‖2

∞ < +∞,

and from (7),

sup
n∈N∗

E
[

sup
0≤t≤T

∣∣∣ V n,f
t

∣∣∣] ≤ ‖f‖∞ sup
n∈N∗

E
[
〈Z̃n

0 , 1〉
]

+ sup
n∈N∗

E
[

sup
0≤t≤T

〈Z̃n, 1〉t
]
T
(
(b̄+ d̄) ‖f‖∞ + ‖f ′‖∞

)
< +∞.
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3.1 Proof of Theorem 1

To prove the second point (Equation (9)), let ε > 0, η > 0 and ∀k ∈ N∗, Sk(ω) ≤
Tk(ω) ≤ T stopping times such that a.s. Sk ≤ Tk ≤ Sk + δ. For all n0 ∈ N∗,

sup
n≥n0

P
(∣∣〈Mn,f〉Tk − 〈M

n,f〉Sk
∣∣ ≥ η

)
≤ 1

η
sup
n≥n0

E
[∣∣〈Mn,f〉Tk − 〈M

n,f〉Sk
∣∣]

≤ δ

η
‖f‖2

∞ (b̄+ d̄) sup
n∈N∗

E
[

sup
0≤t≤T

〈Z̃n
t , 1〉

]
< +∞.

Thus one can choose δ > 0 such that

sup
n≥n0

P
(∣∣〈Mn,f〉Tk − 〈M

n,f〉Sk
∣∣ ≥ η

)
≤ ε.

This shows that the sequence of processes 〈Z̃n, f〉 is tight in D([0, T ],R). Note that
by the same reasoning, one can also show the tightness of 〈Z̃n,1〉. This concludes
the proof of step (ii).

(iii) Let us now prove the tightness of (Z̄n(da))n in D ([0, T ],MF (R+)) where
MF ≡ MF (R+) is embedded with the topology of weak convergence. To do this,
we use the following criterion (see Méléard and Roelly (1993)). In the following, we
denote ⇒ the convergence in distribution of a sequence of processes.

Theorem 2. Let (Zn) be a sequence of processes in D ([0, T ], (MF , w)) and ξ a pro-
cess in the space C ([0, T ], (MF , w)). Then the following statements are equivalent:

• Zn ⇒ ξ in D ([0, T ], (MF , w)),

• Zn ⇒ ξ in D ([0, T ], (MF , v)) and 〈Zn,1〉 ⇒ 〈ξ,1〉 in D ([0, T ],R).

Recall that the tightness of (〈Z̄n,1〉) in D ([0, T ],R) has been derived in the
previous step. Now, since (Z̄n(da)) is tight in D ([0, T ], (MF , v)) and (〈Z̄n,1〉) is
tight in D ([0, T ],R), then one can choose a subsequence φ(n) such that

Z̄φ(n) ⇒ ξφ in D ([0, T ], (MF , v)) and 〈Z̄φ(n),1〉 ⇒ Y in D ([0, T ],R) ,

where (ξφt )t∈[0,T ] is some process in D ([0, T ], (MF , v)) and (Yt)t∈[0,T ] is some càdlàg
real valued process. The aim now is to show that
a) Y = 〈ξφ,1〉, and
b) ξφ ∈ C ([0, T ], (MF , w)),
which will prove the convergence of (Z̄φ(n)(da)) in D ([0, T ], (MF , w)), with the help
of the criterion in Theorem 2. This will show, by definition, that the sequence
(Z̄n(da)) is tight in D ([0, T ], (MF , w)).

Alexandre Boumezoued December 16, 2015
13/31



3.1 Proof of Theorem 1

a) Let us first prove that 〈Z̄φ(n),1〉 ⇒ 〈ξφ,1〉 in D ([0, T ],R).
Let F Lipschitiz continuous and bounded function from D([0, T ],R) to R. Let

us show that
lim sup
n→+∞

∣∣∣E [F (〈Z̃φ(n),1〉)− F (〈ξφ,1〉)
]∣∣∣ = 0.

To do this, we use the ideas of Jourdain et al. (2012) also used in Méléard and Tran
(2012), in particular the following Lemma (see Lemma 4.3 in Jourdain et al. (2012)).
The proof is postponed at the end of this section.

Lemma 2. Introduce the functions fk(a) := Ψ(0∨ (|a|− (k−1))∧1), where Ψ(y) =

6y5 − 15y4 + 10y3, which are continuous approximations of the indicator function
1a≥k. Then under Assumptions of Theorem 1,

lim
k→+∞

lim sup
n→+∞

E

[
sup
t∈[0,T ]

〈Z̃φ(n), fk〉

]
= 0,

and

lim
k→+∞

E

[
sup
t∈[0,T ]

〈ξφt , fk〉

]
= 0.

Now, let us introduce the terms F (〈Z̃φ(n),1−fk〉) and F (〈ξφ,1−fk〉) to dominate
by

lim sup
n→+∞

∣∣∣E [F (〈Z̃φ(n),1〉)− F (〈ξφ,1〉)
]∣∣∣

≤ lim sup
k→+∞

lim sup
n→+∞

∣∣∣E [F (〈Z̃φ(n),1〉)− F (〈Z̃φ(n),1− fk〉)
]∣∣∣

+ lim sup
k→+∞

lim sup
n→+∞

∣∣∣E [F (〈Z̃φ(n),1− fk〉)− F (〈ξφ,1− fk〉)
]∣∣∣

+ lim sup
k→+∞

∣∣E [F (〈ξφ,1− fk〉)− F (〈ξφ,1〉)
]∣∣ .

For the second term, since Z̄φ(n) ⇒ ξφ in D ([0, T ], (MF , v)) and (1−fk) ∈ CK(R+),
the continuous mapping theorem (see e.g. Billingsley (2009)) implies that the second
term is zero. Also, by the Lipschitz property,

|F (〈ν,1− fk〉)− F (〈ν,1〉)| ≤ [F ]lip sup
t ∈[0,T ]

〈νt, fk〉,

so according to Lemma 2, the first term and third terms are equal to zero.

b) Let us now prove that ξφ ∈ C ([0, T ], (MF , v)) (vague topology).
Since Z̄φ(n) ⇒ ξ in D ([0, T ], (MF , v)) and for each f ∈ CK(R+), the map
ν ∈ D([0, T ], (MF (R+), v)) 7→ supt∈[0,T ] |〈νt, f〉 − 〈νt−, f〉| is continuous, the contin-
uous mapping theorem implies that

sup
t∈[0,T ]

∣∣∣〈Z̄φ(n)
t , f〉 − 〈Z̄φ(n)

t− , f〉
∣∣∣⇒ sup

t∈[0,T ]

∣∣∣〈ξφt , f〉 − 〈ξφt−, f〉∣∣∣ .
Alexandre Boumezoued December 16, 2015

14/31



3.1 Proof of Theorem 1

Moreover, by construction if there is a jump the quantity 〈Z̄φ(n)
t , f〉 increases at most

by the amount ‖f‖∞
Φ(n)

, which turns out that supt∈[0,T ]

∣∣∣〈Z̄φ(n)
t , f〉 − 〈Z̄φ(n)

t− , f〉
∣∣∣ ≤ ‖f‖∞

Φ(n)
,

and in particular supt∈[0,T ]

∣∣∣〈Z̄φ(n)
t , f〉 − 〈Z̄φ(n)

t− , f〉
∣∣∣ ⇒ 0. This shows that for each

f ∈ CK(R+), a.s. supt∈[0,T ]

∣∣∣〈ξφt , f〉 − 〈ξφt−, f〉∣∣∣ = 0 thus ξφ ∈ C ([0, T ], (MF , v)).
Now, we prove that ξφ ∈ C ([0, T ], (MF , w)) (weak topology). Let h ∈ Cb(R+)

and the (fk) as in Lemma 2. Then

E

[
sup
t∈[0,T ]

∣∣∣〈ξφt , h〉 − 〈ξφt−, h〉∣∣∣
]
≤ ‖h‖∞ E

[
sup
t∈[0,T ]

∣∣∣〈ξφt , fk〉∣∣∣
]

+ E

[
sup
t∈[0,T ]

∣∣∣〈ξφt , h(1− fk)〉 − 〈ξφt−, h(1− fk)〉
∣∣∣]

+ ‖h‖∞ E

[
sup
t∈[0,T ]

∣∣∣〈ξφt−, fk〉∣∣∣
]
.

Since ξφ ∈ C ([0, T ], (MF , v)) (vague topology) and h(1−fk) ∈ CK(R+), the second
term is zero. In addition, by the use of Lemma 2, the first and third terms are zero
by letting k → +∞.

(iv) Let us prove that for each t > 0, the sequence of measures (Z̃n
t (dx, da))n is

uniformly tight inMF (X × R+).
To show the tightness of a sequence of measures, we use the following result (see

Kurtz (1992), Lemma 1.1):

Lemma 3. Let (µn) be a sequence of random variables with values in (MF (S), w),
with (S, d) a complete separable metric space. Then (µn) is relatively compact in
(MF (S), w) if and only if the sequence (µn(S)) is relatively compact in R and for
each ε > 0 there exists a compact set K ⊂ S such that supn P (µn(Kc) > ε) < ε.

First note that Z̃n
t (X × R+) = 〈Z̃n

t ,1〉. Let ε > 0, then for k large enough,

sup
n≥1

P(〈Z̃n
t ,1〉 /∈ [0, k]) ≤ 1

k
sup
n≥1

E[〈Z̃n
t ,1〉] ≤ ε,

so that the first condition is matched. For the second condition, let A>0 and consider
the compact set K := X × [0, A]. Obviously, Z̃n

t (Kc) = 0 since all characteristics lie
in X : this proves that the second condition is satisfied.

The tightness of the sequence of the age pyramid processes and the time marginal
of the population process has been established. To prove the convergence in dis-
tribution, it is needed to identify the limiting values. In our framework, this issue
is technical due to the fast swap pattern: it is not possible to keep track of the
characteristics in the population over time. The issue has an analogy with that in

Alexandre Boumezoued December 16, 2015
15/31



3.1 Proof of Theorem 1

Méléard and Tran (2012) and Gupta et al. (2014) in which fast aging is consid-
ered (see Remark 4). The main technical tool they use for the proof is an exten-
sion of averaging techniques by Kurtz (1992). This is used in the following step:
the idea is to identify the limiting values of the sequence of occupation measures
(Γn(dx, da, dt))n := (Z̃n

t (dx, da)dt)n.

(v) To show that the sequence of measures (Γn(dx, da, dt))n is tight in
(MF (X × R+ × [0, T ]), w), we use the same result as for the previous step. As
previously, the second condition is straightforward with K̃ := X × [0, A]× [0, T ]. As
for the first condition, we have

sup
n

P(Γn(X×R+×[0, T ]) /∈ [0, k]) = sup
n

P
(∫ T

0

〈Z̃n
t ,1〉dt > k

)
≤ T

k
sup
n

E
[

sup
0≤t≤T

〈Z̃n
t ,1〉

]
,

which can be made smaller than ε for k large enough.

Now, from (iv)and (v), the sequence (Γn, Z̄n
. (da))n is tight. Due to Prohorov the-

orem, from any subsequence, one can extract a further sub-subsequence converging
in distribution. Denote (ΓΦ(n), Z̄Φ(n)

. (da)) such sub-subsequence and (Γ̄Φ, X̄Φ
. (da))

the corresponding limit (the first component being a measure and the second com-
ponent a measure-valued process). The last two steps of the proof are dedicated
to the characterization of this limit. If it is unique (i.e. does not depend on Φ),
we get the convergence in distribution (see Billingsley (2009), Theorem 2.6). Step
(vi) focuses on the marginal in characteristics of Γ̄Φ, whereas Step (vii) concentrates
on the age and time marginal.

(vi) By definition of ΓΦ(n), for each continuous and bounded f(a, s),∫ t

0

∫
R+

∫
X
f(a, s)ΓΦ(n)(dx, da, ds) =

∫ t

0

∫
R+

f(a, s)Z̄Φ(n)
s (da)ds.

Since Γ 7→
∫ t

0

∫
R+

∫
X f(a, s)Γ(dx, da, ds) and Z 7→

∫ t
0

∫
R+
f(a, s)Zs(da)ds are both

continuous, the continuous mapping theorem implies that X̄Φ
s (da)ds is necessarily

the marginal measure of Γ̄Φ on R+ × [0, T ] up to a null-measure set.
By Kurtz (1992), Lemma 1.4, there exists a predictable probability-valued pro-

cess γΦ
a,s(dx) such that a.s., dt− ae, Γ̄Φ(dx, da, ds) = γΦ

a,s(dx)X̄Φ
s (da)ds.

Now, the aim is to characterize γΦ
a,s(dx). From (4), ( 1

Φ(n)
M

f,Φ(n)
t )t is a martingale,

converging in distribution to (continuous mapping theorem for (ΓΦ(n))n)

M̄Φ
t :=

∫ t

0

∫
R+

∫
x∈X

e(x, a)

(∫
X

(f(x′, a)− f(x, a))ke(x, a, x
′)l(dx′)

)
γΦ
a,s(dx)X̄Φ

s (da)ds.
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For a given t > 0 the family
(

1
n
M f,n

t

)
n
is uniformly integrable since from (i),

sup
n

E
[
(M f,n

t )2
]

= sup
n

E
[
〈M f,n〉t

]
≤ ‖f‖2

∞
(
b̄+ d̄+ 4ē

)
t sup

n
E
[

sup
0≤s≤t

〈Z̃n
s , 1〉

]
< +∞.

This implies that M̄Φ is a martingale. But it is by construction a finite-variation
process which is also continuous so it is the null process (up to indistinguishability).
We get a.s., XΦ

s (da)− a.e. and dt− a.e.,∫
x∈X

f(x, a)e(x, a)γΦ
a,s(dx) =

∫
x′∈X

f(x′, a)

(∫
x∈X

e(x, a)ke(x, a, x
′)γΦ

a,s(dx)

)
l(dx′).

This shows that (a.s., XΦ
s (da)−a.e. and dt−a.e.) γΦ

a,s is absolutely continuous w.r.t.
l, γΦ

a,s(dx) = γΦ
a,s(x)l(dx), with

γΦ
a,s(x)e(x, a) =

∫
y∈X

e(y, a)ke(y, a, x)γΦ
a,s(y)l(dy),

and in addition γΦ
s is a probability measure. Then under Assumption 3, we get

γΦ
a,s(x) = g(x, a). We just characterized that all limiting values of ΓΦ(n) are of the

form Γ̄Φ(dx, da, ds) = g(x, a)l(dx)X̄Φ
s (da)ds. In the last step, we identify X̄Φ as the

solution to a deterministic equation.

(vii) We want to show that a.s. for each t and f ∈ C1
b (R+),

〈X̄Φ
t , f〉 = 〈ξ0, f〉+

∫ t

0

〈X̄Φ
s , ∂af + b̂− d̂〉ds,

where b̂(a) =
∫
X b(x, a)g(x, a)l(dx) and d̂(a) =

∫
X d(x, a)g(x, a)l(dx). Let

H̄Φ
t = 〈X̄Φ

t , f〉t − 〈ξ0, f〉 −
∫ t

0
〈X̄Φ

s , ∂af + b̂− d̂〉ds. To prove that E
[∣∣H̄Φ

t

∣∣] = 0, we
use the following three facts:
a) From Equation (7), one has M f,Φ(n)

t ⇒ H̄Φ
t , using that ΓΦ(n) ⇒ Γ̄Φ, Assumption

4 and the continuous mapping theorem.
b) One can also write

E
[∣∣∣M f,Φ(n)

t

∣∣∣]2

≤ E
[(
M

f,Φ(n)
t

)2
]

= E
[
〈M f,Φ(n)〉t

]
≤ 1

Φ(n)
t ‖f‖2

∞ (b̄+ d̄) sup
n≥1

E
[

sup
0≤s≤t

〈Z̃n
s ,1〉

]
,

which shows that limn→+∞ E
[∣∣∣M f,Φ(n)

t

∣∣∣] = 0 since Φ(n)→ +∞.

c) From the second corollary of (i), for fixed t, the sequence (M
f,Φ(n)
t )n is uniformly

integrable.
From these facts we get E

[∣∣H̄Φ
t

∣∣] = limn→+∞ E
[∣∣∣M f,Φ(n)

t

∣∣∣] = 0.
Using Grönwall lemma, one can prove the uniqueness for Equation (3). This con-
cludes the proof.
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Proof of Lemma 2. The proof is similar to Jourdain et al. (2012), exposed in
order to illustrate that here only the moments of order 1 + α of Assumption 2 are
needed (order 1 suffices elsewhere in the proof of Theorem 1). Note that since fk /∈
CK(R+), it is not possible to use the fact that (Z̄Φ(n)(da)) converges in distribution
in D ([0, T ], (MF , v)). We rather use Equation (7) with h ≡ fk for k ≥ 1 leads to
(since fk(0) = 0),

〈Z̄Φ(n)
t , fk〉 = 〈Z̄Φ(n)

0 , fk〉+

∫ t

0

〈Z̄Φ(n)
s , ∂afk − fk d〉ds+M

fk,Φ(n)
t . (10)

Dominate by omitting the death term, take the supremum, then expectation and
finally use Doob inequality to get

E

[
sup
t∈[0,T ]

〈Z̄Φ(n)
t , fk〉

]
≤ E

[
〈Z̄Φ(n)

0 , fk〉
]
+2
(
E
[
〈M fk,Φ(n)〉T

])1/2
+

∫ T

0

E
[
〈Z̄Φ(n)

s , ∂afk〉
]

ds.

The limits of the three terms are studied separately.
(i) Since Z̃φ(n)

0 ⇒ ξ0 in (MF (X × R+), w) and fk ∈ Cb(X × R+), then
〈Z̄Φ(n)

0 , fk〉 ⇒ 〈ξ0, fk〉. We also have fk ≤ 1 and under Assumption 2,
supn E

[(
〈Z̄n

0 ,1〉
)1+α

]
< +∞ so the sequence is uniformly integrable. We thus get

limn→+∞ E
[
〈Z̄Φ(n)

0 , fk〉
]

= 〈ξ0, fk〉. Finally, since ξ0 ∈MF (X × R+), that is
〈ξ0,1〉 < +∞, we get limk→+∞ 〈ξ0, fk〉 = 0, then

lim
k→+∞

lim sup
n→+∞

E
[
〈Z̄Φ(n)

0 , fk〉
]

= 0.

(ii) From (8), since fk(0) = 0,

E
[
〈M fk,Φ(n)〉T

]
=

1

Φ(n)

∫ t

0

〈Z̃Φ(n)
s , f 2

k d〉ds ≤
d̄T

Φ(n)
sup
n≥1

E

[
sup
t∈[0,T ]

〈Z̃n
s ,1〉

]
,

which shows that limk→+∞ lim supn→+∞ E
[
〈M fk,Φ(n)〉T

]
= 0.

(iii) Note that

∂afk = 1k−1≤a≤kΨ
′(a− (k − 1)) ≤ 1k−1≤a≤k sup

y∈[0,1]

Ψ′(y) ≤ 1k−1≤a sup
y∈[0,1]

Ψ′(y).

Since 1k−1≤a ≤ fk−1(a), this shows that ∂afk(a) ≤ fk−1(a) supy∈[0,1] Ψ′(y). To show

that limk→+∞ lim supn→+∞
∫ T

0
E
[
〈Z̄Φ(n)

s , ∂afk〉
]

ds = 0, it is thus sufficient to prove

that for t ∈ [0, T ], limk→+∞ lim supn→+∞ E
[
〈Z̄Φ(n)

t , fk〉
]

= 0. From (10), for each
k ≥ 1, with C := supy∈[0,1] Ψ′(y),

E
[
〈Z̄Φ(n)

t , fk〉
]
≤ E

[
〈Z̄Φ(n)

0 , fk〉
]

+ C

∫ t

0

E
[
〈Z̄Φ(n)

s , fk−1〉
]

ds, (11)

and for k = 0, f0 ≡ 1 then

E
[
〈Z̄Φ(n)

t , f0〉
]
≤ E

[
〈Z̄Φ(n)

0 , f0〉
]

+ b̄

∫ t

0

E
[
〈Z̄Φ(n)

s , f0〉
]

ds,
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3.2 Proof of Proposition 2

so Grönwall’s lemma leads to

E
[
〈Z̄Φ(n)

t , f0〉
]
≤ E

[
〈Z̄Φ(n)

0 , f0〉
]

exp(b̄t). (12)

From (11) and (12) we get

E
[
〈Z̄Φ(n)

t , fk〉
]
≤

k−1∑
j=0

Cjtj

j!
E
[
〈Z̄Φ(n)

0 , fk−j〉
]

+
Cktk

k!
exp(b̄t)E

[
〈Z̄Φ(n)

0 ,1〉
]
.

Under Assumption 2, we have Cktk

k!
exp(b̄t)E

[
〈Z̄Φ(n)

0 ,1〉
]
≤ Cktk

k!
exp(b̄t) supn E

[
〈Z̄n

0 ,1〉
]
,

which tends to zero as k → +∞. As for the first term, this can be split into

k−1∑
j=0

Cjtj

j!
E
[
〈Z̄Φ(n)

0 , fk−j〉
]

=

[k/2]∑
j=0

Cjtj

j!
E
[
〈Z̄Φ(n)

0 , fk−j〉
]

+
k−1∑

j=[k/2]+1

Cjtj

j!
E
[
〈Z̄Φ(n)

0 , fk−j〉
]

≤ exp(Ct)E
[
〈Z̄Φ(n)

0 , fk−[k/2]〉
]

+ E
[
〈Z̄Φ(n)

0 ,1〉
] k−1∑
j=[k/2]+1

Cjtj

j!
.

Since [k/2] ≤ k − [k/2] then fk−[k/2] ≤ f[k/2]. As in (i), by the convergence in
distribution and uniform integrability (Assumption 2), one gets
limk→+∞ lim supn→+∞ E

[
〈Z̄Φ(n)

0 , f[k/2]〉
]

= 0. As for the second term, this converges
to zero since the first component is bounded (Assumption 2) and the sum converges
to zero. �

3.2 Proof of Proposition 2

Let us recall below the assumptions and the corresponding result about the non-
tightness of the sequence of population processes.

Assumption 5 Let us work with age-independent demographic rates and kernels,
namely b(x, a) ≡ b(x), d(x, a) ≡ d(x), e(x, a) ≡ e(x), and ke(x, a, x′) ≡ ke(x, x

′).
We consider ∆ to be the euclidian distance on Rd and for a given set A ⊂ X , we
denote Å its interior for the induced topology on X . Let us assume that there exists
two measurable non-empty and disjoint subsets A and B in X such that
(i) ∆(A,B) = infx∈A,y∈B ∆(x, y) > 0,
(ii) 〈ξ0, e1Å〉 > 0, where 1Å is the indicator of the interior of A,
(iii) ke(A,B) =

∫
x∈A

∫
y∈B ke(x, y)m(dx)m(dy) > 0.

Proposition 2Under Assumptions 4 and 5, the measure-valued process Z̃n
. (dx, da)

is not tight in D([0, T ],MF (X × R+)).
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3.2 Proof of Proposition 2

Proof of Proposition 2
Aim is to give here a proof which does not need the main result of Theorem 1. Let
us first construct a function f ∈ Cb(X ) such that

inf
x∈A,y∈B

|f(y)− f(x)| > 0.

To this aim, consider for example the map f : x 7→ ∆(x,A) with support in X\A,
that satisfies the previous equation according to point (i). It is moreover continuous
on the compact X so it is bounded. To prove that the sequence of measure-valued
processes (Z̃n

. (dx, da))n is not tight in D([0, T ],MF (X × R+)), it is sufficient to
prove that the process Xn

. := 〈Z̃n
. , f〉 is not tight in D([0, T ],R). Recall the follow-

ing equivalence derived from compactness characterization in the space of càdlàg
functions (see Billingsley (2009), Theorem 13.2):
The sequence (Xn

. )n is tight D([0, T ],R) if and only if
a) the sequence sup0≤s≤T |Xn

t | is tight in R and
b) (equicontinuity) ∀η > 0, limδ→0 lim supn→+∞ P (w′ (Xn, δ) > η) = 0, where
w′ (Xn, δ) = inf(ti)>δ supi sups,t∈[ti−1,ti[

|Xn
t −Xn

s | and inf(ti)>δ denotes the infimum
over all subdivisions of [0, T ] with step strictly greater that δ.

To prove the result, we show that the equicontinuity criterion is not satisfied,
that is we show that:

∃η > 0,∃ε > 0, ∀δ > 0, lim sup
n→+∞

P

(
inf

(ti)>δ
sup
i

sup
s,t∈[ti−1,ti[

|Xn
t −Xn

s | > η

)
> ε.

First remark that for each δ > 0 and η > 0,

P

(
inf

(ti)>δ
sup
i

sup
s,t∈[ti−1,ti[

|Xn
t −Xn

s | > η

)
≥ P

(
sup
t∈[0,δ]

∣∣Xn
t −Xn

t−
∣∣ > η

)
.

Second, denote τn the first time of jump of Zn
. . Conditionally on Zn

0 , τn is expo-
nentially distributed with parameter n〈Zn

0 , e〉+ 〈Zn
0 , b〉+ 〈Zn

0 , d〉. Then

P (τn ≤ δ | Zn
0 ) = 1− e−δ(n〈Zn0 ,e〉+〈Zn0 ,b〉+〈Zn0 ,d〉).

Let τne be the first time of swap for Zn
. . By independence between swap, birth and

death events, the probability that the first time of event is a swap is given by (with
convention 0

0
= 0)

P (τn = τne | Zn
0 ) =

n〈Zn
0 , e〉

n〈Zn
0 , e〉+ 〈Zn

0 , b〉+ 〈Zn
0 , d〉

,

and the clock lemma for independent exponentially distributed random variables
assesses independence, conditionally on Zn

0 , between the events {τn = τne } and
{τn ≤ δ}.
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3.2 Proof of Proposition 2

Let Y be the random variable "characteristics of the individual for which the event
occurs at time τn", and A and B as in Assumption 5. The probability that the
individual has characteristics in A conditionally on a swap event is

P (Y ∈ A | Zn
0 , τ

n = τne ) =
〈Zn

0 , e1A〉
〈Zn

0 , e〉
.

Denote Y ′ the new characteristics (at birth or swap). In case of a swap, the char-
acteristics Y are replaced by the new characteristics Y ′, drawn with distribution
ke(Y, .). Then

P (Y ′ ∈ B | Y ∈ A, τn = τne , Z
n
0 ) =

ke(A,B)

m(A)
.

Finally, remark that Y and Y ′ are independent of τn and let us take
η = 1

2
infx∈A,y∈B |f(y)− f(x)| which is positive by construction of f . Then

P

(
sup
t∈[0,δ]

∣∣Xn
t −Xn

t−
∣∣ > η

)
≥ P (|Xn

τn∧δ −Xn
0 | > η)

≥ P (τn ≤ δ, τn = τne , Y ∈ A, Y ′ ∈ B)

= E [P (τn ≤ δ | Zn
0 )P (τn = τne , Y

′ ∈ B, Y ∈ A | Zn
0 )]

= E [P (τn ≤ δ | Zn
0 )P (Y ′ ∈ B | τn = τne , Y ∈ A,Zn

0 )P (Y ∈ A | τn = τne , Z
n
0 )P (τn = τne | Zn

0 )]

=
ke(A,B)

m(A)
E
[(

1− e−δ(n〈Zn0 ,e〉+〈Zn0 ,b〉+〈Zn0 ,d〉)
) 〈Zn

0 , e1A〉
〈Zn

0 , e〉
n〈Zn

0 , e〉
n〈Zn

0 , e〉+ 〈Zn
0 , b〉+ 〈Zn

0 , d〉

]
where the last two equalities are due to recursive conditioning and the use of the
previous computations respectively. Now, let us construct hA ∈ Cb(X ) such that
hA ≤ 1A and 〈ξ0, ehA〉 > 0. Let us define

hA : x 7→ ∆(x,X\A)

supy∈A ∆(y,X\A)
,

which is continuous on X and positive on Å; according to point (ii) in Assumption
5, we get 〈ξ0, ehA〉 > 0. Since 〈ξ0, ehA〉 ≤ 〈ξ0, e1A〉, we have

P

(
sup
t∈[0,δ]

∣∣Xn
t −Xn

t−
∣∣ > η

)

≥ ke(A,B)

m(A)
E
[(

1− e−δ(n〈Zn0 ,e〉+〈Zn0 ,b〉+〈Zn0 ,d〉)
) n〈Zn

0 , ehA〉
n〈Zn

0 , e〉+ 〈Zn
0 , b〉+ 〈Zn

0 , d〉

]
≥ ke(A,B)

m(A)
E
[

nδ〈Zn
0 , ehA〉

1 + δ (n〈Zn
0 , e〉+ 〈Zn

0 , b〉+ 〈Zn
0 , d〉)

]
where the last inequality comes from the fact that 1 − exp(−x) ≥ x

1+x
. Renormal-

ization by δn2 leads to the final inequality

P

(
sup
t∈[0,δ]

∣∣Xn
t −Xn

t−
∣∣ > η

)
≥ ke(A,B)

m(A)
E

[
〈Z̃n

0 , ehA〉
1/(δn2) + 〈Z̃n

0 , e〉+ 〈Z̃n
0 , b〉/n+ 〈Z̃n

0 , d〉/n

]
.
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Under Assumption 4, one has that
(
〈Z̃n

0 , ehA〉, 〈Z̃n
0 , e〉, 〈Z̃n

0 , d〉, 〈Z̃n
0 , b〉

)
converges to

the deterministic limit (〈ξ0, ehA〉, 〈ξ0, e〉, 〈ξ0, d〉, 〈ξ0, b〉) in probability thus one can
get the a.s. convergence for a subsequence φ(n).
Moreover, since 〈Z̃n0 ,ehA〉

1/(δn2)+〈Z̃n0 ,e〉+〈Z̃n0 ,b〉/n+〈Z̃n0 ,d〉/n
≤ 1, the dominated convergence the-

orem leads to

lim sup
n→+∞

P

(
sup
t∈[0,δ]

∣∣Xn
t −Xn

t−
∣∣ > η

)

≥ ke(A,B)

m(A)
lim

n→+∞
E

[
〈Z̃φ(n)

0 , ehA〉
1/(δφ(n)2) + 〈Z̃φ(n)

0 , e〉+ 〈Z̃φ(n)
0 , b〉/φ(n) + 〈Z̃φ(n)

0 , d〉/φ(n)

]

=
ke(A,B)

m(A)

〈ξ0, ehA〉
〈ξ0, e〉

.

The choice ε = 1
2
ke(A,B)
m(A)

〈ξ0,ehA〉
〈ξ0,e〉 , which is positive by Assumption 5 (iii), concludes

the proof. �

4 Examples and numerical illustration

4.1 Examples

We propose here to compute explicit solutions to Equation (2) for the stable com-
position. We analyze two examples: the two-dimensional mixture and the swap to
the nearest neighbor. We omit here the dependence in age for clarity.

Mixture kernel. We want to derive explicit solutions to (2) in the case where
ke(y, x) is a two dimensional mixture, that is ke(y, x) = b1(y)f1(x) + b2(y)f2(x)

where b1 and b2 are continuous functions from X to (0, 1) such that b1 + b2 ≡ 1,
and f1 and f2 are probability densities on X . In this model, new characteristics are
chosen based on two probability densities which are the same for all individuals but
weights depend on the old characteristics of the individual. This is a particular case
of a separable kernel with n = 2, and we illustrate the methodology described in
Zemyan (2012) for the computations. We first derive the characteristic polynomial
in λ ∈ R of the matrix

A =

(∫
b1f1

∫
b1f2∫

b2f1

∫
b2f2

)
=

(
d1 1− d2

1− d1 d2

)
,

where d1 =
∫
b1f1 and d2 =

∫
b2f2. Then

P (λ) := |I − λA| = 1− λd2 − λd1 − λ2 + λ2d2 + λ2d1,

= (1− λ)(1 + λ− λd2 − λd1).
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4.2 Numerical illustration

Since P (1) = 0, there exists non-trivial solutions to (I − A)c = 0. Let Q(λ) =

P (λ)/(1 − λ). Then Q(1) = 2 − d1 − d2 > 0 since d1 =
∫
f1b1 <

∫
f1 = 1 (we

assumed that b1, b2 : X → (0, 1)). We deduct that the space of all solutions is of
dimension p = 1. Solutions of (I − A)c = 0 are of the form c = β(1 − d2, 1 − d1)T ,
β ∈ R. So that solution g to (2) is

g(x) =
1

βe(x)
((1− d2)f1(x) + (1− d1)f2(x)) , (13)

where β = (1− d2)
∫
X
f1(x)
e(x)

m(dx) + (1− d1)
∫
X
f2(x)
e(x)

m(dx).

Swap to the nearest neighbor. We consider n classes, X = {x1, ..., xn}. If
a swap occurs for individual i with characteristic xi ∈ {2, ..., n − 1}, we suppose
that its new one is uniformly chosen between xi−1 and xi+1, that is ke(xi, x′)l(dx′) =
1
2
δxi−1

(dx′)+ 1
2
δxi+1

(dx′). If the characteristics are xi = x1 or xi = xn, the neighbor is
chosen with probability one, that is ke(x1, x

′)l(dx′) = δx2(dx
′) and ke(xn, x′)l(dx′) =

δxn−1(dx
′). The discrete formulation of Equation (2) is given by

∀i ∈ {1, ..., n}, e(xi)g(xi) =
∑
j 6=i

g(xj)e(xj)ke(xj, xi).

Define the matrix A by Ai,j = e(xj)ke(xj, xi)1i 6=j − e(xi)1i=j. We then want to find
the eigenvectors for A associated with eigenvalue 0. Since characteristics changes can
only lead to neighbor characteristics, the matrix A is tridiagonal. Remark also that
upper and lower diagonals of A have same sign, which shows that it is diagonalizable.
Let us write A = PDP−1 the canonic decomposition with D diagonal. It is then
straightforward to show that 0 is an eigenvalue for A (with multiplicity 1) and that an
eigenvector Y is given by Y1 =

∏
i 6=1 e(xi), Yn =

∏
i 6=n e(xi) and if k ∈ {2, ..., n− 1},

Yk = 2
∏

i 6=k e(xi). So the solution g is given by

g(xi) =
Yi∑

1≤k≤n Yk
. (14)

4.2 Numerical illustration

Numerical examples will be performed under the proportional hazard framework:
d(x, a) := α(x)d̄(a) and b(x, a) := β(x)b̄(a), with d̄(a) and b̄(a) some reference death
and birth rate. In the macroscopic model, the death rate is

d̂(a) =

∫
X
d(x, a)g(x, a)m(dx) = α̂(a)d̄(a),

where α̂(a) :=
∫
X α(x)g(x, a)m(dx). In the same way, b̂(a) = β̂(a)b̄(a). It is in-

teresting to note that in the general general framework where the invariant swap
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4.2 Numerical illustration

pattern is age-dependent, the equivalent model is not proportional hazard with an
age-independent factor anymore.

For the reference death rate, we choose a stylized Gompertz form d̄(a) = A1e
B1a,

and a stylized birth rate b̄(a) = A2e
−B2(a−ā)2 . We choose arbitrary values that mimic

the shape and the order of magnitude of human populations, inspired from death
and birth data for France in 2008. For the birth data, the aim is to reproduce the
shape of female birth rates and divide by two to approximately recover the intensity
for an arbitrary individual (male or female). We take A1 = 3, 7.10−5, B1 = 0.09,
ā = 32, A2 = 0.075 and B2 = 0.02. The reference rates b̄(a) and d̄(a) are plotted in
Figure 1.

Figure 1: Stylized reference birth rate b̄(a) and death rate d̄(a) as a function of age.
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We illustrate numerically the swap to the nearest neighbor. We consider n = 40

discrete classes and set X = {1, ..., 40}. We choose the following dynamics : the
caracteristic x is such that high value implies living longer but having less children,
whereas a low value means having more children: let α(x) = β(x) = 1− x−4,5

100
. The

swap rate takes four possible forms, namely e(x) = 1
1−(x−20,5)2

, e(x) = 1
x
, e(x) = x/40

and e(x) =
√
x/40. The swap rate, the theoretical stable composition and the

equivalent birth and death rates are given for the four configurations from Figure
2 to 5. Let us emphasize that in the four experiments, the age and characteristic-
dependent birth and death rates are the same, and also that the way the new
characteristics are chosen at the time of swap is fixed (namely the swap to the
nearest neighbor). We only vary the characteristics-dependent frequency of swap
events, driving the way characteristics changes occur at the individual level. Let us
first focus on the two upper graphs of each one of the four experiments. These show
how the stable composition in terms of characteristics (right-upper graph) is linked
to the swap pattern (left-upper graph). In each case, one can notice the interesting
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4.2 Numerical illustration

link between the shape of the swap rate and that of the stable composition given by
the invariant measure. In particular, as expected, the characteristics for which the
swap rate is high are less represented in the population composition, since individuals
are forced to escape the corresponding class. Also, let us remark the side effect of
the stable composition: this is due to the choice of the swap to the nearest neighbor
mechanisms, since characteristics on the side are less likely to be chosen (they have
one neighbor instead of two). Now, let us focus on the equivalent death and birth
rates. First notice that these are always lower than the reference demographic
rates, which are only used here to set a realistic age pattern; this is due to the
fact that the proportional parameters α(x) and β(x) are lower than one for almost
all characteristics. One then gets insights on the impact of characteristics changes
frequencies when comparing one by one the Figures 2 to 5. For example, the choice
of the swap rate e(x) = x/40 leads to aggregate death and birth rates that are higher
than in the three other configurations; this can be explained, as previously detailed,
by the fact that small characteristics values, whose birth and death rates are higher,
are over-represented. This shows how, with fixed swap rules and characteristic-
specific demographic rates, the characteristic-dependent swap frequencies impacts
what one observes at the macroscopic level.
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Figure 2: Swap rate, stable composition and equivalent death and birth rates for
e(x) = 1

1−(x−20,5)2
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5 Conclusion

In this paper, we considered the large population limit of an age and characteristics-
structured population model evolving according to individual birth, death and fast
characteristic changes during life. Both the large population framework and the fre-
quent characteristics changes appear naturally when focusing on the demographic
evolution of a human population at the scale of a given country. When rescaling the
population process, the classical deterministic transport-renewal McKendrick-Von
Foerster equation appears, that describes the time evolution of the age pyramid.
This dynamics is driven by age-dependent birth and death rates which are the aver-
age of microscopic birth and death rates over the stable characteristics distribution
of the invariant swap pattern. In addition, we proved that it is not possible to keep
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Figure 3: Swap rate, stable composition and equivalent death and birth rates for
e(x) = 1
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track of the population structure in terms of characteristics, even in the case of age-
independent demographic rates, in other words that the corresponding sequence of
measure-valued processes is not tight. This gives a natural and interesting example
of a sequence of processes which does not converge. A set of computable invariant
distributions for the swap patterns have also been given, namely a simple mixture
kernel and a swap to the nearest neighbor mechanism. When considering reference
age-dependent birth and death rates that reproduce real demographic data, numer-
ical illustrations have been performed showing the equivalent birth and death rates
in a proportional hazard setting. Next steps in this direction could concern (i) the
study of the associated central limit theorem, and the link with the speed at which
the swap pattern reaches its invariant measure and (ii) the assessment of the nu-
merical gain when considering the equivalent birth and death rates compared to the
original model. These two aspects are linked in the assessment of the speed at witch
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Figure 4: Swap rate, stable composition and equivalent death and birth rates for
e(x) = x/40
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the original model reaches the averaged one. They are left for further research.
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