Franck Butelle

ESSEC Laurent Alfandari
email: alfandari@essec.edu

Camille Coti

Lucian Finta

Lucas Létocart

Gérard Plateau

Frédéric Roupin

Antoine Rozenknop

Roberto Wolfler Calvo

Fast Machine Reassignment

Keywords: Generalized Assignment, Adaptive Variable Neighborhood Search, Simulated Annealing, Hyper-Heuristic, Cooperative Parallel Search

This paper proposes a new method for solving the Machine Reassignment Problem in a very short computational time. The problem has been proposed by Google as subject of the Challenge ROADEF/EURO 2012. The Machine Reassignment Problem consists in looking for a reassignment of processes to machines in order to minimize a complex objective function, subject to a rich set of constraints including multidimensional resource, conflict and dependency constraints.

In this study, a cooperative search approach is presented for machine reassignment. This approach uses two components: Adaptive Variable Neighbourhood Search and Simulated Annealing based Hyper-Heuristic, running in parallel on two threads and exchanging solutions. Both algorithms employ a rich set of heuristics and a learning mechanism to select the best neighborhood/move type during the search process. The cooperation mechanism acts as a multiple restart which gets triggered whenever a new better solution is achieved by a thread and then shared with the other thread.

Computational results on the Challenge instances as well as instances of a Generalized Assignment-like problem are given to show the relevance of the chosen methods and the high benefits of cooperation.

Introduction

This paper considers the Machine Reassignment Problem (MRP) which consists in optimizing the usage of available machine resources by reallocating processes to different machines in a cost-efficient way. The reallocation of the processes must satisfy capacity constraints associated with the machines, and other types of constraints linking subsets of pro-cesses. This difficult optimization problem was originally proposed by Google for the 2012 ROADEF/EURO Challenge, further denoted by "Challenge" (1).

This problem can be seen as a multi-resource generalized assignment problem (MR-GAP) with some additional constraints and a more complex objective function. In the MR-GAP, a set of jobs is assigned to a set of machines. Each job has a cost or profit, and should be assigned to a single machine. When assigned to a machine, each job consumes some resource units. Several resources are associated with a machine in the MRGAP, contrary to the simpler Generalized Assignment Problem (GAP) where only one resource per machine is considered, and the capacity or availability of each resource should not be exceeded, for each machine. The aim of the MRGAP is to find a minimum-cost assignment of jobs to machines, each of which are subject to multi-resource capacity constraints. The MRGAP is NP-hard and has practical applications in distributed computer systems. The Challenge problem extends the MRGAP to a more sophisticated objective function mixing several kinds of costs, and to additional constraints on subsets of jobs. Since the problem is close to the MRGAP, we decided to adapt the algorithm proposed in this paper to the MRGAP as well.

The Challenge problem is also connected to another problem called the Vector Bin Packing (VBP) problem, a multidimensional variant of the Bin Packing Problem (BPP). In the simplest form of the BPP, one considers a set of bins of equal capacity and a list of items, each item having a weight, or processing cost, that is supposed not to vary over bins. The objective is to find the minimum number of bins to pack all items. An instance of the VBP problem consists of a set of items with given sizes that can represent services with known demands, and a set of bins that can represent servers, with known capacities. The service demands and the server capacities span across multiple dimensions in the VBP. The objective is to assign each item to one bin in such a way that for each bin, the total size of the items assigned to the bin does not exceed its capacity for every dimension. The VBP is NP-hard, even when restricted to the one-dimensional case (only an asymptotic Polynomial-Time Approximation Scheme exists see e.g. [START_REF] Vazirani | Black-box and gray-box strategies for virtual machine migration[END_REF].

The aforementioned two problems, MRGAP and VBP, have different objective functions and formulations, but have the same structure of assigning items to agents at minimum cost while satisfying multi-dimensional capacity constraints. The MRGAP is closer to the Challenge problem, because they share the same characteristics that the cost function depends on the assignment variables and the resource consumption of an item varies over the agents, which is not the case for the VBP.

Recently there has been renewed interest in the VBP problem and in the MRGAP because they model particularly well the problem of Virtual Machine (VM) placement. Virtualization has been a growing trend in data-centers with the promise of using computational power more efficiently. Many companies have adopted this technology to cut budgets and maintenance costs. However, the performance of this technique depends on the quality of the management layer that schedules or assigns the virtual machines within a pool of machines in the data-center. While doing this assignment, it is important to make sure that no host gets overloaded while minimizing the number of hosts being used. The goal is not only to reduce the upfront investment in hardware, but also to minimize the energy cost of operating the data center, even when hardware may have been over-provisioned. This problem is made difficult by the multidimensional nature of the load. For example, each virtual machine has its own CPU utilization, memory, and disk, network input and output requirements. Likewise, each host has a capacity for each of these dimensions, and the assignment should ensure that the number of hosts is minimized while no capacity constraint is violated. Moreover, these 1 http://challenge.roadef.org/2012 requirements often vary over time, and if one wishes to avoid migration, one can model the problem by having a dimension for each resource, for each time period. As a consequence, the dimensionality of the problem is increased farther. If we assume that when different virtual machines are placed in the same host, their loads across each dimension are summed up, then the problem of assigning virtual machines to hosts is close to the VBP problem and to the MRGAP.

Given the instance sizes and the computational time limit fixed by the Challenge, we have decided to use heuristics, since exact methods are unlikely to finish within the time limit. The proposed method, called Fast Machine Reassignment (FMR), is a Parallel Cooperation Search. This area has receive much attention in the last decade (see for example Le [START_REF] Bouthillier | A cooperative parallel meta-heuristic for the vehicle routing problem with time windows[END_REF][START_REF] Crainic | Cooperative parallel tabu search for capacitated network design[END_REF][START_REF] Crainic | Cooperative parallel variable neighborhood search for the p-median[END_REF][START_REF] James | A cooperative parallel tabu search algorithm for the quadratic assignment problem[END_REF][START_REF] Ouelhadj | A cooperative distributed hyper-heuristic framework for scheduling[END_REF][START_REF] Rattadilok | Distributed choice function hyper-heuristics for timetabling and scheduling[END_REF]. Our FMR algorithm explores cooperation of an Adaptive Variable Neighborhood Search (AVNS, see e.g. [START_REF] Ropke | An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows[END_REF]) and a Simulating Annealing based Hyper-Heuristic denoted by SAHH (for an example of hyper-heuristic using simulated annealing see [START_REF] Kalender | A greedy gradient-simulated annealing hyper-heuristic[END_REF]. A hyper-heuristic is a methodology designed for hard optimization problems that "performs a search over the space of heuristics rather than the space of solutions" [START_REF] Burke | Hyperheuristics: A survey of the state of the art[END_REF]. It selects iteratively some heuristic in a list of heuristics according to some criteria, that can be in some cases the performance of the heuristic over the last iterations, and may accept or not the output solutions during the search as Simulated Annealing does.

AVNS and SAHH are running in parallel on two threads, exchanging solutions from one thread to another with controlled frequency in order to avoid excessive communication between threads. The main novelty in the proposed method is the way we combine these components, which leads to a large number of local search combinations and experimentally gives better results than threads running fully independently. This confirms the result of [START_REF] Lehre | A runtime analysis of simple hyper-heuristics: to mix or not to mix operators[END_REF] according to which the cooperation of heuristics or metaheuristics may provide much better results than running them independently. However, this paper shows that the performance of mixing move operators relies critically on having the right mixing distribution, which is problem dependent.

In order to end this introduction and before providing the organization of the paper, let us mention some relevant papers dealing with solving the aforementioned problems. For the Generalized Assignment Problem and its variants, a survey on the algorithms used to solve them can be found in [START_REF] Cattrysse | A survey of algorithms for the generalized assignment problem[END_REF][START_REF] Pentico | Assignment problems: A golden anniversary survey[END_REF]. Some heuristics have been proposed for the MRGAP, see [START_REF] Gavish | Algorithms for the multi-resource generalized assignment problem[END_REF]Yagiura et al, 2004b). For bin packing problems, there are many books such as [START_REF] Hochbaum | Approximation algorithms for NP-hard problems[END_REF][START_REF] Kellerer | Optimization by simulated annealing[END_REF]) that detail most of the theoretical literature. Many authors have studied the onedimensional [START_REF] Maruyama | A general packing algorithm for multidimensional resource requirements[END_REF], the two-dimensional [START_REF] Chung | On packing two-dimensional bins[END_REF][START_REF] Lodi | Two-dimensional packing problems: A survey[END_REF][START_REF] Puchinger | Models and algorithms for three-stage two-dimensional bin packing[END_REF] and the three-dimensional case [START_REF] Martello | The three-dimensional bin packing problem[END_REF][START_REF] Miyazawa | Two-and three-dimensional parametric packing[END_REF] and have developed heuristics [START_REF] Spieksma | A branch-and-bound algorithm for the two-dimensional vector packing problem[END_REF] and exact methods [START_REF] Caprara | Lower bounds and algorithms for the 2-dimensional vector packing problem[END_REF][START_REF] Han | Multiple-type, two-dimensional bin packing problems: Applications and algorithms[END_REF]. To the best of our knowledge, for the large dimensional case, the best empirical results are obtained by variants of the most popular heuristic FFD (First-Fit Decreasing). General systems that manage resources in a shared hosting environment can benefit from good heuristics for VBP (see for example [START_REF] Chen | Managing server energy and operational costs in hosting centers[END_REF], there are far too many of those to be covered extensively here. Focusing on Virtual Machine placement, there are several VM consolidation heuristics currently used in research prototypes and real VM management tools. For example in [START_REF] Vazirani | Black-box and gray-box strategies for virtual machine migration[END_REF]), a research system that enables live migration of VMs around overloaded hosts uses a heuristic inspired from FFD, taking the product of CPU, memory, and network loads. CPU consumption and loads are also considered in the Challenge problem.

The paper is organized as follows. Section 2 contains the description of the Challenge problem proposed by Google. The mathematical model and its relations with the MRGAP and VBP are given in section 3. We describe our algorithm named FMR2 (Fast Machine Reassignment), its components and implementation details in sections 4 and 5 respectively. We provide then some experimental results in section 6 for both MRP and MRGAP, and finally conclude the paper.

Problem description

The aim of the Machine Reassignment Problem (MRP) is to improve the usage of a set of machines. A machine has several resource types, like for example RAM and CPU, and runs processes that consume these resources. Initially each process is assigned to a machine. In order to improve machine usage, processes can be moved from one machine to another. Possible moves are limited by hard constraints, such as for example resource capacity constraints, and have a cost. A solution to this problem is a new process-machine assignment which satisfies all the hard constraints and minimizes a given objective cost.

In the following problem description, we keep the notations of the Challenge as much as possible in order to ease readability for researchers who already know the Challenge problem.

Decision variables

Let M be the set of machines, and P the set of processes. A solution is an assignment of each process p ∈ P to one and only one machine m ∈ M ; this assignment is noted by the mapping M(p) = m. The original assignment of process p is denoted M 0 (p). Note that the original assignment is feasible, i.e. all hard constraints are satisfied.

Hard constraints

Capacity constraints

Let R be the set of resources which is present on each machine, C mr the capacity of resource r ∈ R for machine m ∈ M and R pr the consumption of resource r ∈ R for process p ∈ P. Then, given an assignment M, the usage U of a machine m for a resource r is defined as:

U(m, r) = ∑ p∈P s.t. M(p)=m

R pr

A process can run on a machine if and only if the machine has enough capacity available on every resource. More formally, a feasible assignment must satisfy the capacity constraints:

∀ m ∈ M, r ∈ R, U(m, r) ≤ C mr

Conflict constraints

Processes are partitioned into services. Let S be a set of services. A service s ∈ S is a set of processes that must run on distinct machines:

∀ s ∈ S , ∀{p i , p j } ∈ s 2 , p i = p j =⇒ M(p i) = M(p j)

Spread constraints

Let L be the set of locations, a location l ∈ L being a set of machines. Note that L is a partition of the set of machines M . For each s ∈ S , let spreadMin s ∈ N be the minimum number of distinct locations running at least one process of service s. The constraints are defined by:

∀ s ∈ S , ∑ l∈L min 1, {p ∈ s | M(p) ∈ l} ≥ spreadMin s 2.2.

Dependency constraints

Let N be the set of neighborhoods, a neighborhood n ∈ N being a set of machines. Note that N is a partition of the set of machines M . If service s a depends on service s b , then each process of s a should run in the neighborhood of a s b process:

∀ p a ∈ s a , ∃ p b ∈ s b and n ∈ N such that M(p a) ∈ n and M(p b) ∈ n
Note that dependency constraints are not symmetric.

Transient usage constraints

When a process p is moved from a machine m to another machine m , some resources are consumed twice; for example, disk space is not available on machine m during a copy from machine m to m , and m should obviously have enough available disk space for the copy. Let T ⊆ R be the subset of resources which need transient usage, i.e. require capacity on both original assignment M 0 (p) and current assignment M(p). Then the transient usage constraints are:

∀ m ∈ M , r ∈ T , ∑ p∈P s.t. M 0 (p)=m ∨ M(p)=m R pr ≤ C mr
Note there is no time dimension in this problem, i.e. all moves are assumed to be done at the exact same time. Then for resources in T these constraints subsume the capacity constraints.

Classification of costs in the objective function

The aim is to improve the usage of the set of machines. To do so a total objective cost is built by combining a load cost, a balance cost and several move costs.

Load cost

Let SC mr be the safety capacity of a resource r ∈ R on a machine m ∈ M . The load cost is defined per resource and corresponds to the used capacity above the safety capacity. More formally, let us denote the "over safety capacity" by δ 1 mr = max 0,U(m, r) -SC mr , then

loadCost(r) = ∑ m∈M δ 1 mr A unit cost c 1
r is associated with the quantity loadCost(r).

Balance cost

As having available CPU resource without having available RAM resource is useless for future assignments, one objective of the problem is to balance available resources. The idea is to achieve a given target t r 1 ,r 2 on the available ratio of two different resources r 1 and r 2 . Let B ⊂ R 2 be the set of pairs of resources (r 1 , r 2) which play a role in the expression of the balance cost.

Let us note by

δ 2 m,r 1 ,r 2 = max 0,t r 1 ,r 2 • (C m mr 1 -U(m, r 1)) -(C mr 2 -U(m, r 2)) . The balance cost for (r 1 , r 2) is: balCost(r 1 , r 2) = ∑ m∈M δ 2 m,r 1 ,r 2 A unit cost c 2
r 1 ,r 2 is associated with the quantity balCost(r 1 , r 2).

Process move cost

Some processes are painful to move (having a big code and/or using a big amount of data); to model this soft constraint a process move cost is defined. Let c 3 p be the cost of moving the process p from its original machine M 0 (p).

processMoveCost = ∑ p∈P s.t. M(p) =M 0 (p) c 3 p 2.3.

Service move cost

To balance moves among services, a service move cost is defined as the maximum number of moved processes over services. More formally:

servMoveCost = max s∈S {p ∈ s | M(p) = M 0 (p)} 2.3.5 Machine move cost Let c 5 p,m be the cost of moving p from M 0 (p) to M(p) = m (if M(p) = M 0 (p) then this cost is zero).
The machine move cost is then the sum of these costs over all processes:

machMoveCost = ∑ p∈P c 5 p,M(p)

Total objective cost

The total objective cost to minimize is a weighted sum of all previous costs.

totalCost = w 1 ∑ r∈R c 1 r • loadCost(r) + w 2 ∑ (r 1 ,r 2)∈B c 2 r 1 ,r 2 • balCost(r 1 , r 2) + w 3 • processMoveCost + w 4 • servMoveCost + w 5 • machMoveCost
In the data provided by the Challenge we have w 1 = w 2 = 1.

Mixed Integer Programming formulations

In this section, we give the formulation of the MRP issued from the Challenge, and a formulation of the MRGAP that uses consistent notations with those of the MRP.

MRP formulation

We give a MIP formulation of the Google machine reassignment problem, where the only binary variables are assignment variables, and all other variables are continuous variables which are used to express some constraints or terms of the objective function. The decision variables are:

x pm = 1 if process p ∈ P is assigned to machine m ∈ M , 0 otherwise δ 1 mr = number of units of resource r over Safety Capacity on machine m. δ 2 m,r 1 ,r 2 = number of available units of resource r 2 on machine m which are under the target, expressed with respect to the number of available units of resource r 1 for (r 1 , r 2) ∈ B.

y ls = 1 if at least one process in service s ∈ S is assigned to a machine in location l ∈ L , 0 otherwise (no need actually to set these variables as binary in the model). z = maximum number of moved processes over services.

min w 1 ∑ r∈R c 1 r ∑ m∈M δ 1 mr loadCost (1) + w 2 ∑ (r 1 ,r 2)∈B c 2 r 1 ,r 2 ∑ m∈M δ 2 m,r 1 ,r 2 balanceCost (2) + w 3 ∑ p∈P c 3 p (1 -x p,M 0 (p)) processMoveCost (3) + w 4 z serviceMoveCost (4) + w 5 ∑ p∈P ∑ m∈M c 5 pm x pm machineMoveCost (5) s.t. ∑ p∈P R pr x pm ≤ C mr ∀m ∈ M , r ∈ R (6) ∑ p∈P s.t. M(p) =M 0 (p) R pr + ∑ p∈P s.t. M(p) =M 0 (p) R pr x pm ≤ C mr ∀m ∈ M , r ∈ T (7) ∑ p∈s x pm ≤ 1 ∀m ∈ M , s ∈ S (8) δ 1 mr ≥ ∑ p∈P R pr x pm -SC mr ∀m ∈ M , r ∈ R (9) δ 2 m,r 1 ,r 2 ≥ t r1,r2 C m,r 1 -∑ p∈P R p,r 1 x pm -C m,r 2 -∑ p∈P R p,r 2 x pm ∀m ∈ M , (r 1 , r 2) ∈ B (10) ∑ m∈M x pm = 1 ∀p ∈ P (11) ∑ l∈L y sl ≥ spreadMin s ∀s ∈ S (12
)
y sl ≤ 1 ∀s ∈ S , l ∈ L (13) y sl ≤ ∑ p∈s ∑ m∈l x pm ∀s ∈ S , l ∈ L (14) ∑ p ∈s b ∑ m∈n x p m ≥ ∑ m∈n x pm ∀(s a , s b), p ∈ s a , n ∈ N (15) z ≥ ∑ p∈s ∑ m∈M s.t. m =M 0 (p)
x pm ∀s ∈ S (16)

x pm ∈ {0, 1} (17)
δ 1 mr , δ 2 m,r 1 ,r 2 , y ls , z ≥ 0 (18)
There are two types of constraints:

(i) Local constraints (6-10) that hold for every machine m ∈ M : Capacity constraints (6) (see 2.2.1) express that the total amount of each resource r on a given machine should not exceed the resource capacity. Transient usage constraints (7) (see 2.2.5) state that for a subset of resources T ⊂ R, the total resource consumption of processes p that are assigned to machine m or were initially assigned to m, is no more than the capacity. Conflict constraints (8) (see 2.2.2) state that any two processes of the same service s should not be assigned to the same machine. LoadCost constraints (9) (see 2.3.1) define variables δ 1 mr as the number of units of resource r over Safety Capacity on machine m, together with non-negativity constraints on these variables. Finally, BalanceCost constraints (10) (see 2.3.2) define variables δ 2 m,r 1 ,r 2 , as the number of available units of resource r 2 on machine m under the target, expressed with respect to the number of available units of r 1 . These variables will be equal to zero if the target is achieved due to non-negativity of variables, and are used in the objective function to model so-called balance costs. (ii) Global constraints (11-16) that link machines of M altogether:

Assignment constraints (11) express that each process should be assigned to a single machine. Spread constraints (12-14) (see 2.2.3) are separated into three blocks of constraints. Technical constraints (13) and (14) define variables y sl as equal to 0 if no process in service s ∈ S is assigned to a machine in location l ∈ L ; otherwise we have y sl ≤ 1 so in order to contribute to cover the right-hand-side of constraint (12) y sl can be set to one. Constraints (12) state that the number of distinct locations where at least one process of service s should run is at least the threshold spreadMin s . Dependency constraints (15) (see 2.2.4) express that if a service p in a service s a is assigned to a machine in a neighborhood n, then there must be at least one process p in the service s b that depends on s a , that is assigned to a machine in the same neighborhood n. Finally, serviceMoveCost constraints (16) (see 2.3.4) define the service move cost as the maximum number of moved processes over services.

MRGAP formulation

The MRGAP mathematical formulation can be obtained by relaxing different sets of constraints, since the constraints needed to describe the problem are only: (6), (11) and (17). The objective function changes completely, since the MRGAP objective function takes into account only the process move cost, but in a different way with respect to the Machine Reassignment Problem. In the MRGAP we have a single cost matrix in the objective function, where c pm is the cost of assigning process p to machine m. Therefore, the MRGAP problem can be formulated as follows:

z = min ∑ p∈P ∑ m∈M c pm x pm (19) s.t. ∑ p∈P R pr x pm ≤ C mr ∀m ∈ M , r ∈ R (20) ∑ m∈M x pm = 1 ∀p ∈ P (21) x pm ∈ {0, 1} (22)
4 The FMR method

The method proposed in this paper is a Cooperative Parallel Search which runs in parallel two different algorithms on two threads asynchronously. Because of the time limitation and the dual core processor of the Challenge, we have considered a simple cooperative scheme with two threads which communicate their best solution and operate multiple restarts. More sophisticated techniques can be found in (Le [START_REF] Bouthillier | A cooperative parallel meta-heuristic for the vehicle routing problem with time windows[END_REF] (where a pool of solutions is shared between the threads, instead of a single one in FMR, in a solution warehouse). Moreover, in our approach there is no need to have a controller as in [START_REF] Ouelhadj | A cooperative distributed hyper-heuristic framework for scheduling[END_REF][START_REF] Rattadilok | Distributed choice function hyper-heuristics for timetabling and scheduling[END_REF] that would coordinate solution exchanges between threads.

Our FMR algorithm uses a particular combination of an Adaptive Variable Neighborhood Search (AVNS) and Simulated Annealing based Hyper-Heuristic (SAHH).

The AVNS running on the first thread is based on the idea reported in [START_REF] Ropke | An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows[END_REF] and [START_REF] Pisinger | A general heuristic for vehicle routing problems[END_REF] where the probability of choosing among the different neighborhoods is updated based on the best results found so far. Nevertheless, our AVNS algorithm has the particularity to be initialized with a warm start greedy heuristic, which generally improves the initial assignment.

The method running on the second thread is a Simulated Annealing based Hyper-Heuristic (SAHH). Hyper-heuristics have been defined for the first time in [START_REF] Cowling | A hyperheuristic approach to scheduling a sales summit[END_REF]. The proposed algorithm does not belong to the category of HH which generate heuristics, but to those that only select heuristics. Therefore it can be mapped completely in the classification scheme proposed in [START_REF] Burke | A classification of hyper-heuristic approaches[END_REF] and reported in [START_REF] Burke | Hyperheuristics: A survey of the state of the art[END_REF]. The scheme is based on two dimensions: selection of the heuristic search space and move acceptance.

Note that the complete combination of neighborhoods and ways of exploring them gives a potentially very large set of heuristics. Nevertheless, both threads use a learning mechanism for choosing the heuristic or neighborhood to execute (some applications of such learning mechanisms can be found in [START_REF] Pisinger | A general heuristic for vehicle routing problems[END_REF][START_REF] Kalender | A greedy gradient-simulated annealing hyper-heuristic[END_REF][START_REF] Burke | Monte carlo hyper-heuristics for examination timetabling[END_REF].

In this section, for illustration purposes we need to describe some numerical results on some particular instances of the Challenge. A full description of the Challenge instances and numerical experiments will be found in Sect. 6.

Cooperative Parallel Search

An interesting feature of our parallel cooperation scheme is the fact that the threads are asynchronous and the number of exchanges is controlled to avoid excessive communication between threads. It can been seen as a restart mechanism since each thread uses a new starting solution whenever the other one communicates an improving solution. Another choice we made was to be very modular and use a list of algorithms (AlgoList) to apply for each thread, with a learning mechanism for part of them.

A simplified version of the overall algorithm is described in Algorithm 1. The main aspect of parallelization in this algorithm is that when one thread finds a new bestKnown solution, the other thread can replace its current solution (assign) by bestKnown. In that sense, there is a real cooperation between the two threads. Note that this replacement may occur before the end of the execution of the current algorithm algo running on the thread; for easing readability we did not mention this technicality in Algo. 1.

The cooperation of the two threads is illustrated by Fig. 1 that represents the improvements on the best known solution for each thread running on instance a2 4 (with seed 9). Once in a while, "Thread 1 coop" and "Thread 2 coop" take into account the result of the other thread and introduce improvements and exploration of other neighborhoods. Thread 1 uses a first sequence of heuristics (see Sect. 6.1) followed by AVNS and Thread 2 also uses a first sequence of heuristics followed by SAHH.

We have compared the numerical results of independent threads (taking their best solution only when the time is elapsed) versus our cooperative scheme. Experiments show that the cooperative scheme outperforms the independent solving approach. More details are provided in Sect. 6 with a complete result table.

In the following section, we describe the algorithms implemented for AlgoList: Local Search, Greedy, Adaptive Variable Neighborhood Search and Simulated Annealing based Hyper-Heuristic. The specific lists of algorithms chosen for each thread are detailed in Sect. 6.1.

Local Search and Neighborhoods

Since the problem is quite similar to a Generalized Assignment Problem [START_REF] Yagiura | A variable depth search algorithm with branching search for the generalized assignment problem[END_REF], we used the best known moves for the GAP for neighborhood exploration, namely: Shift, Swap and Ejection Chain.

Shift

Consider a process p, assigned to a machine m. A Shift moves p from m to some other machine m if no constraint is violated.

Swap

Consider two processes p and p assigned to machines m and m respectively. A Swap exchanges their assignment (if no constraint is violated) i.e. p on m and p on m.

Ejection Chain (Yagiura et al, 2004a[START_REF] Yagiura | A path relinking approach with ejection chains for the generalized assignment problem[END_REF])

p 1 C SC r 1 r 2 r 3 r 4 m 1 C SC r 1 r 2 r 3 r 4 m 2 p 2 p i C SC r 1 r 2 r 3 r 4 m i C SC r 1 r 2 r 3 r 4 m B p 1 is moved to m i or m B
Fig. 2 Ejection Chain example (C=Capacity, SC=Safety Capacity).

Fig. 2 shows the Ejection Chain mechanism: choose a process p 1 assigned to a machine m 1 and look for the "best" machine m B on which p 1 can be assigned. The "best" machine is the one that minimizes the cost when p 1 is moved from m 1 to m B . Then process p 1 is removed from m 1 and its destination machine will be identified at the end of the Ejection Chain. Now find a second process p 2 that can be moved from its machine m 2 to machine m 1 . Then find a third process and so on, until a machine m i gives a process p i . We stop this procedure at m i if no more machine has an interesting candidate or when the maximum length of the ejection chain (which is an adjustable parameter), is reached. At the end of this chain process p 1 may be inserted on m B or on m i depending on the best move.

Local search heuristics

According to the policy of acceptance/selection of a new solution (to replace the incumbent) we used the following local search algorithms: first improvement by a shift move denoted by Shift-FI, best improvement by a shift move denoted by Shift-BI, first improvement by a swap move denoted by Swap-FI and Swap-BI the best improvement by a swap move.

For Ejection Chain, we use the first improvement acceptance policy only.

Greedy heuristic

The following greedy heuristic (see [START_REF] Romeijn | A class of greedy algorithms for the generalized assignment problem[END_REF] for a similar approach) is performed in order to build an alternate feasible initial solution quite far from the initial assignment M 0 provided with the data set. First, we partition the services in two classes: the core services are the services submitted to precedence constraints, and the out-of-core services are independent services without such constraints.

Then the processes of the out-of-core services are simply removed from M 0 . Thus, we get a partial solution based only on the core services and obviously with less resource consumption than the initial solution.

On this partial (core) solution Shift and Swap moves are applied to improve the (partial) cost function (Ejection chain has not been considered as it typically takes more than one minute to find an improvement). In practice, we only apply Shift-FI on the core for the following reasons :

-During our experiments, Shift-FI leads to the best ratio of cost improvement over computation time (see Table 1, instances B1, B3, B5 and B8 are not represented because they have transient usage constraints). The ratio is 0 for instances B2 and B6 because the initial solution is already a local minimum (for the core) with respect to those two types of move. More details on instances are given in Sect. 6. -Searching some neighborhoods can be time-consuming and must be avoided (Shift is the only one that has linear time complexity according to |P|). -Combining several neighborhoods on the core provides a low gain on the core after applying the first neighborhood, and may not enable to re-insert all the previously removed processes (too many changes on the core). In the end, if all the previously removed processes of the out-of-core services are reinserted, then we obtain a new initial solution for the next step with a lower cost. During the re-insertion step, the algorithm first checks how many machines each process can be assigned to. If there are processes that can be assigned to one machine only (sometimes the original machine) the process is assigned first to prevent infeasibility. Once a process has been assigned, the data is updated and the algorithm checks again if there exists a process with only one possible insertion point. The procedure goes on until all the remaining processes can be assigned to several machines.

Then for each process p, a function weight[p], summing resource consumptions normalized by the residual capacity of each machine, is computed. Processes are iteratively assigned, in decreasing order of weight (as low-weight processes are easier to place later), to a machine that maximizes cost improvement. The algorithm avoids infeasibility checks whenever it can.

This greedy heuristic is summarized in Algorithm 2. It only runs for instances with no transient usage constraints since experiments showed it was generally difficult to reconstruct a feasible solution otherwise.

Algorithm 2: Greedy Heuristic input : Initial assignment of processes to machines; core ←set of all the processes; out-of-core ← / 0 output: New assignment of processes to machines

if

Adaptive Variable Neighborhood Search

The neighborhoods described in Sect. 4.2 are indexed by i below. The AVNS procedure dynamically changes the current neighborhood [START_REF] Ropke | An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows[END_REF][START_REF] Pisinger | A general heuristic for vehicle routing problems[END_REF]. A learning mechanism is used for choosing the next neighborhood. It is based on a scoring function of the neighborhood. More precisely, we use a roulette wheel selection where the score score[i] of neighborhood i equals one initially, and then is updated as score

[i] ← (1 -r)score[i] + r p[i] θ [i]
, where p[i] is the number of times i has improved the solution, θ [i] counts the number of times i has been used, and r ∈ [0, 1] is a tuning parameter.

According to the size and/or the structure of the instance (e.g. |M | ≥ 10, 000 and/or |P| ≥ 100, 000), we may decide before starting the exploration of the neighborhood by the AVNS algorithm, that some types of moves (typically the Ejection Chain) have to be excluded from the set of possible moves.

The AVNS procedure is described in Algorithm 3.

Algorithm 3: Adaptive Variable Neighborhood Search input : Initial assignment of processes to machines; NH: set of neighborhoods (Local Search) output: New assignment of processes to machines The proposed selection Hyper-Heuristic framework, called Simulated Annealing based Hyper-Heuristic (SAHH), alternates between two Hyper-Heuristic Selection Strategies (HHSS). A HHSS is defined as a combination of a heuristic selection method and an acceptance method. Indeed, as shown in [START_REF] Bilgin | An experimental study on hyper-heuristics and exam timetabling[END_REF] the computational results might be improved by combining different heuristic selection methods with different acceptance methods. The proposed SAHH framework moves from one HHSS to the other based on the following simple greedy criteria: if a HHSS does not improve the best solution found so far during t f rozen seconds, it ends and the other one starts. Following the classification of [START_REF] Burke | Hyperheuristics: A survey of the state of the art[END_REF], the first HHSS (hereafter referred as Temperature Descent) uses a simple random method to select a heuristic among a set of available heuristics, and accepts new solutions according to the Simulated Annealing function [START_REF] Kellerer | Optimization by simulated annealing[END_REF], that allow to accept some non-improving solutions with probabilities depending on their scores. Variants of Simulated Annealing are useful as move acceptance components in hyper-heuristics as shown in [START_REF] Bai | An investigation of automated planograms using a simulated annealing based hyper-heuristic[END_REF][START_REF] Dowsland | A simulated annealing based hyperheuristic for determining shipper sizes for storage and transportation[END_REF][START_REF] Bai | A simulated annealing hyper-heuristic methodology for flexible decision support. 4OR[END_REF].

foreach i ∈ NH do score[i] ← 1 ; p[i] ← 1 ; θ [i] ← 1 ; while time remains do foreach i ∈ NH do score[i] ← score[i](1 -r) + r p[i] θ [i] ; current ← 0 ; foreach i ∈ NH do interval [i] ← current, current + score[i] ; current ← current
In what follows, we use SR for Simple Random, and SA for Simulated Annealing with reheating, based on the definition in [START_REF] Burke | Monte carlo hyper-heuristics for examination timetabling[END_REF].

The second HHSS (FastMinimum) performs the selection according to a history-based choice function and always rejects non-improving solutions. The proposed framework is related to the one described in [START_REF] Kalender | A greedy gradient-simulated annealing hyper-heuristic[END_REF], which can be seen as a mix of those two strategies, where a history-based choice function selects the heuristic and where nonimproving solutions can be accepted with time-decreasing probabilities. In the next paragraphs we detail the HHSS used by SAHH.

InitialTemperature()

The HHSS called Temperature Descent makes use of a temperature to compute the probability of accepting a non-improving move. This temperature decreases with time, following a predefined function, but its initial value comes as a parameter to the algorithm and should be fitted to the instance: if it is two low, the algorithm will reject all non improving solutions; two high and it will spend most of its time wandering regardless of the solution costs. We used the following heuristic to compute the initial temperature: during the first time interval t init , we randomly try at most N f eas feasible moves (Shift or Swap) starting from the initial solution and we store the absolute value of the gain for each move. We then choose the initial temperature T 0 as the median of these stored values, which approximately leads to an initial acceptance rate of 50% of non-improving moves in TemperatureDescent().

TemperatureDescent(T 0)

This HHSS iteratively calculates a new temperature T as a function f T (T 0 ,t r ,t descent), of the initial temperature T 0 , the remaining computational time for this descent t r and the time allocated to the descent t descent . Experimentally the following function

t r t descent 2 T 0 has been used.
Then a move is chosen randomly among the implemented ones (i.e. Shift and Swap), leading to a candidate configuration R new . If no feasible move has been identified during a time period t lookup , then this function stops. Otherwise, it decides whether it accepts the new configuration R new or stays on the previous one R old : R new is accepted if its cost is lower, or else with a probability p = exp(cost(R old)-cost(R new) T) (where T is the temperature computed before). If no move has been accepted during t f rozen seconds, then this HHSS stops and the second one executes. Otherwise, it lasts at most t descent seconds.

Fig. 3 and4 show two runs of TemperatureDescent() repeated 10 times, respectively on data sets B4 and B10 of the Challenge (see parameter settings in Sect. 6.1). '+' points represent the temperature (left Y-axis), 'x' points represent the cost of the current configuration (right Y-axis). Note that on data set B4, the value of the current solution quickly falls in local minimum and that whenever the temperature starts over from T 0 , it gives the function a chance to look at other regions of the search space. Nevertheless, when applied on instances such as data set B10, the SA move acceptance criteria slows down the decrease of the cost.

Therefore the following second HHSS is designed to cope with such instances.

FastMinimum()

The learning mechanism for selecting a move is designed as follows. The HHSS keeps an average ratio of cost gain over time spent for past ten moves, according to the category of moves (Shift or Swap). The category with the best ratio is first chosen for the next move. Then, the candidate move is selected randomly in this category. If it improves the current solution, it gets accepted; otherwise, it is rejected and in any case the ratio is updated. If the current solution has not been improved during a time interval t f rozen , the HHSS stops and the TemperatureDescent HHSS starts. Otherwise it goes on until the global computational time is elapsed.

The SAHH overall framework is described by the pseudo-code given in Algorithm 4.

5 Implementation details

Communication restriction

Two threads are used to run on the two cores of the reference computer. In order to achieve maximum benefit of these two threads, the code was designed with the aim of limiting communication and synchronizations between the threads. Only one shared variable must be accessed in mutual exclusion: the one which is used to store the current best solution found by the threads. This variable is updated most often by the SAHH executed on the second thread. To avoid excessive communication (that is time consuming), in SAHH the frequency of updates is controlled by excluding exchanges during at least t f rozen seconds.

The first thread updates this variable on major improvements only, and when the remaining delay is becoming too short.

All the rest of the data is private to each thread and bound to it, or accessed in read-only mode during the parallel execution.

Compact implementation of a partition of an integer set

For the purpose of the Challenge, the specification of the underlying hardware system states that available memory is limited to 4GB. To this end, all data structures are designed to be compact and to allow fast access during execution of the optimization algorithm.

Intermediate solutions are stored during the search. A solution is specified by a partition of the set of processes into subsets of processes on each machine. A naive implementation of this partition of processes may be highly memory consuming. For example, using an assignment matrix of size |M × |P| would use a lot of memory and induce a high running time to extract the subset of processes assigned to some machine for large values of |P|.

A second naive implementation could use a linked list for each subset of processes that are assigned to a given machine. Linked list implementation is more compact than the assignment matrix since it uses only |P| nodes in total. However, such an implementation would slow down the processor because of a very high cache miss rate (since nodes are not allocated contiguously in the memory).

Moreover, creating a new solution starting from some current solution involves allocating and then copying the current solution. This duplication will be highly time-consuming for both aforementioned naive implementations.

Our implementation of the partition of processes is also based on a linked list to store the subset of processes assigned to a given machine. But in FMR, all these lists are stored in one vector of size |P|. On top of that, we use a second vector of size |M | to keep track of the entry point of each linked list.

In Fig. 5 we show a small example with 4 machines and 6 processes. In this example, processes {5, 0, 2} are assigned to machine 0, no processes are assigned to machine 1, processes {1, 3} are assigned to machine 2 and process 4 is assigned to machine 3. Notation -1 represents the end of the list.

Our linked list is more compact than classical linked list implementations: we use vectors of short int (size 2 Bytes) instead of pointers (size 8 bytes on a 64 bits system). When

5

-1 1 4

0 1 2 3 Machines : 2 3 -1 -1 -1 0 0 1 2 3 4 5
Processes :

Fig. 5 Example of a compact implementation of a partition of a set our data structure that partitions processes needs to be duplicated, less time is needed for memory allocation and copy. As memory allocation is contiguous (there are 2 vectors), the cache hit rate is highly improved: when the data structure is used at run-time, we achieve better spatial locality in the cache.

6 Numerical results

Parameter settings

The different values of the parameters used in our FMR algorithm are the following ones:

-Parameter for the roulette wheel selection of the AVNS (sec. 4.4): r = 0.2 -Parameters for the simulated annealing (sec. 4.5):

-Time for finding the initial temperature: t init = 30s -Maximal number of moves to find the initial temperature: N f eas = 10000 -Time for each temperature descent: t descent = 60s -Time for finding a feasible move : t lookup = 5s -Time for accepting a move : t f rozen = 10s

All the experiments were run on a computer with an Intel Core i7-2600 CPU at 3.40GHz. We have arbitrarily chosen the default random seed to be 16. The list of algorithms on Thread 1 AlgoList1 is (Greedy, Shift, EjectionChain, AVNS) and AlgoList2 is (ExtendedBestShift, EjectionChain, SAHH) for Thread 2. -Data set A: |P| is limited to 1,000. This small data set is public and is used during the qualification phase; -Data set B: |P| varies from 5,000 to 50,000. This medium / large data set is public and is used to evaluate proposed solvers; -Data set X: |P| varies from 5,000 to 50,000. This medium / large data set is private and is used to evaluate proposed solvers.

The score of a team for an instance is computed as the sum of normalized differences between the final objective function obtained and the best among all participants3 .

Numerical results on instances B et X for MRP

Tables 2 and3 show details on instances used for the Challenge. For instances B and X, the number of neighborhoods is always equal to 5 and the number of services containing at least two processes (|S |) is 1000, except for B1, B2 and X1 and X2 (which are at 500). #DS stands for the total number of dependencies among services. "First" stands for the results of the best team. "Last" stands for the results of the last team among all those that were able to complete the Challenge.

Note that our score is very close to the results of the best team except for two instances: B1 and X1.

We also tried to increase the computing time to thirty minutes (with a maximum length of ejection chain extended to fifty), and we then improved four of the best known results. For the Challenge, 82 teams registered and the organizers decided to set the qualification threshold to the best 30 teams selected on A instances. Our team was ranked 14 among 30 in the qualifying stage. The final ranking was computed on a score based on instances B & X and our team was ranked among the top 20 teams. Note that the gap between our results and the best team is mainly due to some under-performance for one of the 10 instances, both for B and X instances (B1, X1). For 18 out of the 20 instances, the difference is very small : the total gap of 5.31 for X is mainly due to one gap of 4.65 for instance X1 (average gap = 0.07 for the 9 other X instances vs 0.003 for the Best average over 10), and the total gap of 7.85 for B is mainly due to one gap of 7.32 for instance B1 (average gap = 0.06 for the 9 other X instances vs 0.04 for the best average over 10).

When instances become bigger and more complex to solve, our results become more competitive. Our approach seems to be robust on the variability of the input instances since we did not tune our code on the Challenge instances. This allows our approach to be effective also on MRGAP as shown in Sect. 6.5. Before reporting results on the MRGAP, we conclude on the Challenge problem by comparing our cooperative approach to running AVNS and SAHH independently on the two threads without sharing solutions.

Comparison of independent vs cooperative scheme

We compared experimentally the results of independent threads, taking the best solution of AVNS and SAHH only when the time is elapsed, versus our cooperative scheme. Each instance B and X have been run 20 times with different seeds.

The result is given in Table 4. In some cases the two approaches give the same result, which explains why the sum of the number of times the independent scheme is better ("Indep #best") and the number of times the cooperative scheme is better ("Coop #best") is not equal to 20. The "Mean Indep (or coop) %Gap to best" is computed as follows: for each of the 20 runs, calculate the difference between the independent (resp. cooperative) solution value and the Challenge best known value, divided by this best known value, and compute the mean of these 20 ratios.

We can see that the cooperative scheme globally outperforms the independent one. More precisely, the cooperative scheme finds a strictly better solution for 54 % of the cases (216 over 400 runs of the B and X instances) versus 28,5% for the independent scheme. Also, the mean gap to the best known value is strictly better for the cooperative scheme for 10 of the 20 instances B and X, and equal for 9 of them. It is significantly better for 4 instances, whereas the independent scheme is strictly better for only one instance (B3). As mentionned in the introduction, these results confirm the benefits of cooperation on this particular problem. modifications performs well on a high proportion of instances of the MRGAP problem, although it was not designed for this problem. Experimental results show that FMR is quite robust and behaves better when instances become harder. Let us point out that, in spite of strong operational Challenge constraints (time limitation, specific computer) having a real impact on our algorithm, several ideas developed here can actually be used in a more general context. In particular, the heuristics cooperation and communications issues are core to our approach. As noticed before, the time limitation given by the Challenge prevents us from using directly mathematical programming here. Nevertheless, the latter approach could be used to give some guidance on which regions are the most promising in the (huge) space of solutions. This may be done by considering a simplified model or a relaxation that would provide some structural information about good solutions.

Fig. 1

 1 Fig.1Comparison of independent threads vs cooperative threads on instance a2 4.

Fig. 4

 4 Fig. 3 TemperatureDescent() iterated on B4

6. 2

 2 Problem Sizes for MRP In the Challenge, set sizes are limited to the following maximum values: -Number of machines |M | = 5, 000 -Number of resources |R| = 20 -Number of processes |P| = 50, 000 -Number of services (of cardinality> 1) |S | = 5, 000 (S ⊂ S). -Number of neighborhoods |N | = 1, 000 -Number of dependencies |D| = 5, 000 -Number of locations |L | = 1, 000 -Number of balance costs |B| = 10 All other integers are indices or 32-bits unsigned integers. As usual in the ROADEF/EURO Challenge, three data sets have been provided:

 Algorithm 1: Cooperative Parallel Search algorithm input : M 0 : Initial assignment of processes to machines, Problem description, AlgoList1, AlgoList2, TimeOut (or use default values) output: bestKnown: An assignment of processes to machines & improvement value begin bestKnown ← cost of M 0 ; Create an alarm to stop threads and save bestKnown when TimeOut is reached ;

		Run Threads in parallel				
		/* bestKnown is shared between the two threads		*/
		Thread 1: doWork(AlgoList1, M 0) ;			
		Thread 2: doWork(AlgoList2, M 0) ;			
		/* Each thread is working on its own local copy of the assignment.	*/
		procedure doWork(AlgoList, assign)			
		for i←1 to |AlgoList | do				
		algo ←AlgoList [i];				
		assign ← algo(M 0 ,bestKnown,assign) ;		
		mutual exclusion between threads			
			if cost(assign) < cost(bestKnown) then		
				bestKnown←assign;			
		2.05e+09 2.1e+09 2.15e+09					Thread 1 coop Thread 2 coop Thread 1 indep Thread 2 indep
		2e+09						
	Cost	1.9e+09 1.95e+09						
		1.85e+09						
		1.8e+09						
		1.75e+09						
		1.7e+09	0	50	100	150	200	250	300
					Time in sec.		

Table 1

 1 Cost improvement over computation time ratio for various local search heuristics when using the greedy heuristic.

	Inst.\Algo	Swap-FI	Swap-BI	Shift-FI	Shift-BI
	B2	0	0	0	0
	B4	5.8 × 10 4	5.8 × 10 4	9.8 × 10 5	9.8 × 10 5
	B6	0	0	0	0
	B7	7.3 × 10 7	1.5 × 10 6	1.8 × 10 8	3.4 × 10 6
	B9	1.2 × 10 3	1.2 × 10 3	1.7 × 10 4	1.7 × 10 4
	B10	3.2 × 10 7	4.4 × 10 5	1.1 × 10 8	1.4 × 10 6

 Algorithm 4: SAHH algorithm T 0 ← InitialTemperature() ; while time remains do (BestCost,Sol) ←current best solution over both threads; FastMinimum(Sol) 1 ; // during t descent sec. or if no improvement during t f rozen , if BestCost has not been improved then TemperatureDescent(T 0 , Sol) 1 ; // during t descent or if no improvement during t f rozen ,

1 FastMinimum and TemperatureDescent start from Sol

Table 2

 2 Instances B

	Instance B1 B2	B3	B4	B5	B6	B7	B8	B9 B10
	|P| 5000 5000 20000 20000 40000 40000 40000 50000 50000 50000
	|M |	100 100 100 500 100 200 4000 100 1000 5000
	|R|	12 12	6	6	6	6	6	3	3	3
	|T |	4	0	2	0	2	0	0	1	0	0
	|L |	10 10	10	50	10	50	50	10 100 100
	|S | 2512 2462 15025 1732 35082 14680 15050 45030 4609 4896
	#DS 4412 3617 16560 40485 14515 42081 43873 15145 43437 47260
					Scores %					Total
	First	0.41 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.43
	Our	7.32 0.04 0.08 0.00 0.00 0.00 0.12 0.21 0.06 0.01 7.85
	Last	2.27 8.57 6.92 14.04 7.85 5.33 41.04 6.60 23.24 43.06 158.92

Table 3

 3 Instances X

	Instance X1 X2	X3	X4	X5	X6	X7	X8	X9 X10
	|P| 5000 5000 20000 20000 40000 40000 40000 50000 50000 50000
	|M |	100 100 100 500 100 200 4000 100 1000 5000
	|R|	12	12	6	6	6	6	6	3	3	3
	|T |	4	0	2	0	2	0	0	1	0	0
	|L |	10	10	10	50	10	50	50	10 100 100
	|S | 2529 2484 14928 1190 34872 14504 15273 44950 4871 4615
	#DS 4164 3742 15201 38121 20560 39890 43726 12150 45457 47768
					Scores %					Total
	First	0.00 0.02 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.03
	Our	4.65 0.25 0.08 0.00 0.00 0.00 0.29 0.00 0.02 0.01 5.31
	Last	1.84 10.53 4.86 15.78 10.58 5.44 43.71 21.77 21.17 41.61 177.28

Table 5

 5 MRGAP Instances C

	|P| |M | |R|	lb	TS-CS FMR TS-WCSP CPLEX
	100	5	1 1931	1931 1970	1933	1931
	100	5	2 1933	1933 1995	1933	1933
	100	5	4 1943	1943 1953	1944	1943
	100	5	8 1950	1950 1989	1956	1950
	100	10	1 1402	1402 1478	1402	1402
	100	10	2 1409	1409 1425	1411	1409
	100	10	4 1419	1419 1464	1419	1419
	100	10	8 1435	1436 1503	1435	1435
	100	20	1 1243	1245 1243	1245	1243
	100	20	2 1250	1251 1252	1253	1250
	100	20	4 1254	1257 1255	1258	1254
	100	20	8 1267	1269 1268	1267	1272
	200	5	1 3456	3456 3492	3460	3456
	200	5	2 3461	3461 3500	3462	3461
	200	5	4 3466	3466 3504	3469	3466
	200	5	8 3473	3473 3532	3478	3474
	200	10	1 2806	2807 2923	2811	2806
	200	10	2 2811	2812 2866	2812	2812
	200	10	4 2819	2821 2935	2823	2819
	200	10	8 2833	2837 2929	2842	2842
	200	20	1 2391	2393 2412	2394	2391
	200	20	2 2397	2398 2412	2403	2398
	200	20	4 2408	2409 2422	2415	2415
	200	20	8 2415	2422 2428	2423	2419
	Table 6 MRGAP Instances D				
	|P| |M | |R|	lb	TS-CS FMR TS-WCSP CPLEX
	100	5	1	6353	6357	6620	6370	6358
	100	5	2	6352	6359	6471	6380	6360
	100	5	4	6362	6379	6524	6404	6386
	100	5	8	6388	6425	6613	6500	6428
	100	10	1	6342	6361	6415	6418	6381
	100	10	2	6340	6378	6453	6411	6419
	100	10	4	6361	6430	6476	6516	6468
	100	10	8	6388	6478	6533	6679	6528
	100	20	1	6177	6231	6289	6305	6280
	100	20	2	6165	6261	6302	6389	6316
	100	20	4	6182	6321	6339	6529	6406
	100	20	8	6206	6482	6440	6736	6588
	200	5	1 12741 12751 12951	12760	12750
	200	5	2 12751 12766 13061	12778	12766
	200	5	4 12745 12775 13027	12799	12762
	200	5	8 12755 12805 12862	12844	12787
	200	10	1 12426 12463 12592	12478	12457
	200	10	2 12431 12477 12614	12533	12482
	200	10	4 12432 12496 12640	12586	12532
	200	10	8 12448 12571 12667	12812	12577
	200	20	1 12230 12312 12466	12409	12393
	200	20	2 12227 12332 12491	12442	12425
	200	20	4 12237 12396 12539	12605	12472
	200	20	8 12254 12485 12578	12918	12548

FMR is open source and is distributed under GPL, see http://www.lipn.fr/ ~butelle/s26.tgz

For more detailed results and information see http://challenge.roadef.org/2012/en/results. php

See http://www-or.amp.i.kyoto-u.ac.jp/ ~yagiura/mrgap

Acknowledgements

The authors wish to thank the two anonymous reviewers for fruitful suggestions which help improve a previous version of this paper.

6.5 Numerical results on the MRGAP

We have chosen to compare our code to the one of (Yagiura et al, 2004b), one of the best known algorithms for the MRGAP problem, even if FMR was not specifically designed for this problem. So we adapted our code at a minimum for the MRGAP problem and tried it over C, D and E instances 4 . We would like to thank Prof Yagiura who kindly supplied us with initial solutions as well (priv. comm.). These initial solutions were output by their simpler and modified version of their algorithm "TS-CS", named "TS-noCS" (that can be found in Yagiura et al, 2004b).

In the results presented in Tables 5, 6 and 7, TS-CS stands for Tabu Search with Chained Shift neighborhood. TS-WCSP stands for a general solver for the Weighted Constraint Satisfaction Problem (see [START_REF] Nonobe | An improved tabu search method for the weighted constraint satisfaction problem[END_REF]. The results show that globally our code seems to be competitive with TS-WCSP and CPLEX as soon as instances become harder. Since our code is really not specific for MRGAP, we think it is able to be a good start for other generalized assignment-like problems.

Conclusion

We have presented in this paper our contribution to the Challenge Roadef 2012 on Machine Reassignment. Our FMR method provides solution values that are very close to those of the Challenge winner on almost all instances. Moreover, the same code with just a few