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Abstract

Taking advantage of the Benamou-Brenier dynamic formulation of
optimal transport, we propose a convex formulation for each step of
the JKO scheme for Wasserstein gradient flows which can be attacked
by an augmented Lagrangian method which we call the ALG2-JKO
scheme. We test the algorithm in particular on the porous medium
equation. We also consider a semi implicit variant which enables us
to treat nonlocal interactions as well as systems of interacting species.
Regarding systems, we can also use the ALG2-JKO scheme for the
simulation of crowd motion models with several species.

Keywords: Benamou-Brenier formulation, augmented Lagrangian, non-
linear diffusion, granular media, systems, crowd motions, Wasserstein gradi-
ent flows, semi-implicit JKO scheme.

MS Classification 2010: 49M29, 65M60.

1 Introduction

It is well-known since the seminal work of Jordan Kinderlehrer and Otto [25]
that the Fokker-Planck equation

Op = Ap+div(pVV), plizo = po (1.1)
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where the initial condition pg is a probability density may be viewed as the
Wasserstein gradient flow of the (relative) entropy functional

Sulp)i= [ pla)tog (L) (12)

More generally, given an internal energy FE, a potential V' and an inter-
action potential W evolution equations of the form

Orp = div(pV(E'(p) +V + W x p)), pli=o = po (1.3)

is the Wasserstein gradient flow of the energy

E(p) = / Blpa)de+ [ V(o) + / W= pp()p(y)dedy

Ra 2

For instance, if E(p) = ﬁpm and V = W = 0 one in particular recovers
the porous medium equation d;p = Ap™, see the seminal work of Otto [34].
Convolution terms VIV x p in (1.3) arise naturally in aggregation equations
[16] and models of granular media [18], [19].

The celebrated Jordan-Kinderlehrer-Otto (henceforth JKO) scheme con-
sists, given a time-step 7 > 0 in constructing inductively, starting from py a
sequence of probability measures p¥ by the implicit Euler scheme:

. 1
1 € arguincp, { 3 WH00") + £} (1.4)

where P, denotes the set of probability measures on R? having finite second
moments and W2 is the squared 2-Wasserstein distance defined for every
(p,v) € Py x Py by

1

Wa(p,v) = inf o — yPdy(z,y)
RdxR4

v€ll(p,v)

where II(j, 1) is the set of transport plans between p and v i.e. the set of Borel
probability measures on R? x R? having 1 and v as marginals. When £ = Sy,
is given by (1.2), Jordan, Kinderlehrer and Otto [25] proved that one recovers
the solution of the Fokker-Planck equation (1.1) by letting 7 tend to 0 in the
JKO scheme. Similar convergence results hold for the more general equation
(1.3) under suitable assumptions on £, V and W. The theory of Wasserstein
gradient flows is by now well-developed and it is detailed in the textbooks of
Ambrosio, Gigli and Savaré [1], Villani [38], [39] and Santambrogio [37].

We remark that the JKO scheme (1.4) is constructive and it is very nat-
ural and tempting to try to apply it for numerical purposes. The positivity,
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mass conservation and energy dissipation are inbuilt in the JKO scheme
and non trivial to preserve with non-linear finite-difference or finite volume
schemes (see [14] and references therein). Also some JKO gradient flows, like
congested crowd motions [31], cannot be formulated as nonlinear PDEs and
the JKO semi-discretisation is the only numerical option.

A serious difficulty with this approach is in the Wasserstein term which
involves solving a costly optimal transport problem at each step. In dimen-
sion one, this is not really an issue since the optimal transport is essentially
a rearrangement problem, and in fact, this 1-D numerical approach was pro-
posed in the early work of Kinderlehrer and Walkington [26] and was used
repeatedly. See in particular the recent work of Osberger and Matthes [33]
for application to fourth-order evolution PDEs of thin films type. In higher
dimensions, the optimisation problem in (1.4) is much more complicated be-
cause the optimal transport is given by Brenier’'s map, the gradient of a
convex potential which solves some Monge-Ampere equation.

At least three categories of approaches have been followed to solve (1.4)
numerically.

A first " Lagrangian” strategy based on Brenier’s Theorem is to formulate
the problem in terms of the transport map or its potential instead of the den-
sity p to avoid dealing with the positivity and mass constraints. It also allows
a more consistent discretisation of the mass when the density concentrates
or dilates. This is done for instance in Carrillo and Moll [17] who proposed
a Lagrangian scheme, based on a gradient flow for evolving diffeomorphisms
(not necessarily the optimal transport maps) related to a system of evolution
equations which is very nonlinear since it involves cofactors. Osberger and
Matthes [30] introduce a Galerkin discretisation of the potential. As illus-
trated in [24], where another Lagrangian method is introduced, a difficulty
with the Lagrangian approach is the construction of a discrete density to
be used in the internal energy. A semi-discrete solution to this problem has
been proposed in [3] based on optimal maps, a discretisation of the Monge-
Ampere operator and techniques of computational geometry. This method
is provably convergent and enables one to use of a Newton method. Note
that using monotone finite difference Monge-Ampere solvers as introduced
in [10], [9] could be an option but it does not seem to have been tried.

A second strategy, which is Eulerian, is to use the Monge-Kantorovich
linear relaxation of the Wasserstein distance in (1.4). The size of the discreti-
sation is very limited by the linear programming approach. However, Peyré
[36] recently generalised entropic regularisation techniques that are compu-
tationally efficient in optimal transport [8] to treat JKO gradient flows.

In the present paper we investigate a third approach, also Eulerian, based
on replacing the Wasserstein distance with the Benamou-Brenier formulation



[5]. This idea has already been used in [11], [12], [2], [4] either for JKO steps
or in optimisation problems where the Wasserstein distance intervenes. Our
original contribution, initiated in [7] on a general class of Optimal Transport
problems and variational Mean Field Games [29], is to extend this convex
reformulation and its augmented Lagrangian numerical resolution based on
the algorithm ALG2 of Glowinski and Fortin [22] to solve a succession of
problems of the form (1.4), we will call this method ALG2-JKO. We also show
that the method can be adapted to treat systems (which are not necessarily
gradient flows) using the relaxation introduced in [20] by Di Francesco and
Fagioli and extended to the diffusive case in [15].

The Benamou-Brenier formulation induces an extra time dimension in
each of the JKO steps. The resulting extra cost because of the discretisation
of the inner (Benamou-Brenier) time dimension is usually considered a draw
back. In the ALG2-JKO scheme however, since the successive JKO density
time snapshots are close only a very few inner timesteps are needed in prac-
tice. The ALG2 augmented Lagrangian method is very robust, can deal with
non-smooth energies but remains a proximal splitting first order method and
converges slowly [35].

The paper is organized as follows. In section 2, we describe the ALG2-
JKO scheme. In section 3, we illustrate the algorithm on two examples:
the porous medium equation and a model of crowd motion with diffusion
introduced by Santambrogio and Mészéros in [32]. Section 4 addresses the
case of interaction terms, as in aggregation or granular media equations by
a semi-implicit variant of the ALG2-JKO scheme. Finally, section 5 extends
the method to several systems: interacting species (which are not gradient
flows) and diffusive models of crowd motions a la Santambrogio and Mészdros
with several populations.

2 The ALG2-JKO scheme

Let us consider one step of the JKO scheme (1.4) in the case where the energy
€ is of the form

Ep) = / B{p(a))de + / V(@)p(a)dz

Rd

with £ a convex internal energy (typical cases being the entropy or a convex
power), which corresponds to the time discretization of the PDE:

Orp = div(pV(E'(p) + V), pli=o = po. (2.1)



Our goal is to rewrite (1.4) as a tractable convex problem. To do so, we
use the Benamou-Brenier dynamic formula [5] to rewrite W3 as

1 2
W3(p,v) := inf {/ / %dxdt D O+ div(m) =0, plimor = p, v
Re

x
(2.2)
which is a convex variational program (it is implicit that the energy above is
set to +0o whenever p becomes negative or when p = 0 and m # 0 so that
momentum m can be written as m = pv that is m vanishes where 1 does
and then [m|*/u = plv|? is the kinetic energy).
Thanks to (2.2) one can rewrite one step of the JKO scheme (1.4) as the
convex minimization:

|my(z)
[me@)l® e 2.3
om0 2T/ /Rd 11() (1) (2:3)

subject to the constraints that 4 > 0, m = 0 when ¢ = 0 and the linear
constraint
Oyp 4 div(m) = 0, pf—o = p". (2.4)

One then recovers p**' = p; (and actually even an interpolation (#4e)eepo,]
between p* and p**1).

Of course we can consider variants, for instance the periodic (in space)
case or the case of a smooth bounded domain € of R¢. In the latter case, we
have to supplement the PDE (2.1) with the Neumann boundary condition:

V(E'(p)+V))-v=0, on dQ (2.5)
this amounts to modify (2.3)-(2.4) as

L[ [ (@)
inf — ——dadt + 7€ 2.6
(ueme) 2/0 o m(z) (r) (26)
subject to the constraints that 4 > 0, m = 0 when ¢ = 0 and the linear
constraint

O + div(m) = 0, ps—o = p*, m-v =0 on 9Q. (2.7)

2.1 Augmented Lagrangian formulation

Convex time-dependent problems like (2.6) subject to a divergence constraint
(2.7) appear in various contexts, they are actually particular cases of deter-
ministic Mean-Field Games (a class of games with a continuum of players
introduced by Lions and Lasry [27], [28]). Such problems can be solved



by Augmented Lagrangian methods, see in particular [7] for applications to
Mean-Field Games, Papadakis, Peyré and Oudet [35] for connections with
proximal schemes and Buttazzo, Jimenez and Oudet [13] for applications
to congested transport. We now recall the principle of the Augmented La-
grangian approach and explain how to use it in the JKO framework.

As was observed by Benamou and Brenier [5] the convex lsc 1-homogeneous
function defined for (y, m) € R x R by:

@, if >0,

P(p,m) =<0, if u=0and m =0

400, otherwise.

is the support function of the convex set

1
K :={(a,b) e R a+ 5|b|2 <0} (2.8)
le.
®(p,m) = sup {ap+b-m}.
(a,b)eK
Our convex problem (2.6)-(2.7) then is dual to:
¢(1, )

: . . 1
inf ){/QQS(O,.)pk+T€ (— ) : at¢+§|v¢\2 <0} (2.9)

d=o(t,x T

where £ is the Legendre tranform of £ (extended by 400 on (—oo, 0]):

9@ﬁww{(M@—W@M@—EWMM@ZéﬁhmMMw

uw=>0 JQ

where, slightly abusing notations, we have set

&' (w,¢) i=sup{ (¢ = V() — B(w)}.

n>0
We then rewrite the dual as
Jint J(6) = F(6) + G(A9) (210)

where

A = (Do, ~¢(1,.)) = (816, V), —o(1,.)), F(¢) = [ #(0,.)p"

Q



and for ¢ = (a, b, c)

G(q) :/OI/QXK(a,b)dxdtJrTS*(;)

where i denotes the indicator function
0, if (a,b) € K
XK(CL7 b) = { ( )

400, otherwise.

Now the variables ¢ := (i, m, j11) play the role of Lagrange multipliers asso-
ciated to the constraint ¢ = A¢ i.e. a = 0yp, m = V¢ and ¢ = —¢(1,.), note
in particular that p; is a multiplier associated to the constraint ¢ = —¢(1,.)
it coincides with p(1,.) for the saddle-point but not necessarily along the
iterations of the augmented Lagrangian algorithm below.

The primal-dual extremality relations are formally equivalent to finding
a saddle-point of the Lagrangian

L(¢,q,0) == F(¢) + G(q) + 0 - (Ap — q), (2.11)

in the sense that (¢, o) satisfies the optimality conditions of (2.10) and (2.6)-
(2.7) respectively if and only if

(¢,9,0) = (¢, Mg, 0)

is a saddle-point of L. Now for r > 0, we consider the augmented Lagrangian
function

Li(6,4,0) = F()+G(@) +o- (A6 —q) + S[Ad — g (212)

where ¢ = (a,b,¢), 0 = (u, m, 1),
o 8= [ [ (utt.a)@u0tt.0) ~ alt2) + mt,2) - (V(t.2) it )
+ [ m@)=o1.0) - o)z
and
Ao = [ 1 [ 0iott.) = alt, o) + [Vlt,) = bt o) Pyt
+ /Q (6(1,2) + c(x))Pda

and recall (see for instance [22], [23]) that being a saddle-point of L is equiv-
alent to being a saddle-point of L,.

The augmented Lagrangian algorithm ALG2 consists, starting from (¢°, ¢°, o°)
to generate inductively a sequence (¢, ¢", 0") as follows:
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e Step 1: minimization with respect to ¢:

¢"*! := argmin, {F(gb) +o" - Ao+ g|A¢ — q"|2}, (2.13)

e Step 2: minimization with respect to g¢:

n : n r s
¢+ = argmin, {Glq) — 0" - g+ S|A6™ — g}, (2.14)
e Step 3: update the multiplier by the gradient ascent formula

o't =0 4 (A" — ¢"). (2.15)

The convergence of ALG2 to a saddle-point is well documented see in
particular the general results of Bertsekas and Eckstein [21] in finite dimen-
sions. We therefore have to understand that in the problems above, we
have already projected the potentials in (2.10) on a finite-dimensional space
of finite-elements and therefore deal with a finite-dimensional problem for
which existence of a saddle-point is rather standard and convergence follows
from [21].

2.2 Details for the three steps

Step 1 corresponds to a linear elliptic problem in ¢ and =z,
—r A" = divy (", m™) — r(a™, b)), in (0,1) x €, (2.16)
together with the boundary conditions
r0, "0, .) = p* — p™(0,.) +ra™(0,.), (2.17)

r(0" (L) + "L ) = = (L) + (et (L) = (), (218)

and

. a¢n+1
ov
(or periodic boundary conditions if €2 is replaced by the flat torus).
Step 2 splits into two convex pointwise (i.e. for every ¢ and x) mini-
mization subproblems, the first one (minimization with respect to (a,b)) is
a projection problem onto the parabola K:

+ (m" —7rb") - v =0 on 00. (2.19)

1
(a?br)ng | D™+ (¢, x) + ;(,u”(t, x),m"(t,z)) — (a,b)|? (2.20)



(a™(t,x),b" (¢, 1)) = Px <D¢”+1(t, T)+ %(u”(zﬁ, x), m"(t, x)))

where the projection Py onto K is explicit (see [5] or [35]):

(CY?ﬁ)? lf (Q7/3) EK?

(a— A, 1%\), with A > 0 root of (2.21) otherwise

PK(a7 B) = {
where (2.21) is the cubic equation (with a single positive root if (o, 5) ¢ K):

a1+ N2 = A1+ N)? + %W = 0. (2.21)

The second subproblem gives the update for ¢ which is obtained by solving
for each x € Q2

n+1 _ : C n+1 _1 n 2 * E
" (x) —argmlnceR{2|gz5 (1,z) Tul(x)—i—d +7€& (x,7_>}. (2.22)

Remark 2.1. Given a convex ls.c. function f: R — R U {400}, we recall
that the proximal operator of f, prox, is defined by

) 1 n
prox;(yo) := argmin,cgn {§|y — yo|® + f(y)}, Yyo € R

so that (2.22) can be rewritten as

1
¢ (@) = proxze (= ¢ (L w) + (o) ).

Thanks to the well-known (and actually easy to check) Moreau’s identity

prox;(y) =y — prox.(y), (2.23)

we see that it is not necessary to compute E* to solve (2.22) if the computa-
tion of proxy turns out to be easier.

Step 3 is an explicit update which may be detailed as

W = 4 (@ = ), (2:24)
m"tt = m" 4 (Ve — b, (2.25)
P = = (@M (L) + ). (2.26)



Note that only the minimization with respect to ¢ (2.22) in step 2 de-
pends on the form of the energy £, we shall give details for this step in each
application given in the sequel.

In the Finite Element discretisation of this algorithm, we use P2 FE (in
time and space) for ¢ and P1 FE for o so that in (2.20), in fact, one has
to understand D¢"*! as its projection onto P1 FE. It was implemented in
FreeFeem++!. In practice, a discretization with 32 x 32 triangles in space
and 4 inner timesteps needs a few hundreds iterations of ALG2 for each JKO
time step. This is a few minutes on a standard laptop. Larger discretizations
can be done using FreeFem mpi version which uses for instance MUMPS
parallel linear solver?.

3 Applications

We now present two appplications of the ALG2-JKO scheme: the first one
deals with the porous medium equation and the second one with a diffusive
model of crowd motion recently introduced in [32].

3.1 Application to the porous medium equation

The porous medium equation

m

Op = div(pV( P V) = Ap™ + div(pVV) (3.1)

m— 1
corresponds to

E(p) = %pm, €(p) Z/QE(p)ﬂL/QpV

In this case

£ = (M)

m

| () = vi).) ™

and then (2.22) consists in a pointwise minimization problem: given z € €,
setting ¢ = —¢" (1, 2) + %@) and V = V(z), we have to solve

inf{1|c—6|2+9<(C—TV)+)mml}withQ:: L (m_—1>,,:"1 (3.2)

ceR L2 rTm—1 m

thttp://www.freefem.org
http://mumps.enseeiht.fr/
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whose solution is

¢, ife< 1V,
CcC =
the root in (7V, 4+00) of (3.3) otherwise

where (3.3) is the equation

Om

e=c+ =3 (3.3)

m_l(c—TV)m

The case of a linear diffusion (Fokker-Planck) corresponds to an entropic

internal energy F(p) = plog(p), in which case by similar computations, one
finds ¢ = ¢(x) by solving

1 .
C=c+-er V7L (3.4)
r

Figure 1 shows the evolution of the density for m = 3 and V = % As
expected, we converge towards the stationnary Barenblatt profile BB(z) =
(2=t max(1 —|z]%, 0))7-7. Discretization is 16 x 16 in space. We use 8 inter-

nal time steps in each JKO step and make sure the ALG2 iterations converge
"reasonably” (a 107° tolerance is prescribed in the optimality system). There
are 200 JKO steps (timestep = 0.01).

The plot in figure 2 gives quantitative information on the convergence
towards the stationnary profile, decrease of energy and conservation of mass.

t=0 t=0.15 t=0.6 t=0.9 t=1.5

Figure 1: Density at different time steps for the porous medium equation with
a confining potential

3.2 Application to crowd motions

In [32], Santambrogio and Mészaros considered a model of congested crowd
motion with diffusion which leads to

Op — Ap =div(p(VV +Vp)), p>0, p< 1, p(1—p) =0, (3.5)

11



1 1 T
—.—-LogT0(Mass Error)
AL Log10(L' Distance to BB) | _
— — Log(Energy-E ;)

Figure 2: This stmulation shows the time evolution towards the stationary
Barenblatt profile for m = 3. The first curve shows the mass of the density
remains within the discretization error to the constant value (in log scale).
The second curve is the L' distance of the density to the Barenblatt ezact
profile BB(z) = (2= max(1— |z, 0))ﬁ, reached up to discretization error
again (in log scale). The last curve shows the decrease of the difference between
the density energy (potential + entropy) E(p) and Barenblatt energy E(BB)
in log scale. As expected the decrease behaves like —2t down to numerical

discretization error.

with no flux boundary condition. In the nondiffusive case (no Laplacian
in the left hand side), this model is due to Maury, Roudneff-Chupin and
Santambrogio [31] who made it clear that it has a gradient flow structure.
The diffusive case (3.5), of course also has a gradient flow structure for the
following energy

£(p) = / E(p(z))dz + / V(2)p(x)da

Q
with
plog(p), if p € [0,1]

E = 10 + =
(p) := plog(p) + xpo,11(p) {+oo,otherwise.

A direct computation gives

E*(x,c) = max (E — V(z), ef_v(x)_1>

T

and then, again setting, ¢ = —¢""!(1,z) + @ and V = V(x), (2.22)
becomes

1 c
min {—\c —*+ T max (E -V, e?_v_1>}
c L2 T T

12



whose solution is explicit:

Je-Life>r(1+V)+1,
| the root of (3.4), otherwise.

t=20 t=0.02 t=10.04 t = 0.06 t=0.08 t="1Ts

Figure 3: Crowd motion evolution of one species with potential V ((xy,25)) =
30(((z2) — 1/4)? + (zo + 1/4)?)((z2 — 1/2)* + 2?). The first row represents
the evolution under the constraint p < 1 and the second the evolution under
the constraint p < 2.

In figure 3, we represent the evolution of one species, the potential has
three minima (hot spots where the crowd wants to go) but with two different
density constraints. When the density threshold is higher (second row p < 2)
then, at the end, the density is more concentrated around the three minima
of the potential.

13



4 Semi-implicit variant and nonlocal interac-
tions

If we consider a nonlocal interaction term [, o W(z,y)p(z)p(y)dzdy (with

W symmetric and smooth) in the general form of the equation (1.3), the final

term £ becomes nonconvex. Therefore, in order to be able to use our Aug-

mented Lagrangian strategy, we have to modify the JKO scheme in a semi-
1

implicit way by replacing the nonconvex bilinear term % [, o W (x, y)p(z)p(y)dzdy

by the linear one [, W(z,y)p(z)p"(y)dzdy. This leads to the semi-implicit
scheme

1
27

k

1 € arguincp, { 3 W(0,0") + EG0) ) (1)

where

&l = [ Blp@)dr+ [ V@p@do+ [ W)y,

QxQ
(4.2)
We refer to [15] for the convergence of this scheme to the solution of equation
(1.3). For each time step, we then have to solve exactly the same type of
problems as in section 3.1 except that the potential has to be updated at

each step.

o S

a=4,b=2 a=4b=14 a=4b=08

Figure 4: Q = (—0.5,0.5)%, final state, starting from a uniform measure,
with potential V- = 0, E(p) = 0.01 *x (plog(p)) and interaction potential
W(z) = |z]* — |z’

14



5 Systems

Our aim now is to show that the ALG2-JKO scheme can also be used for
systems. We first show how the semi-implicit ALG2-JKO scheme can easily
be extended to systems which are coupled through interaction drift terms
(such systems are not gradient flows in general). We then address the gen-
eralization of the Mészaros and Santambrogio model to the case of several
populations, in this case, the coupling is through a total density constraint
(and then a common pressure field) and the corresponding system actually
has a gradient flow structure.

5.1 Interacting species

Let us take two species for the sake of simplicity and consider the evolution
of the densities of these two species, coupled only through interaction terms:

Orpr = div(p1(VE(p1)+VUilpr, p2])), Orpz = div(p2(V E)(p2)+VUa[p1, p2]))

(5.1)
with energies F, and F5 corresponding to independent linear or non linear
diffusion terms and the coupling drift terms given (as in Di Francesco and
Fagioli [20]) by convolutions with smooth kernels and individual potentials
Vi and Vs

Uilp1, p2]l = Vi + Wiy % p1 + Way % pa, Usp1, p2] = Vo + Wia % p1 + Wag % pa.

The nondiffusive case where F; = Ey = 0 was studied by Di Francesco and
Fagioli [20]. Note that (5.1) is not a gradient flow except in the particular
case where interactions are symmetric i.e. Wiy = Wy;. The semi-implicit
JKO scheme first proposed by Di Francesco and Fagioli in the nondiffusive
case consists in defining inductively p} and p§ by

.1
g7t = axgmin, W3 )+ [ Brlpla)da+ [ Uloh sl@@de (52
and

.1
ph7 = argmin, oW (o, 5)+ [ Balplo)dos [ Ualoh, dlwlola)ds. 63)

The convergence of this scheme is established in Di Francesco and Fagioli
[20] in the nondiffusive case and by Carlier and Laborde [15] in the diffusive
case. Clearly, each independent subproblem (5.2) and (5.3) can be solved
by the ALG2-JKO scheme described in section 2 and the extension to more
than two species is direct as shown in the simulations below.

15



In figure 5, we see the evolution of two species which solve (5.1) with

Ev(p) = Exp) = %Pg’a Vi=V, =0, Wi(z) = Wal(z) = Wy(z) = %
2
and Wip(z) = —%. In other words, the first species is attracted by the

second one but the second species is repelled by the first one. Since we have
attractive self-interactions, the two species do not spread too much.

t=20 t=0.1 t=0.2 t=04 t=038 t=1

Figure 5: Fvolution of two species where the first one is attracted by the other
and the second one is repelled by the first one. Top row: display of p1 + p2.
Middle row: display of p1. Bottom row: display of ps.

This scheme can treat systems with more than two species. In figure 6,
we represent evolution of three species which run after each other. More

precisely, the interaction potentials we use are of the form

Uilpr, p2, ps] = |z|* * pis1 — |z]” % pi_a,

where py := p; and pg 1= ps.
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® "
t=20 t=20.1 t=20.2 t=20.3 =04 t=20.5

Figure 6: Fvolution of three species running after each other with linear
diffusion. Top row: display of p1 + p2 + ps. Bottom row: display of p;.

5.2 Crowd motion with diffusion and several species

A natural variant of the model of [32], consists in considering two (or more)
populations, each of whom having its own potential but coupled through
the constraint that the total density cannot exceed 1 and then subject to
a common pressure field. Note that a variant, without diffusion, with fixed
initial and final densities and total density equal to 1 was treated in [6]. For
a linear diffusion (corresponding to a Brownian noise on each species), the
two-species crowd dynamics is expressed by the PDEs

Op1 — Apy — div(p(VV1 + Vp)) = 0,
Orpa — Ape — div(pa(VVa 4+ Vp)) =0,
p>0,p1+p2 <1, p(1—p1—p2)=0.

Which is the gradient flow (for the product Wasserstein distance) of the
energy

&) =3 [ (i1og(p) +Vie) + [ X () + pala))d

For a more general energy of the form

E(p1, p2) = E1(p1) + E2(p2) + Emix(p1 + p2)

with
(00 i= [ (Bip) + Vip), Eunclp) = [ Buip(o)do
the gradient flow of £ is the following system with a coupling in the diffusion:

Opi = div(piV (Vi + Ei(p1) + Epi(pr + p2))), i =1, 2. (5.4)
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The JKO scheme for this energy then reads

(P71, p5 ™) = argming,, ., {Z —W5( pz,pl)+5(p1,pz)} (5.5)

which, in the particular case of the linear diffusion crowd motion problem
with two species, takes the form

2

. 1
(P7*, p5 ™) = argmin , o { > (EW22<101'7 pi)+ /Q(m log(ps) + ‘/ipi)> }
=1

Arguing as in section 2, setting ¢ = (¢1, #2), (D1, Dea) 1= (9s1, Vi, 012, V),
q = (q1,q2) = (a1,b1,¢1,0a0,b2,¢2), 0 = (01,02) = ((1, M1, f11), (2, Mo, f12))

and defining the convex set K by (2.8), one can rewrite the discretization of
(5.5) as a saddle-point problem for the augmented Lagrangian

Lr(¢.4,0) Z/@Ofcﬂz dx"‘Z/XK ai(t, z),bi(t, z))dxdt
+Z/ (i, mi) - (Do — (ag, b;)) + |D¢l (ai,bi)\z)dmdt

+ Z/Q <g|¢i(1,x) +ci(2)2dz — ($i(1,2) + ci(:zj))ﬁi(x)>dg;

c c
+7&* (—1, —2> :
T T
One can then again use ALG2 for this Lagrangian, note that since the cou-
pling between the two species only appears in term 78*(%, %), the only
significant difference is in the proximal problem in the variables ¢ = (c1, ¢2)
of the second step of the algorithm. Taking » = 1 for simplicity and using
remark 2.1, we see that the two-populations analogue of (2.22) simply takes
the form

(6 (2), ¢4 (@) = Prox e oz ( = 0171 (1,2) + B (), 65 (1,2) + 3 ()
:<7Mu@+%wr&“@@+£@)
= Drox, e (~04 T (1,2) + (@), — 0" (1, ) + i3 (x))

In the two populations crowd motion model with linear diffusion, setting
Vi = Vi(w) and & — — (1,@) + i2(x), prox,e(,.,(c1,7) is obtained by
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solving

inf {

2
1=

(ci — @)+ 7(cilog(e) + Viei) = ¢ > 0,14 ¢ < 1}

DN | —

1

whose solution is again quasi explicit. More precisely
ProX,e(p, (€1, C2) = (¢r(cr — V1), 6-(C2 — TV2))
if ¢.(¢1 — 7V1) + ¢-(¢2 — 7V2) < 1 where ¢, () is the positive root of
c+7(loge+1) =«
and
D10%, 0, (E1,2) = (121 — B+ 7(Vo = V), 1 = (@1 — & + 7(Va — 1))
where () is the root in (0,1) of

c—l—Tlog(lL> =a+1,
—c

otherwise. This proximal computation therefore only involves scalar mono-
tone equations and is therefore not more complicated than what we saw in
the case of a single equation.

In figure 7, we see two populations which cross each other. When they
start to cross each other at time ¢ = 0.05, we remark that the density of p;
and p, decrease and the sum is saturated.

Y S % :1;
A w &
| a S

t=20 t=0.05 t=0.1 t=0.15 t=0.2

Figure 7: Evolution of two species crossing each other with density constraint.
Top row: display of p1 + p2. Bottom row: display of p;.

In figure 8, we add a obstacle in the middle. This can be done using a
potential with very high value in this area.
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Figure 8: Fvolution of two species crossing each other with density constraint
and an obstacle. Top row: display of p1 + p2. Bottom row: display of p;.
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