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Taking advantage of the Benamou-Brenier dynamic formulation of optimal transport, we propose a convex formulation for each step of the JKO scheme for Wasserstein gradient flows which can be attacked by an augmented Lagrangian method which we call the ALG2-JKO scheme. We test the algorithm in particular on the porous medium equation. We also consider a semi implicit variant which enables us to treat nonlocal interactions as well as systems of interacting species. Regarding systems, we can also use the ALG2-JKO scheme for the simulation of crowd motion models with several species.

Introduction

It is well-known since the seminal work of Jordan Kinderlehrer and Otto [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF] that the Fokker-Planck equation

∂ t ρ = ∆ρ + div(ρ∇V ), ρ| t=0 = ρ 0 (1.1)
where the initial condition ρ 0 is a probability density may be viewed as the Wasserstein gradient flow of the (relative) entropy functional

S V (ρ) := R d ρ(x) log ρ(x) e -V (x) dx. (1.2)
More generally, given an internal energy E, a potential V and an interaction potential W , evolution equations of the form

∂ t ρ = div(ρ∇(E (ρ) + V + W ρ)), ρ| t=0 = ρ 0 (1.3)
is the Wasserstein gradient flow of the energy

E(ρ) := R d E(ρ(x))dx + R d V (x)ρ(x)dx + 1 2 R d ×R d W (x -y)ρ(x)ρ(y)dxdy.
For instance, if E(ρ) = 1 m-1 ρ m and V = W = 0 one in particular recovers the porous medium equation ∂ t ρ = ∆ρ m , see the seminal work of Otto [START_REF] Otto | The geometry of dissipative evolution equations: the porous medium equation[END_REF]. Convolution terms ∇W ρ in (1.3) arise naturally in aggregation equations [START_REF] Carrillo | Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations[END_REF] and models of granular media [START_REF] José | Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates[END_REF], [START_REF] José | Contractions in the 2-Wasserstein length space and thermalization of granular media[END_REF].

The celebrated Jordan-Kinderlehrer-Otto (henceforth JKO) scheme consists, given a time-step τ > 0 in constructing inductively, starting from ρ 0 a sequence of probability measures ρ k by the implicit Euler scheme:

ρ k+1 ∈ argmin ρ∈P 2 1 2τ W 2 2 (ρ, ρ k ) + E(ρ) (1.4) 
where P 2 denotes the set of probability measures on R d having finite second moments and W 2 2 is the squared 2-Wasserstein distance defined for every (ρ, ν) ∈ P 2 × P 2 by

W 2 (ρ, ν) := inf γ∈Π(ρ,ν) R d ×R d
|x -y| 2 dγ(x, y)
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mass conservation and energy dissipation are inbuilt in the JKO scheme and non trivial to preserve with non-linear finite-difference or finite volume schemes (see [START_REF] Cancès | Entropy-diminishing CVFE scheme for solving anisotropic degenerate diffusion equations. In Finite volumes for complex applications[END_REF] and references therein). Also some JKO gradient flows, like congested crowd motions [START_REF] Maury | A macroscopic crowd motion model of gradient flow type[END_REF], cannot be formulated as nonlinear PDEs and the JKO semi-discretisation is the only numerical option.

A serious difficulty with this approach is in the Wasserstein term which involves solving a costly optimal transport problem at each step. In dimension one, this is not really an issue since the optimal transport is essentially a rearrangement problem, and in fact, this 1-D numerical approach was proposed in the early work of Kinderlehrer and Walkington [START_REF] Kinderlehrer | Approximation of parabolic equations using the Wasserstein metric[END_REF] and was used repeatedly. See in particular the recent work of Osberger and Matthes [START_REF] Osberger | Convergence of a fully discrete variational scheme for a thin-film equation[END_REF] for application to fourth-order evolution PDEs of thin films type. In higher dimensions, the optimisation problem in (1.4) is much more complicated because the optimal transport is given by Brenier's map, the gradient of a convex potential which solves some Monge-Ampère equation.

At least three categories of approaches have been followed to solve (1.4) numerically.

A first "Lagrangian" strategy based on Brenier's Theorem is to formulate the problem in terms of the transport map or its potential instead of the density ρ to avoid dealing with the positivity and mass constraints. It also allows a more consistent discretisation of the mass when the density concentrates or dilates. This is done for instance in Carrillo and Moll [START_REF] Carrillo | Numerical simulation of diffusive and aggregation phenomena in nonlinear continuity equations by evolving diffeomorphisms[END_REF] who proposed a Lagrangian scheme, based on a gradient flow for evolving diffeomorphisms (not necessarily the optimal transport maps) related to a system of evolution equations which is very nonlinear since it involves cofactors. Osberger and Matthes [START_REF] Matthes | Convergence of a variational Lagrangian scheme for a nonlinear drift diffusion equation[END_REF] introduce a Galerkin discretisation of the potential. As illustrated in [START_REF] Patacchini | Numerical study of a particle method for gradient flows[END_REF], where another Lagrangian method is introduced, a difficulty with the Lagrangian approach is the construction of a discrete density to be used in the internal energy. A semi-discrete solution to this problem has been proposed in [START_REF] Benamou | Discretization of functionals involving the monge-ampère operator[END_REF] based on optimal maps, a discretisation of the Monge-Ampère operator and techniques of computational geometry. This method is provably convergent and enables one to use of a Newton method. Note that using monotone finite difference Monge-Ampère solvers as introduced in [START_REF] Benamou | Numerical solution of the optimal transportation problem using the Monge-Ampère equation[END_REF], [START_REF] Benamou | Monotone and consistent discretization of the monge-ampere operator[END_REF] could be an option but it does not seem to have been tried.

A second strategy, which is Eulerian, is to use the Monge-Kantorovich linear relaxation of the Wasserstein distance in (1.4). The size of the discretisation is very limited by the linear programming approach. However, Peyré [START_REF] Peyré | Entropic wasserstein gradient flows[END_REF] recently generalised entropic regularisation techniques that are computationally efficient in optimal transport [START_REF] Benamou | Iterative bregman projections for regularized transportation problems[END_REF] to treat JKO gradient flows.

In the present paper we investigate a third approach, also Eulerian, based on replacing the Wasserstein distance with the Benamou-Brenier formulation [START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF]. This idea has already been used in [START_REF] Burger | A mixed finite element method for nonlinear diffusion equations[END_REF], [START_REF] Burger | Regularized regression and density estimation based on optimal transport[END_REF], [START_REF] Benamou | Mixed L 2 -Wasserstein optimal mapping between prescribed density functions[END_REF], [START_REF] Benamou | Numerical resolution of an "unbalanced" mass transport problem[END_REF] either for JKO steps or in optimisation problems where the Wasserstein distance intervenes. Our original contribution, initiated in [START_REF] Benamou | Augmented Lagrangian Methods for Transport Optimization, Mean Field Games and Degenerate Elliptic Equations[END_REF] on a general class of Optimal Transport problems and variational Mean Field Games [START_REF] Lasry | Mean field games[END_REF], is to extend this convex reformulation and its augmented Lagrangian numerical resolution based on the algorithm ALG2 of Glowinski and Fortin [START_REF] Fortin | Augmented Lagrangian methods[END_REF] to solve a succession of problems of the form (1.4), we will call this method ALG2-JKO. We also show that the method can be adapted to treat systems (which are not necessarily gradient flows) using the relaxation introduced in [START_REF] Di | Measure solutions for nonlocal interaction PDEs with two species[END_REF] by Di Francesco and Fagioli and extended to the diffusive case in [START_REF] Carlier | On systems of continuity equations with nonlinear diffusion and nonlocal drifts[END_REF].

The Benamou-Brenier formulation induces an extra time dimension in each of the JKO steps. The resulting extra cost because of the discretisation of the inner (Benamou-Brenier) time dimension is usually considered a draw back. In the ALG2-JKO scheme however, since the successive JKO density time snapshots are close only a very few inner timesteps are needed in practice. The ALG2 augmented Lagrangian method is very robust, can deal with non-smooth energies but remains a proximal splitting first order method and converges slowly [START_REF] Papadakis | Optimal transport with proximal splitting[END_REF].

The paper is organized as follows. In section 2, we describe the ALG2-JKO scheme. In section 3, we illustrate the algorithm on two examples: the porous medium equation and a model of crowd motion with diffusion introduced by Santambrogio and Mészáros in [START_REF] Meszaros | A diffusive model for macroscopic crowd motion with density constraints[END_REF]. Section 4 addresses the case of interaction terms, as in aggregation or granular media equations by a semi-implicit variant of the ALG2-JKO scheme. Finally, section 5 extends the method to several systems: interacting species (which are not gradient flows) and diffusive models of crowd motions à la Santambrogio and Mészáros with several populations.

The ALG2-JKO scheme

Let us consider one step of the JKO scheme (1.4) in the case where the energy E is of the form

E(ρ) := R d E(ρ(x))dx + R d V (x)ρ(x)dx
with E a convex internal energy (typical cases being the entropy or a convex power), which corresponds to the time discretization of the PDE:

∂ t ρ = div(ρ∇(E (ρ) + V )), ρ| t=0 = ρ 0 . (2.1)
Our goal is to rewrite (1.4) as a tractable convex problem. To do so, we use the Benamou-Brenier dynamic formula [START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF] to rewrite W 2 2 as

W 2 2 (ρ, ν) := inf 1 0 R d |m t (x)| 2 µ t (x) dxdt : ∂ t µ + div(m) = 0, µ| t=0,1 = ρ, ν (2. 
2) which is a convex variational program (it is implicit that the energy above is set to +∞ whenever µ becomes negative or when µ = 0 and m = 0 so that momentum m can be written as m = µv that is m vanishes where µ does and then |m| 2 /µ = µ|v| 2 is the kinetic energy).

Thanks to (2.2) one can rewrite one step of the JKO scheme (1.4) as the convex minimization: inf (µt,mt,µ 1 =µt(1,.))

1 2τ 1 0 R d |m t (x)| 2 µ t (x) dxdt + E(µ 1 ) (2.3)
subject to the constraints that µ ≥ 0, m = 0 when µ = 0 and the linear constraint

∂ t µ + div(m) = 0, µ| t=0 = ρ k . (2.4) 
One then recovers ρ k+1 = µ 1 (and actually even an interpolation (µ t ) t∈[0,1] between ρ k and ρ k+1 ). Of course we can consider variants, for instance the periodic (in space) case or the case of a smooth bounded domain Ω of R d . In the latter case, we have to supplement the PDE (2.1) with the Neumann boundary condition:

∇(E (ρ) + V )) • ν = 0, on ∂Ω (2.5)
this amounts to modify (2.3)-(2.4) as inf (µt,mt)

1 2 1 0 Ω |m t (x)| 2 µ t (x) dxdt + τ E(µ 1 ) (2.6)
subject to the constraints that µ ≥ 0, m = 0 when µ = 0 and the linear constraint

∂ t µ + div(m) = 0, µ| t=0 = ρ k , m • ν = 0 on ∂Ω. (2.7)

Augmented Lagrangian formulation

Convex time-dependent problems like (2.6) subject to a divergence constraint (2.7) appear in various contexts, they are actually particular cases of deterministic Mean-Field Games (a class of games with a continuum of players introduced by Lions and Lasry [START_REF] Lasry | Jeux à champ moyen. I. Le cas stationnaire[END_REF], [START_REF] Lasry | Jeux à champ moyen. II. Horizon fini et contrôle optimal[END_REF]). Such problems can be solved by Augmented Lagrangian methods, see in particular [START_REF] Benamou | Augmented Lagrangian Methods for Transport Optimization, Mean Field Games and Degenerate Elliptic Equations[END_REF] for applications to Mean-Field Games, Papadakis, Peyré and Oudet [START_REF] Papadakis | Optimal transport with proximal splitting[END_REF] for connections with proximal schemes and Buttazzo, Jimenez and Oudet [START_REF] Buttazzo | An optimization problem for mass transportation with congested dynamics[END_REF] for applications to congested transport. We now recall the principle of the Augmented Lagrangian approach and explain how to use it in the JKO framework.

As was observed by Benamou and Brenier [START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF] the convex lsc 1-homogeneous function defined for (µ, m) ∈ R × R d by:

Φ(µ, m) :=      |m| 2 µ , if µ > 0, 0, if µ = 0 and m = 0 +∞, otherwise.
is the support function of the convex set

K := {(a, b) ∈ R d+1 , a + 1 2 |b| 2 ≤ 0} (2.8) i.e. Φ(µ, m) = sup (a,b)∈K {aµ + b • m}. Our convex problem (2.6)-(2.7) then is dual to: inf φ=φ(t,x) { Ω φ(0, .)ρ k + τ E * - φ(1, .) τ : ∂ t φ + 1 2 |∇φ| 2 ≤ 0} (2.9)
where E * is the Legendre tranform of E (extended by +∞ on (-∞, 0]):

E * (c) := sup µ≥0 { Ω ((c(x) -V (x))µ(x) -E(µ(x))dx} = Ω E * (x, c(x))dx
where, slightly abusing notations, we have set

E * (x, c) := sup µ≥0 (c -V (x))µ -E(µ) .
We then rewrite the dual as inf φ=φ(t,x)

J(φ) := F (φ) + G(Λφ) (2.10)
where

Λφ := (Dφ, -φ(1, .)) = ((∂ t φ, ∇φ), -φ(1, .)), F (φ) = Ω φ(0, .)ρ k
and for q = (a, b, c)

G(q) = 1 0 Ω χ K (a, b)dxdt + τ E * c τ
where χ K denotes the indicator function

χ K (a, b) = 0, if (a, b) ∈ K +∞, otherwise.
Now the variables σ := (µ, m, µ 1 ) play the role of Lagrange multipliers associated to the constraint q = Λφ i.e. a = ∂ t φ, m = ∇φ and c = -φ(1, .), note in particular that µ 1 is a multiplier associated to the constraint c = -φ(1, .) it coincides with µ(1, .) for the saddle-point but not necessarily along the iterations of the augmented Lagrangian algorithm below.

The primal-dual extremality relations are formally equivalent to finding a saddle-point of the Lagrangian

L(φ, q, σ) := F (φ) + G(q) + σ • (Λφ -q), (2.11) 
in the sense that (φ, σ) satisfies the optimality conditions of (2.10) and (2.6)-(2.7) respectively if and only if

(φ, q, σ) = (φ, Λφ, σ)
is a saddle-point of L. Now for r > 0, we consider the augmented Lagrangian function

L r (φ, q, σ) := F (φ) + G(q) + σ • (Λφ -q) + r 2 |Λφ -q| 2 (2.12)
where q = (a, b, c), σ = (µ, m, µ 1 ),

σ • (Λφ -q) = 1 0 Ω µ(t, x)(∂ t φ(t, x) -a(t, x)) + m(t, x) • (∇φ(t, x) -b(t, x)) dxdt + Ω µ 1 (x)(-φ(1, x) -c(x))dx and |Λφ -q| 2 = 1 0 Ω (|∂ t φ(t, x) -a(t, x)| 2 + |∇φ(t, x) -b(t, x)| 2 )dxdt + Ω (φ(1, x) + c(x)) 2 dx
and recall (see for instance [START_REF] Fortin | Augmented Lagrangian methods[END_REF], [START_REF] Gabay | A dual algorithm for the solution of nonlinear variational problems via finite element methods[END_REF]) that being a saddle-point of L is equivalent to being a saddle-point of L r . The augmented Lagrangian algorithm ALG2 consists, starting from (φ 0 , q 0 , σ 0 ) to generate inductively a sequence (φ n , q n , σ n ) as follows:

• Step 1: minimization with respect to φ:

φ n+1 := argmin φ F (φ) + σ n • Λφ + r 2 |Λφ -q n | 2 , (2.13) 
•

Step 2: minimization with respect to q:

q n+1 := argmin q G(q) -σ n • q + r 2 |Λφ n+1 -q| 2 , (2.14) 
• Step 3: update the multiplier by the gradient ascent formula

σ n+1 = σ n + r(Λφ n+1 -q n+1 ). (2.15)
The convergence of ALG2 to a saddle-point is well documented see in particular the general results of Bertsekas and Eckstein [START_REF] Eckstein | On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators[END_REF] in finite dimensions. We therefore have to understand that in the problems above, we have already projected the potentials in (2.10) on a finite-dimensional space of finite-elements and therefore deal with a finite-dimensional problem for which existence of a saddle-point is rather standard and convergence follows from [START_REF] Eckstein | On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators[END_REF].

Details for the three steps

Step 1 corresponds to a linear elliptic problem in t and x,

-r∆ t,x φ n+1 = div t,x ((µ n , m n ) -r(a n , b n )), in (0, 1) × Ω, (2.16) 
together with the boundary conditions r∂ t φ n+1 (0, .) = ρ k -µ n (0, .) + ra n (0, .), (2.17)

r(∂ t φ n+1 (1, .) + φ n+1 (1, .)) = µ n 1 -µ n (1, .) + r(a n (1, .) -c n (.)), (2.18) 
and

r ∂φ n+1 ∂ν + (m n -rb n ) • ν = 0 on ∂Ω. (2.19) 
(or periodic boundary conditions if Ω is replaced by the flat torus).

Step 2 splits into two convex pointwise (i.e. for every t and x) minimization subproblems, the first one (minimization with respect to (a, b)) is a projection problem onto the parabola K:

inf (a,b)∈K |Dφ n+1 (t, x) + 1 r (µ n (t, x), m n (t, x)) -(a, b)| 2 (2.20) i.e. (a n+1 (t, x), b n+1 (t, x)) = P K Dφ n+1 (t, x) + 1 r (µ n (t, x), m n (t, x))
where the projection P K onto K is explicit (see [START_REF] Benamou | A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem[END_REF] or [START_REF] Papadakis | Optimal transport with proximal splitting[END_REF]):

P K (α, β) = (α, β), if (α, β) ∈ K, (α -λ, β 1+λ 
), with λ > 0 root of (2.21) otherwise where (2.21) is the cubic equation (with a single positive root if (α, β) / ∈ K):

α(1 + λ) 2 -λ(1 + λ) 2 + 1 2 |β| 2 = 0. (2.21)
The second subproblem gives the update for c which is obtained by solving for each x ∈ Ω

c n+1 (x) = argmin c∈R r 2 |φ n+1 (1, x) - 1 r µ n 1 (x) + c| 2 + τ E * x, c τ . (2.22) 
Remark 2.1. Given a convex l.s.c. function f : R n → R ∪ {+∞}, we recall that the proximal operator of f , prox f is defined by

prox f (y 0 ) := argmin y∈R n 1 2 |y -y 0 | 2 + f (y) , ∀y 0 ∈ R n
so that (2.22) can be rewritten as

c n+1 (x) = prox τ r E * (x, . τ ) -φ n+1 (1, x) + 1 r µ n 1 (x) .
Thanks to the well-known (and actually easy to check) Moreau's identity

prox f (y) = y -prox f * (y), (2.23) 
we see that it is not necessary to compute E * to solve (2.22) if the computation of prox E turns out to be easier.

Step 3 is an explicit update which may be detailed as

µ n+1 = µ n + r(∂ t φ n+1 -a n+1 ), (2.24 
)

m n+1 = m n + r(∇φ n+1 -b n+1 ), (2.25) 
µ n+1 1 = µ n 1 -r(φ n+1 (1, .) + c n+1 (.)). (2.26)
Note that only the minimization with respect to c (2.22) in step 2 depends on the form of the energy E, we shall give details for this step in each application given in the sequel.

In the Finite Element discretisation of this algorithm, we use P 2 FE (in time and space) for φ and P 1 FE for σ so that in (2.20), in fact, one has to understand Dφ n+1 as its projection onto P 1 FE. It was implemented in FreeFeem++ 1 . In practice, a discretization with 32 × 32 triangles in space and 4 inner timesteps needs a few hundreds iterations of ALG2 for each JKO time step. This is a few minutes on a standard laptop. Larger discretizations can be done using FreeFem mpi version which uses for instance MUMPS parallel linear solver2 .

Applications

We now present two appplications of the ALG2-JKO scheme: the first one deals with the porous medium equation and the second one with a diffusive model of crowd motion recently introduced in [START_REF] Meszaros | A diffusive model for macroscopic crowd motion with density constraints[END_REF].

Application to the porous medium equation

The porous medium equation

∂ t ρ = div(ρ∇( m m -1 ρ m-1 + V )) = ∆ρ m + div(ρ∇V ) (3.1)
corresponds to

E(ρ) := 1 m -1 ρ m , E(ρ) = Ω E(ρ) + Ω ρV.
In this case

E * (c) = m -1 m m m-1 Ω (c(x) -V (x)) + m m-1 dx
and then (2.22) consists in a pointwise minimization problem:

given x ∈ Ω, setting c = -φ n+1 (1, x) + µ n 1 (x) r and V = V (x), we have to solve inf c∈R 1 2 |c -c| 2 + θ (c -τ V ) + m m-1 with θ := 1 rτ 1 m-1 m -1 m m m-1 (3.2) whose solution is c = c, if c ≤ τ V , the root in (τ V, +∞) of (3.
3) otherwise where (3.3) is the equation

c = c + θm m -1 (c -τ V ) 1 m-1 . (3.3)
The case of a linear diffusion (Fokker-Planck) corresponds to an entropic internal energy E(ρ) = ρ log(ρ), in which case by similar computations, one finds c = c(x) by solving

c = c + 1 r e c τ -V -1 . (3.4)
Figure 1 shows the evolution of the density for m = 3 and V = |x| 2 2 . As expected, we converge towards the stationnary Barenblatt profile

BB(x) = ( m-1 2 m max(1 -|x| 2 , 0)) 1 m-1 .
Discretization is 16 × 16 in space. We use 8 internal time steps in each JKO step and make sure the ALG2 iterations converge "reasonably" (a 10 -6 tolerance is prescribed in the optimality system). There are 200 JKO steps (timestep = 0.01).

The plot in figure 2 gives quantitative information on the convergence towards the stationnary profile, decrease of energy and conservation of mass. 

Application to crowd motions

In [START_REF] Meszaros | A diffusive model for macroscopic crowd motion with density constraints[END_REF], Santambrogio and Mészáros considered a model of congested crowd motion with diffusion which leads to with no flux boundary condition. In the nondiffusive case (no Laplacian in the left hand side), this model is due to Maury, Roudneff-Chupin and Santambrogio [START_REF] Maury | A macroscopic crowd motion model of gradient flow type[END_REF] who made it clear that it has a gradient flow structure. The diffusive case (3.5), of course also has a gradient flow structure for the following energy

∂ t ρ -∆ρ = div(ρ(∇V + ∇p)), p ≥ 0, ρ ≤ 1, p(1 -ρ) = 0, (3.5) 
E(ρ) = Ω E(ρ(x))dx + Ω V (x)ρ(x)dx with E(ρ) := ρ log(ρ) + χ [0,1] (ρ) = ρ log(ρ), if ρ ∈ [0, 1] +∞, otherwise.
A direct computation gives

E * (x, c) = max c τ -V (x), e c τ -V (x)-1
and then, again setting, c = -φ n+1 (1, x) +

µ n 1 (x) r and V = V (x), (2.22) becomes min c 1 2 |c -c| 2 + τ r max c τ -V, e c τ -V -1
whose solution is explicit:

c = c -1 r , if c ≥ τ (1 + V ) + 1
r , the root of (3.4), otherwise. 

V ((x 1 , x 2 )) = 30(((x 2 1 ) -1/4) 2 + (x 2 + 1/4) 2 )((x 2 -1/2) 2 + x 2 1
). The first row represents the evolution under the constraint ρ 1 and the second the evolution under the constraint ρ 2.

In figure 3, we represent the evolution of one species, the potential has three minima (hot spots where the crowd wants to go) but with two different density constraints. When the density threshold is higher (second row ρ 2) then, at the end, the density is more concentrated around the three minima of the potential.

Semi-implicit variant and nonlocal interactions

If we consider a nonlocal interaction term Ω×Ω W (x, y)ρ(x)ρ(y)dxdy (with W symmetric and smooth) in the general form of the equation (1.3), the final term E becomes nonconvex. Therefore, in order to be able to use our Augmented Lagrangian strategy, we have to modify the JKO scheme in a semiimplicit way by replacing the nonconvex bilinear term 1 2 Ω×Ω W (x, y)ρ(x)ρ(y)dxdy by the linear one Ω W (x, y)ρ(x)ρ k (y)dxdy. This leads to the semi-implicit scheme

ρ k+1 ∈ argmin ρ∈P 2 1 2τ W 2 2 (ρ, ρ k ) + E(ρ|ρ k ) (4.1)
where

E(ρ|µ) := Ω E(ρ(x))dx + Ω V (x)ρ(x)dx + Ω×Ω W (x, y)µ(x)ρ(y)dxdy.
(4.2) We refer to [START_REF] Carlier | On systems of continuity equations with nonlinear diffusion and nonlocal drifts[END_REF] for the convergence of this scheme to the solution of equation (1.3). For each time step, we then have to solve exactly the same type of problems as in section 3.1 except that the potential has to be updated at each step. 

Systems

Our aim now is to show that the ALG2-JKO scheme can also be used for systems. We first show how the semi-implicit ALG2-JKO scheme can easily be extended to systems which are coupled through interaction drift terms (such systems are not gradient flows in general). We then address the generalization of the Mészáros and Santambrogio model to the case of several populations, in this case, the coupling is through a total density constraint (and then a common pressure field) and the corresponding system actually has a gradient flow structure.

Interacting species

Let us take two species for the sake of simplicity and consider the evolution of the densities of these two species, coupled only through interaction terms:

∂ t ρ 1 = div(ρ 1 (∇E 1 (ρ 1 )+∇U 1 [ρ 1 , ρ 2 ])), ∂ t ρ 2 = div(ρ 2 (∇E 2 (ρ 2 )+∇U 2 [ρ 1 , ρ 2 ])) (5.1) 
with energies E 1 and E 2 corresponding to independent linear or non linear diffusion terms and the coupling drift terms given (as in Di Francesco and Fagioli [START_REF] Di | Measure solutions for nonlocal interaction PDEs with two species[END_REF]) by convolutions with smooth kernels and individual potentials V 1 and V 2 :

U 1 [ρ 1 , ρ 2 ] = V 1 + W 11 ρ 1 + W 21 ρ 2 , U 2 [ρ 1 , ρ 2 ] = V 2 + W 12 ρ 1 + W 22 ρ 2 .
The nondiffusive case where E 1 = E 2 = 0 was studied by Di Francesco and Fagioli [START_REF] Di | Measure solutions for nonlocal interaction PDEs with two species[END_REF]. Note that (5.1) is not a gradient flow except in the particular case where interactions are symmetric i.e. W 12 = W 21 . The semi-implicit JKO scheme first proposed by Di Francesco and Fagioli in the nondiffusive case consists in defining inductively ρ k 1 and ρ k 2 by

ρ k+1 1 = argmin ρ 1 2τ W 2 2 (ρ, ρ k 1 ) + Ω E 1 (ρ(x))dx + Ω U 1 [ρ k 1 , ρ k 2 ](x)ρ(x)dx (5.2)
and

ρ k+1 2 = argmin ρ 1 2τ W 2 2 (ρ, ρ k 2 )+ Ω E 2 (ρ(x))dx+ Ω U 2 [ρ k 1 , ρ k 2 ](x)ρ(x)dx. (5.
3)

The convergence of this scheme is established in Di Francesco and Fagioli [START_REF] Di | Measure solutions for nonlocal interaction PDEs with two species[END_REF] in the nondiffusive case and by Carlier and Laborde [START_REF] Carlier | On systems of continuity equations with nonlinear diffusion and nonlocal drifts[END_REF] in the diffusive case. Clearly, each independent subproblem (5.2) and (5.3) can be solved by the ALG2-JKO scheme described in section 2 and the extension to more than two species is direct as shown in the simulations below.

In figure 5, we see the evolution of two species which solve (5.1) with

E 1 (ρ) = E 2 (ρ) = 1 2 ρ 3 , V 1 = V 2 = 0, W 11 (x) = W 21 (x) = W 22 (x) = |x| 2 2 and W 12 (x) = -|x| 2 2 .
In other words, the first species is attracted by the second one but the second species is repelled by the first one. Since we have attractive self-interactions, the two species do not spread too much. This scheme can treat systems with more than two species. In figure 6, we represent evolution of three species which run after each other. More precisely, the interaction potentials we use are of the form

U i [ρ 1 , ρ 2 , ρ 3 ] = |x| 2 * ρ i+1 -|x| 2 * ρ i-1 ,
where ρ 4 := ρ 1 and ρ 0 := ρ 3 . 

Crowd motion with diffusion and several species

A natural variant of the model of [START_REF] Meszaros | A diffusive model for macroscopic crowd motion with density constraints[END_REF], consists in considering two (or more) populations, each of whom having its own potential but coupled through the constraint that the total density cannot exceed 1 and then subject to a common pressure field. Note that a variant, without diffusion, with fixed initial and final densities and total density equal to 1 was treated in [START_REF] Benamou | Numerical analysis of a multi-phasic mass transport problem[END_REF]. For a linear diffusion (corresponding to a Brownian noise on each species), the two-species crowd dynamics is expressed by the PDEs    ∂ t ρ 1 -∆ρ 1 -div(ρ 1 (∇V 1 + ∇p)) = 0, ∂ t ρ 2 -∆ρ 2 -div(ρ 2 (∇V 2 + ∇p)) = 0, p ≥ 0, ρ 1 + ρ 2 ≤ 1, p(1 -ρ 1 -ρ 2 ) = 0.

Which is the gradient flow (for the product Wasserstein distance) of the energy

E(ρ 1 , ρ 2 ) := 2 i=1 Ω (ρ i log(ρ i ) + V i ρ i ) + Ω χ [0,1] (ρ 1 (x) + ρ 2 (x))dx.
For a more general energy of the form

E(ρ 1 , ρ 2 ) := E 1 (ρ 1 ) + E 2 (ρ 2 ) + E mix (ρ 1 + ρ 2 ) with E i (ρ i ) := Ω (E i (ρ i ) + V i ρ i ), E mix (ρ) := Ω E mix (ρ(x))dx
the gradient flow of E is the following system with a coupling in the diffusion:

∂ t ρ i = div(ρ i ∇(V i + E i (ρ 1 ) + E mix (ρ 1 + ρ 2 )
)), i = 1, 2.

(5.4)

The JKO scheme for this energy then reads

(ρ k+1 1 , ρ k+1 2 ) = argmin (ρ 1 ,ρ 2 ) 2 i=1 1 2τ W 2 2 (ρ i , ρ k i ) + E(ρ 1 , ρ 2 ) (5.5)
which, in the particular case of the linear diffusion crowd motion problem with two species, takes the form

(ρ k+1 1 , ρ k+1 2 ) = argmin ρ 1 +ρ 2 ≤1 2 i=1 1 2τ W 2 2 (ρ i , ρ k i ) + Ω (ρ i log(ρ i ) + V i ρ i ) .
Arguing as in section 2, setting φ = (φ 1 , φ 2 ), (Dφ 1 , Dφ 2 ) := (∂ t φ 1 , ∇φ 1 , ∂ t φ 2 , ∇φ 2 ), q = (q 1 , q 2 ) = (a 1 , b 1 , c 1 , a 2 , b 2 , c 2 ), σ = (σ 1 , σ 2 ) = ((µ 1 , m 1 , µ 1 ), (µ 2 , m 2 , µ 2 )) and defining the convex set K by (2.8), one can rewrite the discretization of (5.5) as a saddle-point problem for the augmented Lagrangian L r (φ, q, σ) = One can then again use ALG2 for this Lagrangian, note that since the coupling between the two species only appears in term τ E * c 1 τ , c 2 τ , the only significant difference is in the proximal problem in the variables c = (c 1 , c 2 ) of the second step of the algorithm. Taking r = 1 for simplicity and using remark 2.1, we see that the two-populations analogue of (2.22) simply takes the form (c n+1 
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 1 Figure 1: Density at different time steps for the porous medium equation with a confining potential
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 211 Figure 2: This simulation shows the time evolution towards the stationary Barenblatt profile for m = 3. The first curve shows the mass of the density remains within the discretization error to the constant value (in log scale). The second curve is the L 1 distance of the density to the Barenblatt exact profile BB(x) = ( m-1 2 m max(1 -|x| 2 , 0)) 1 m-1 , reached up to discretization error again (in log scale).The last curve shows the decrease of the difference between the density energy (potential + entropy) E(ρ) and Barenblatt energy E(BB) in log scale. As expected the decrease behaves like -2 t down to numerical discretization error.
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 3 Figure 3: Crowd motion evolution of one species with potentialV ((x 1 , x 2 )) = 30(((x 2 1 ) -1/4) 2 + (x 2 + 1/4) 2 )((x 2 -1/2) 2 + x 2 1). The first row represents the evolution under the constraint ρ 1 and the second the evolution under the constraint ρ 2.
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 2426284 Figure 4: Ω = (-0.5, 0.5) 2 , final state, starting from a uniform measure, with potential V = 0, E(ρ) = 0.01 * (ρ log(ρ)) and interaction potential W (x) = |x| a -|x| b .
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 5 Figure 5: Evolution of two species where the first one is attracted by the other and the second one is repelled by the first one. Top row: display of ρ 1 + ρ 2 . Middle row: display of ρ 1 . Bottom row: display of ρ 2 .

Figure 6 :

 6 Figure 6: Evolution of three species running after each other with linear diffusion. Top row: display of ρ 1 + ρ 2 + ρ 3 . Bottom row: display of ρ 1 .
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whose solution is again quasi explicit. More precisely

where ψ τ (α) is the root in (0, 1) of

otherwise. This proximal computation therefore only involves scalar monotone equations and is therefore not more complicated than what we saw in the case of a single equation. In figure 7, we see two populations which cross each other. When they start to cross each other at time t = 0.05, we remark that the density of ρ 1 and ρ 2 decrease and the sum is saturated. In figure 8, we add a obstacle in the middle. This can be done using a potential with very high value in this area.