
HAL Id: hal-01245138
https://hal.science/hal-01245138v1

Preprint submitted on 16 Dec 2015 (v1), last revised 26 Jul 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resolution in Solving Graph Problems
Kailiang Ji

To cite this version:

Kailiang Ji. Resolution in Solving Graph Problems. 2015. �hal-01245138v1�

https://hal.science/hal-01245138v1
https://hal.archives-ouvertes.fr


Resolution in Solving Graph Problems

Kailiang Ji?

INRIA & Paris Diderot
23 avenue d’Italie, CS 81321, 75214 Paris Cedex 13, France.

kailiang.ji@inria.fr

Abstract. Resolution is a proof-search method for proving unsatisfia-
bility problems. Various refinements have been proposed to improve the
efficiency of this method. However, when we try to prove some graph
properties, it seems that none of the refinements have an efficiency com-
parable with traditional graph traversal algorithms. In this paper we
propose a way of encoding some graph problems as resolution. We define
a selection function and a new subsumption rule to avoid redundancies
while solving such problems.

Keywords: Resolution, Graph Problem, Selection Function, Subsump-
tion

1 Introduction

Since the introduction of Resolution [13], many refinements have been proposed
to increase the efficiency of this method, by avoiding redundancies. A first re-
finement, Hyper-resolution, has been introduced by Robinson himself the same
year as Resolution [12]. More recently Ordered resolution [11, 14], (Polarized)
resolution modulo (PRM) [5, 4], and finally Ordered polarized resolution modulo
(OPRM) [1] introduced more restrictions. However, as we shall see, these kind
of refinements are still redundant.

In order to address the question of the redundancy of proof search methods,
we encode graph problems, e.g. accessibility or cycle detection, as Resolution
problem, and we compare two ways to solve these problems: by using a proof-
search method and by a direct graph traversal algorithm. If the proof-search
method simulates graph traversal step by step, and in particular never visits
twice the same part of the graph, we can say that it avoids redundancies. Oth-
erwise, this helps us analyze and eliminate the redundancies of the method, by
analysing why the method visits twice the same part of the graph.

The two graph problems can be expressed by predicate formulae with class
variables (monadic second-order logic)[3, 6]. For example, the cycle detection
problem can be expressed as:

∃Y (s1 ∈ Y ∧ ∀x(x ∈ Y ⇒ ∃x′(edge(x, x′) ∧ x′ ∈ Y ))).

? This work is supported by the ANR-NSFC project LOCALI (NSFC 61161130530
and ANR 11 IS02 002 01)



2 K. Ji

One can use the method of reducing formulae in finite domain predicate logic to
the effectively propositional (EPR)[10] case, for proving the problems automat-
ically. For example, replace the sub-formula ∀xA by A(s1/x) ∧ A(s2/x) ∧ · · · ∧
A(sn/x), and ∃xA by A(s1/x) ∨ A(s2/x) ∨ · · · ∨ A(sn/x), in which s1, . . . , sn
are the constants for all the vertices of a graph. By adding the theory of the
graph as a set of rewrite rules[6], these problems can be proved by standard
theorem provers, such as IPROVER[9]. If the graph is a Kripke structure, we
can use model checking tools to solve the problems above, by expressing them
in temporal logic [2]. Besides, Büchi automata [8] can be used to solve the cy-
cle detection problem. In this paper we give a propositional encoding of the two
problems above. To reduce the search space and make the resolution work faster,
we add a selection function and a new subsumption rule to eliminate the redun-
dancies generated in the resolution procedure. This method works for encodings
of several graph problems. Its generality still remains to be investigated.

The paper is organized as follows. In Section 2, we briefly present Polarized
resolution modulo. In Section 3, we explain how graph problems are encoded. In
Section 4, we show that Polarized resolution modulo is still redundant. To reduce
the redundant, we introduce our new method by adding a selection function and
a new subsumption rule, without losing completeness of the system. Section 5
discusses some related work. Finally in section 6, we give an implementation and
conclude our work.

2 Polarized Resolution Modulo

In Polarized Resolution Modulo (see Figure 1), clauses are divided into two sets:
one-way clauses (or theory clauses) and ordinary clauses. Each one-way clause
has a selected literal and resolution is only permitted between two ordinary
clauses, or a one-way clause and an ordinary clause, provided the resolved literal
is the selected one (the one underlined later) in the one-way clause.

P ∨ C ¬Q ∨D
Resolution σ = mgu(P,Q)

σ(C ∨D)

L ∨K ∨ CFactoring σ = mgu(L,K)
σ(L,C)

P ∨ CExt.Narr. if ¬Q ∨D is a one-way clause of R, σ = mgu(P,Q)
σ(D ∨ C)

¬P ∨ CExt.Narr. if Q ∨D is a one-way clause of R, σ = mgu(P,Q)
σ(D ∨ C)

Fig. 1. Polarized Resolution Modulo

Proving the completeness of the rules in Figure 1 requires to prove a cut
elimination lemma [5, 4] for Polarized Deduction Modulo, the deduction system



Resolution in Solving Graph Problems 3

with a set of rewrite rules, containing for each one-way clause ¬P ∨ C the rule
P →− C and for each one-way clause P ∨ C the rule P →+ ¬C.

Like in OPRM, in this paper we define a selection function to select literals in
an ordinary clause which have the priority to be resolved and add the selection
function to PRM.

Note that when applying a Resolution rule between an ordinary clause and
a one-way clause, we are in fact using an Extended Narrowing rule on this
ordinary clause. We write Γ 7→R C if C can be derived from the set of clauses
Γ by applying finitely many inference rules of PRM.

3 Basic Definitions

To express the problems, we consider a propositional language which contains
two atomic propositions Pi and Qi for each natural number. We denote a graph
as G = 〈V,E〉, in which V is a set of vertices enumerated by natural numbers, E
is a set of directed edges of the graph. The sequence of vertices l = s0, s1, . . . , sk
is a walk if and only if ∀0 6 i < k, (si, si+1) ∈ E. The walk l is closed if and
only if ∃0 6 j 6 k such that sk = sj . The walk l is blocked if and only if
sk has no successors. The method we proposed is inspired by graph traversal
algorithms. In the following sections, we introduce some terminology inspired by
graph traversal algorithms.

Definition 1 (Black and White Literals). Let G be a graph and {s1, . . . , sn}
be the set of all the vertices in G. For any 1 6 i 6 n, the literal Pi is called a
black literal and the literal Qi is called a white literal.

Intuitively, the black literals denote the vertices that have already been visited,
while the white literals denote the unvisited ones.

Definition 2 (Original Clause). Let G be a graph and {s1, . . . , sn} be the
set of all the vertices in G. For each graph traversal problem starting from si
(1 6 i 6 n), we define the original clause ori(si, G) as

Pi ∨Q1 ∨ · · · ∨Qn.

Definition 3 (Traversal Clause). A clause with only white and black literals
is called a traversal clause.

Definition 4 (Success Clause). Let C be a traversal clause, if there is no i,
such that both Pi and Qi are in C, then C is called a success clause.

Among the three kinds of clauses, the original clause is related to the starting
point of the graph traversal algorithm, the traversal clause is the current process
of the travelling, and the success clause means that the solution is found and the
traversal procedure can be finished. Obviously, the original clauses and success
clauses are also traversal clauses.



4 K. Ji

4 Closed-Walk Detection

In this section, we present an algorithm to find out whether there exists a closed
walk starting from a given vertex.

4.1 Encoding of closed-walk detection problem

For this encoding, we view the graph as a set of rewrite rules, and the initial
situation is denoted by the original clause.

E-coloring rule Let G be a graph and V = {s1, . . . , sn} be the set of all the
vertices in G. For each pair of vertices 〈si, sj〉 in V , if there exists an edge from
si to sj , then we formalize this edge as a E-coloring rewrite rule

Qi ↪→ Pj .

Correspondingly, the one-way clause for the rewrite rule is Q⊥i ∨ Pj (called E-
coloring clause). The set of all the E-coloring clauses for graph G is denoted as
EC(G).

Resolution for closed walk detection Let G be a graph and s be a vertex
of G, then the the problem of checking whether, starting from s, there exists a
closed walk can be encoded as the set of clauses {ori(s,G)}∪EC(G). By applying
resolution rules among these clauses, a success clause can be derived, if and only
if there exists a closed walk starting from s.

start
s1 s2

s3

s4

s5s6

Fig. 2.

Example 1. Consider the graph in Figure 2, check whether there exists a closed
walk starting from s1. For this problem, the original clause is

P1 ∨Q1 ∨Q2 ∨Q3 ∨Q4 ∨Q5 ∨Q6

and the set of E-coloring clauses for this graph are

Q⊥1 ∨ P2, Q⊥1 ∨ P3, Q⊥2 ∨ P4, Q⊥3 ∨ P5, Q⊥3 ∨ P6, Q⊥4 ∨ P5, Q⊥5 ∨ P2.



Resolution in Solving Graph Problems 5

Resolution steps For the original clause, apply Resolution rule with E-coloring
clause Q⊥1 ∨ P2, which yields

P1 ∨ P2 ∨Q2 ∨Q3 ∨Q4 ∨Q5 ∨Q6,

then apply Resolution rule with E-coloring clause Q⊥2 ∨ P4, which yield

P1 ∨ P2 ∨ P4 ∨Q3 ∨Q4 ∨Q5 ∨Q6,

then apply Resolution rule with E-coloring clause Q⊥4 ∨ P5, which yields

P1 ∨ P2 ∨ P4 ∨Q3 ∨ P5 ∨Q5 ∨Q6,

then apply Resolution rule with E-coloring clause Q⊥5 ∨P2, the generated clause

P1 ∨ P2 ∨ P4 ∨Q3 ∨ P5 ∨Q6,

is a success clause, meaning that in Figure 2, there exists a closed walk starting
from s1.

Theorem 1. Let G be a graph and s be a vertex in G. Starting from s, there
exists a closed walk if and only if starting from {ori(s,G)} ∪ EC(G), a success
clause can be derived.

5 Blocked-walk Detection

In this section, we present a method to check whether, starting from a vertex,
there exists a blocked walk or not.

5.1 Encoding of blocked-walk detection problem

For this encoding stategy, the graph is viewed as a set of rewrite rules, which is
different from the rules in the former section. The intial situation is denoted by
the original clause.

A-coloring rule Let G be a graph and V = {s1, . . . , sn} be the set of vertices
of G. For each vertex si in V , assume that starting from si, there are edges to
si1 , . . . , sij , then we formalize the set of edges starting from si as an A-coloring
rule

Qi ↪→ Pi1 ∨ · · · ∨ Pij .

Correspondingly, the one-way clause for the rewrite rule is Q⊥i ∨ Pi1 ∨ · · · ∨ Pij
(called A-coloring clause). The set of all the A-coloring clauses for graph G is
denoted as AC(G).



6 K. Ji

start
s1

s2

s3

s4

s5

s6

Fig. 3.

Resolution for blocked walk detection Let G be a graph and s be a vertex of
G, then the the problem of checking that starting from s, whether there exists
a blocked walk can be encoded as the set of clauses {ori(s,G)} ∪ AC(G). By
applying resolution rules among these clauses, a success clause can be derived,
if and only if there is no blocked walk starting from s.

Example 2. Consider the graph in Figure 3 and the problem of whether there
exists a blocked walk starting from s1. For this problem, the original clause is

P1 ∨Q1 ∨Q2 ∨Q3 ∨Q4 ∨Q5 ∨Q6

and the set of A-coloring clauses for this graph are

Q⊥1 ∨ P2 ∨ P3, Q⊥2 ∨ P4, Q⊥3 ∨ P2, Q⊥4 ∨ P3, Q⊥5 ∨ P4, Q⊥6 ∨ P4.

Resolution steps For the original clause, apply Resolution rule with A-coloring
clause Q⊥1 ∨ P2 ∨ P3, which yields

P1 ∨ P2 ∨ P3 ∨Q2 ∨Q3 ∨Q4 ∨Q5 ∨Q6,

then apply resolution rule with A-coloring clause Q⊥2 ∨ P4, which yields

P1 ∨ P2 ∨ P3 ∨ P4 ∨Q3 ∨Q4 ∨Q5 ∨Q6,

then apply resolution rule with A-coloring clause Q⊥3 ∨ P2, which yields

P1 ∨ P2 ∨ P3 ∨ P4 ∨Q4 ∨Q5 ∨Q6,

then apply resolution rule with A-coloring clause Q⊥4 ∨ P3, and the generated
clause

P1 ∨ P2 ∨ P3 ∨ P4 ∨Q5 ∨Q6,

is a success clause, meaning that there is no blocked walk starting from s1.

Theorem 2. Let G be a graph and s1 be a vertex of G. Starting from s1, there
is no blocked walk if and only if, starting from {ori(s1, G)} ∪ AC(G), a success
clause can be derived.



Resolution in Solving Graph Problems 7

6 Simplification Rules

A drawback of the traditional automatic theorem proving methods is that they
are only practical for graphs of relatively small size. In this section, the reason
why the method is not as efficient as tranditional traversal methods is analyzed.
To address the problems in our method, we designed some new strategies. Finally
the completeness of the system with newly added rules is proved.

6.1 Selection Function

We define a selection function, which applies on a traversal clause and returns
a set of literals that have priority when applying resolution rules. We show that
the number of resolution steps strongly depend on the literals that are selected.
More precisely, the number of literals that are selected will also affect the number
of resolution steps.

start
s1 s2 s3 s4

Fig. 4.

Example 3. For the graph in Figure 4, we prove the property:

starting from s1, there exists a closed walk.

The original clause is:

P1 ∨Q1 ∨Q2 ∨Q3 ∨Q4,

and the E-coloring clauses of the graph are

Q⊥1 ∨ P2, Q⊥2 ∨ P1, Q⊥2 ∨ P3, Q⊥3 ∨ P4, Q⊥4 ∨ P3.

Starting from the original clause, we can apply resolution as follows: First, apply
resolution with E-coloring clause Q⊥1 ∨ P2, which yields

P1 ∨ P2 ∨Q2 ∨Q3 ∨Q4. (1)

Then for (1), apply resolution with E-coloring clause Q⊥2 ∨ P1, which yields

P1 ∨ P2 ∨Q3 ∨Q4. (2)

The clause (2) is a success clause. However, from (1), if we apply resolution with
another E-coloring clause instead, we will need more resolution steps to get a
success clause.



8 K. Ji

As can be seen from Example 3, each time if there exists a pair of Pi and Qi,
and select Qi to be resolved, we may have less resolution steps to get a success
clause.

Definition 5 (Grey literals). Let C be a traversal clause. For the pair of white
literals and black literals 〈Qi, Pi〉, if both Qi and Pi are the members of C, then
Qi is called a grey literal of C. The set of grey literals of C is defined as follows:

grey(C) = {Qi | both Pi and Qi are in C}

start
s1

s2

s3 s4

Fig. 5.

Example 4. For the graph in Figure 5, we prove the property:

starting from s1, there is no blocked walk.

The original clause is :
P1 ∨Q1 ∨Q2 ∨Q3 ∨Q4,

and the A-coloring clauses of the graph are:

Q⊥1 ∨ P2 ∨ P3, Q⊥2 ∨ P3, Q⊥3 ∨ P4

Resolution steps For the original clause, apply resolution with A-coloring clause
Q⊥1 ∨ P2 ∨ P3, which yields

P1 ∨ P2 ∨ P3 ∨Q2 ∨Q3 ∨Q4. (3)

Then for (3), we can apply resolution rules with A-coloring clauses Q⊥2 ∨P3 and
Q⊥3 ∨ P4, and two new traversal clauses are generated:

P1 ∨ P2 ∨ P3 ∨Q3 ∨Q4, (4)

P1 ∨ P2 ∨ P3 ∨ P4 ∨Q2 ∨Q4. (5)

Then for (4), apply resolution rule with A-coloring clause Q⊥3 ∨P4, which yields

P1 ∨ P2 ∨ P3 ∨ P4 ∨Q4, (6)

and for this clause, we cannot apply resolution rules any more. For (5), we can
apply resolution rule with A-coloring clause Q⊥2 ∨P3, and the clause generated is
the same as (6). Obviously, the resolution steps for generating (5) and the steps
started from (5) are redudant.



Resolution in Solving Graph Problems 9

To avoid the redundant steps in Example 4, each time we select only one
grey literal. So the selection function can be defined as follows.

Definition 6 (Selection function). For any traversal clause C, the selection
function δ is defined as:

δ(C) =

{
single(grey(C)), grey(C) 6= ∅
C, Otherwise

in which single is a process to select only one literal from a set of literals.

Notations The Polarized resolution modulo with selection function is written as
PRMδ. We write Γ →δ

R C if the clause C can be derived from the set of clauses
Γ in the system PRMδ.

6.2 Elimination Rule

But, as we shall see, selecting literals, which is at the base of PRM, OR, OPRM,
and this method are not sufficient as we also have to restrict the method at
the level of clauses. In spite of several clause elimination procedures had been
applied to the procedure of resolution method[7], none of them works efficient
to our problem.

Example 5. For the graph in Figure 5, we prove the property:

starting from s1, there exists a closed walk.

The original clause is :
P1 ∨Q1 ∨Q2 ∨Q3 ∨Q4,

and the E-coloring clauses of the graph are:

Q⊥1 ∨ P2, Q⊥1 ∨ P3, Q⊥2 ∨ P3, Q⊥3 ∨ P4

Resolution steps For the original clause, apply resolution rules with Q⊥1 ∨P2 and
Q⊥1 ∨ P3, two new traversal clauses are generated:

P1 ∨ P2 ∨Q2 ∨Q3 ∨Q4, (7)

P1 ∨ P3 ∨Q2 ∨Q3 ∨Q4, (8)

for (7), apply resolution rule with Q⊥2 ∨ P3, which yields

P1 ∨ P2 ∨ P3 ∨Q3 ∨Q4, (9)

then for (9), apply resolution rule with Q⊥3 ∨ P4, which yields

P1 ∨ P2 ∨ P3 ∨ P4 ∨Q4, (10)

for (10), we cannot apply resolution rules any more. And in all the generated
clauses, only the traversal clause (8) remains to be resolved. For (8), apply
resolution rule with Q3 ∨ ¬P4, the same E-coloring clause as for (9), thus in
the implementation of proof search algorithm for PRM [1], the derivation will
continue, while in fact the rest steps of the derivation are useless.



10 K. Ji

To avoid the redundant steps showed in Example 5, a new elimination rule
is defined as follows.

Definition 7 (Path subsumption elimination rule(PSER)). Let M be a
set of A(E)-coloring clauses and C be a traversal clause. If we have C,M →δ

R C1

and C,M →δ
R C2, in which grey(C1) = grey(C2), then the literals C1 and C2

can be replaced by each other.

After each step of resolution, we try to apply PSER on the set of traver-
sal clauses before applying other resolution rules. By PSER, the clause (8) in
Example 5 is useless, thus can be deleted during the derivation.

Theorem 3 (Completeness). PRMδ with PSER is complete.

7 Implementation

In this section, we talk about the issues during the implementation, and then
present the evaluation data for some graphs.

7.1 How to deal with success clause

In normal proof search algorithms, the derivation will not stop until (i) an empty
clause is derived, in this case the input set of clauses is unsatisfiable or (ii) no new
clauses can be generated by applying resolution rules, in this case the input set
of clauses is satisfiable. However, in the specific problems of this chapter, when
a success clause is derived, the derivation should stop and report that a success
clause can be derived, which is different from “Satisfiable” or “Unsatisfiable”. To
implement our method in automatic theorem provers, there may have two ways
to deal with the success clauses:

– give a set of rewrite rules, when a success clause is derived, make sure that
this clause can be rewritten into empty clause.

– take success clause as the same role of empty clause, in this case when a
success clause is derived, the derivation stop and report the input set of
clauses is unsatisfiable.

For the first case, one way is to introduce class variables and take the atomic
propositions Pi and Qi as binary predicates. Thus Pi is replaced by P (si, Y ) and
Qi is replaced by Q(si, Y ). Thus the success clause

P1 ∨ P2 ∨ · · · ∨ Pi ∨Qi+1 ∨ · · · ∨Qk

is replaced by

P (s1, Y ) ∨ P (s2, Y ) ∨ · · · ∨ P (si, Y ) ∨Q(si+1, Y ) ∨ · · · ∨Q(sk, Y ).

The rewrite rules added are



Resolution in Solving Graph Problems 11

1. P (x, add(y, Z)) ↪→ x = y⊥ ∧ P (x, Z)
2. Q(x, nil) ↪→ ⊥
3. Q(x, add(y, Z)) ↪→ x = y ∨Q(x, Z)

4. x = x ↪→ T

5. for each two vertices si and sj , if they are not the same vertex, then si =
sj ↪→ ⊥

This method is a variation of the theory defined in [6]. The main problem of this
method is that, for any two different vertices in a graph, a rewrite rule should
be added to the system to express teh non-equal properties.

For the second case, a procedure to check whether a clause is a success clause
should be added to the loop-body of the program. For the position where to
embed this procedure, a simple proof search algorithm is given as follows:

program main_loop
initial

original clause in U, A(E)-coloring clauses in P
while U != empty
c := select(U)
U := U \ {c} (* remove c from U *)
if c is an empty or a success clause, then return "Unsat"
P := P + {c} (* add c to P *)
U := U + generate(c,P)

done
return "Sat"

end.

where select(U) selects a clause from U, grey(c) is the set of grey literals in
c and generate(c,P) produces all the clauses by applying an inference rule
between c and a clause in P.

7.2 Embedding path subumption elimination rule into the
proof-search algorithm

Normally, to run the path subsumption elimination rule, each time before ap-
plying resolution rules between the selected traversal clause in the passive set
U and the coloring cluases in the active set P, we need to give a comparation
between the selected clause and each traversal clause in P. To make it simple,
before the loop part for the resolution steps, a new empty set G is given, and for
the selected traversal clause in U, if the grey literal of the traversal clause are in
G, then just add the clause to the active set, otherwise, add the grey literal to G
and apply resolution between this clause and the coloring clauses.



12 K. Ji

Algorithm By adding path subsumption elimination rule into the algorithm
above, the new algorithm is as follows:

program main_loop
initial

original clause in U, blackening clauses in P
G is empty (* G is a set of sets of grey literals *)

while U != empty
c := select(U)
U := U \ {c} (* remove c from U *)
if c is an empty or a success clause, then return "Unsat"
P := P + {c} (* add c to P *)
g := grey(c)
if g is not a member of S then

G := G + {g}
U := U + generate(c,P)

done
return "Sat"

end.

7.3 Experimental Evaluation

To implement the strategy in this chapter, the procedure of checking success
clauses, the selection function, and the path subsumption elimination rule are
embeded into iProver modulo [1], a resolution based automatic theorem prover.
Then the two kinds of problems for some randomly generated graphs are solved
using this prover.

Table 1. Closed Walk and Blocked Walk Detection

Graph Result and Time

Prop N(v) N(e) Num Sat Succ PRM PRM+P

1.0× 103 1.0× 103 100 95 5 25m40s 25m0s
Closed Walk 1.0× 103 1.5× 103 100 50 50 1h06m40s 1h02m46s

1.0× 103 2.0× 103 100 23 77 1h09m44s 1h09m46s

1.0× 103 1.0× 103 100 100 0 7m04s
Blocked Walk 1.0× 103 1.5× 103 100 100 0 10m29s

1.0× 103 2.0× 103 100 100 0 17m48s
1.0× 103 2.5× 103 100 100 0 35m16s
1.0× 103 3.0× 103 100 100 0 1h06m28s
1.0× 103 1.0× 104 100 0 100 24h50m43s

Table 1 is the data of running the graph examples. The experiments are
implemented on Intelr CoreTM i5-2400 CPU @ 3.10GHz × 4 with Linux. For
the closed walk detection problem, from the running time of all the 100 examples
of PRM+P is almost equal to PRM, some of which is occupied by running the



Resolution in Solving Graph Problems 13

path sumption elimination rule. However, in some of the examples, when the
path subsumption elimination rule is applied, it do saves a lot of time. For the
blocked walk detection problem, as can be seen from the table, the running time
increases while we have more edges in the graphs.

8 Conclusion and Future Work

In this paper, two graph problems, closed walk and blocked walk detection,
are considered. To make it simple, we encoded the problems with propositional
formulae, and the edge relationship are encoded as rewrite rules. To improve the
efficiency of the implementation, a selection function and a new subsumption
elimination rule are defined. At last, an implementation about solving these two
problems is presented.

As the number of literals in the original clause is equal to the number of
vertices in the graph, if the graph is large enough, the space resources during the
implementation will be ran out. In spite of [15] had given the idea of introducing
new atoms as abbreviations or ‘definitions’ for sub-formulae, this cannot be used
directly to our case. In the future works, we will encode the vertices with Boolean
vectors.

Safety and liveness are two important problems in model checking [2]. The
safety property says that something “bad” will never happen and the liveness
property says that something “good” will happen. To prove the safety of a system,
we need to find a finite path to the “bad” thing or prove that all the accessible
states are not “bad”. This problem can be treated as a blocked-walk detection
problem. For the liveness of a system, we need to find an infinite path such that
all the states on the path are not “good” or on each infinite path, there exists a
“good” state. This problem can be treated as a closed-walk detection problem.
An infinite path (closed walk) is found out when a success clause is derived.
Thus, the work in this paper can be used in automatically verfying temporal
properties of a transition system.

Acknowledgements. I am grateful to Gilles Dowek, for his careful reading and
comments.

References

1. Burel, G.: Embedding Deduction Modulo into a Prover. In: Dawar, A., Veith, H.
(eds.) CSL 2010. LNCS, vol. 6247, pp. 155–169. Springer Berlin Heidelberg (2010)

2. Clarke, Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cam-
bridge, MA, USA (1999)

3. Courcelle, B.: The monadic second-order logic of graphs. i. recognizable sets of
finite graphs. Information and computation 85(1), 12–75 (1990)

4. Dowek, G.: Polarized Resolution Modulo. In: Calude, C.S., Sassone, V. (eds.) TCS
2010. IFIP AICT, vol. 323, pp. 182–196. Springer Berlin Heidelberg (2010)



14 K. Ji

5. Dowek, G., Hardin, T., Kirchner, C.: Theorem Proving Modulo. Journal of Auto-
mated Reasoning 31, 33–72 (2003)

6. Dowek, G., Jiang, Y.: Axiomatizing Truth in a Finite Model (2013), https://who.
rocq.inria.fr/Gilles.Dowek/Publi/classes.pdf, manuscript

7. Heule, M., Järvisalo, M., Biere, A.: Clause elimination procedures for cnf formulas.
In: Logic for Programming, Artificial Intelligence, and Reasoning. pp. 357–371.
Springer (2010)

8. Khoussainov, B., Nerode, A.: Automata theory and its applications, vol. 21.
Springer Science & Business Media (2001)

9. Korovin, K.: iProver– An Instantiation-Based Theorem Prover for First-Order
Logic (System Description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.)
IJCAR 2008. LNCS, vol. 5195, pp. 292–298. Springer Berlin Heidelberg (2008)

10. Navarro-Pérez, J.A.: Encoding and Solving Problems in Effectively Propositional
Logic. Ph.D. thesis, The University of Manchester (2007)

11. Reiter, R.: Two results on ordering for resolution with merging and linear format.
Journal of the ACM (JACM) 18(4), 630–646 (1971)

12. Robinson, J.A.: Automatic deduction with hyper-resolution. Journal of Symbolic
Logic 39(1), 189–190 (1974)

13. Robinson, J.A.: A machine-oriented logic based on the resolution principle. Journal
of the ACM (JACM) 12(1), 23–41 (1965)

14. Slagle, J.R., Norton, L.M.: Experiment with an automatic theorem-prover hav-
ing partial ordering inference rules. Communications of the ACM 16(11), 682–688
(1973)

15. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Au-
tomation of reasoning, pp. 466–483. Springer (1983)

.1 Correctness of the Encoding

To prove that this kind of encoding suit for all closed walk detection problems,
a proof of the theorem below is given.

Theorem 4. Let G be a graph and s be a vertex in G. Starting from s, there
exists a closed walk if and only if starting from {ori(s,G)} ∪ EC(G), a success
clause can be derived.

Before proving this theorem, several notations and lemmas are needed, which
will also be used in the following sections.

Notations Let C1, C2, C3 be clauses, Γ be a set of clauses:

– if C3 is generated by applying resolution between C1 and C2, then write
the resolution step as C1

C2−→ C3; if the resolution is based on a selection
function δ, then the resolution step is written as C1

C2−→δ C3.
– if C2 is generated by applying resolution between C1 and a clause in Γ ,

then write the resolution step as C1
Γ−→ C2; if the resolution is based on a

selection function δ, then the resolution step is written as C1
Γ−→δ C2.

– if C1 is generated by one step of resolution on some clauses in Γ , then write
the resolution step as Γ −→ Γ,C1; if the resolution is based on a selection
function δ, then the resolution step is written as Γ −→δ Γ,C1.



Resolution in Solving Graph Problems 15

Lemma 1. For any two traversal clauses, we cannot apply resolution rules be-
tween them.

Proof. All the literals in traversal clauses are positive. ut

Lemma 2. If resolution rules can be applied between a traversal clause and a
coloring clause, then one and only one traversal clause can be derived.

Proof. As all the literals in the traversal clause are positive and there is only
one negative literal in the coloring clause, straightforwardly, only one traversal
clause can be derived. ut

Proposition 1. Let M be a set of coloring clauses, C1, . . . , Cn be traversal
clauses and S be a success clause. If M,C1, . . . , Cn → S, then there exists
1 6 i 6 n, such that M,Ci → S, and the length of the later derivation is at
most equal to the former one.

Proof. By induction on the size of the derivation M,C1, . . . , Cn → S.

– If S is a member of C1, . . . , Cn, then there exists the derivation M,S → S
without applying any resolution rules.

– If S is not a member of C1, . . . , Cn, then in each step of the derivation,
by Lemma 1, the resolution rules can only be applied between a traversal
clause and a coloring clause. Assume the derivation is M,C1, . . . , Cn −→
M,C1, . . . , Cn, C

′ → S, in which, by Lemma 2, C ′ is a traversal clause.
Then for the derivation M,C1, . . . , Cn, C

′ → S, by induction hypothesis,
M,C ′ → S or there exists 1 6 i 6 n such that M,Ci → S, with the steps
of the derivation at most equal to M,C1, . . . , Cn, C

′ → S. If M,Ci → S,
then the steps of the derivation are less than M,C1, . . . , Cn → S, thus this
derivation is as needed. If M,C ′ → S, then by Lemma 1, there exists Cj in
C1, . . . , Cn, such that Cj

M−→ C ′, thus the derivation M,Cj → S, with the
derivation steps at most equal to M,C1, . . . , Cn → S, is as needed.

ut

Proposition 2. Let M be a set of coloring clauses, C be a traversal clause, and
S be a success clause. If M,C → S(π1)

1, then there exists a derivation path
C(C0)

M−→ C1
M−→ C2 · · ·

M−→ Cn(S).

Proof. By induction on the size of the derivation π1.

– If C is a success clause, then the derivation path can be built directly.
– Otherwise, by Lemma 1, in each step of the derivation, the resolution rules

can only be applied between a traversal clause and a coloring clause. Assume
the derivation isM,C −→M,C,C ′ → S, then for the derivationM,C,C ′ →
S, by Proposition 1, there exists a derivation M,C → S(π2)

2 or M,C ′ → S,
1 we denote the derivation as π1.
2 we denote the derivation as π2.



16 K. Ji

with the length less than π1. For π2, by induction hypothesis, there exists a
derivation path C(C0)

M−→ C1 · · ·
M−→ Cn(S), and this is just the derivation

as needed. ForM,C ′ → S, by induction hypothesis, there exists a derivation
path C ′

M−→ C ′1 · · ·
M−→ C ′m(S). As C M−→ C ′, the derivation path C

M−→
C ′

M−→ C ′1 · · ·
M−→ C ′m(S) is as needed.

ut

Now it is ready to prove Theorem 4. The proof is as follows.

Proof of Theorem 4

Proof. – For the right direction, we assume that the path is

s1(sk1) sk2 · · · ski ski+1 · · · skj

By the method of generating E-coloring clauses of a graph, there exist E-
coloring clauses:

Q⊥k1 ∨ Pk2 , Q
⊥
k2 ∨ Pk3 , . . . , Q

⊥
ki−1
∨ Pki , Q⊥ki ∨ Pki+1

, . . . , Q⊥kj ∨ Pki .

Then starting from the original clause C1 = P1∨Q1∨· · ·∨Qn, the derivation

C1
D1−→ C2

D2−→ · · ·Ci−1
Di−1−→ Ci

Di−→ · · ·Cj
Dj−→ Cj+1

can be built, in which Cj+1 is a success clause and for each 1 6 m 6 j, Dm

is the E-coloring clause Q⊥km ∨ Pkm+1
.

– For the left direction, by Proposition 2, starting from the original clause
C1 = P1 ∨Q1 ∨ · · · ∨Qn, there exists a derivation path

C1
D1−→ C2

D2−→ · · ·Ci−1
Di−1−→ Ci

Di−→ · · ·Cj
Dj−→ Cj+1,

in which Cj+1 is a success clause and for each 1 6 m 6 j, Dm is an E-
coloring clause. As Cj+1 is a success clause, for each black literal Pi in the
clause Cj+1, there exists an E-coloring clause Q⊥i ∨Pki in D1, . . . , Dj . Thus
for each black literal Pi in the clause Cj+1, there exists a vertex ski such
that there is an edge from si to ski . As the number of black literals in Cj+1

is finite, for each vertex si, if Pi is a member of Cj+1, then starting from
si, there exists a path which contains a cycle. As the literal P1 is in Cj+1,
starting from s1, there exists a path to a cycle.

ut

.2 Correctness of the Encoding

Theorem 5. Let G be a graph and s1 be a vertex of G. Starting from s1, there
is no blocked walk if and only if, starting from {ori(s1, G)} ∪ AC(G), a success
clause can be derived.



Resolution in Solving Graph Problems 17

Before proving this theorem, a lemma is needed.

Lemma 3. Let G be a graph and s1 be a vertex of G. Starting from s1, if all
the reachable vertices are traversed in the order s1, s2, . . . , sk and each reachable
vertex has at least one successor, then starting from {ori(s1, G)} ∪AC(G), there
exists a derivation path C1(ori(s1, G))

D1−→ C2
D2−→ · · ·Ck

Dk−→ Ck+1, in which
Ck+1 is a success clause and ∀1 6 i 6 k, Di is an A-coloring clause of the form
Q⊥i ∨ Pi1 ∨ · · · ∨ Pij .

Proof. As s1, s2 . . . , sk are all the reachable vertices starting from s1, for a vertex
s, if there exists an edge from one of the vertices in s1, s2, . . . , sk to s, then s is
a member of s1, s2, . . . , sk. Thus, after the derivation C1

D1−→ C2
D2−→ · · ·Cj

Dj−→
Cj+1 , for each black literal Pi, the white literal Qi is not in Cj+1, thus Cj+1 is
a success clause. ut

Now it is ready to prove Theorem 5. The proof is as follows.

Proof of Theorem 5

Proof. – For the right direction, assume that all the reachable vertices starting
from s1 are traversed in the order s1, s2, . . . , sk. For the resolution part, by
Lemma 3, starting from the original clause, a success clause can be derived.

– For the left direction, by Proposition 2, starting from the original clause
C1 = ori(s1, G), there exists a derivation path

C1
D1−→ C2

D2−→ · · ·Cj
Dj−→ Cj+1,

in which Cj+1 is a success clause and ∀1 6 i 6 j, Di is an A-coloring clause
with Q⊥ki underlined. As there is no i such that both Pi and Qi are in Cj+1,
for the vertices in sk1 , sk2 , . . . , skj , the successors of each vertex is a subset of
sk1 , sk2 , . . . , skj . As the black literal P1 is in the clause Cj+1, by the definition
of success clause, the white literal Q1 is not in Cj+1, thus s1 is a member of
sk1 , sk2 , . . . , skj . Then recursively, for each vertex s, if s is reachable from s1,
then s is in sk1 , sk2 , . . . , skj . Thus starting from s1, all the vertices reachable
have successors.

ut

.3 Completeness

For the completeness of our method, we first prove that PRMδ is complete, then
we prove that PRMδ remains complete when we apply PSER eagerly.

Proposition 3 (Completeness of PRMδ). LetM be a set of coloring clauses
and C1, . . . , Cn be traversal clauses. If M,C1, . . . , Cn → S, in which the clause S
is a success clause, then starting from M,C1, . . . , Cn, we can build a derivation
by selecting the resolved literals with selection function δ in Definition 6 and get
a success clause.



18 K. Ji

Proof. By Proposition 1 and Proposition 2, there exists 1 6 i 6 n, such that
Ci(Ci0)

D1−→ Ci1 · · ·
Dn−→ Cin(S). As there are no white literals in any clauses of

D1, . . . , Dn and in each step of the resolution, the resolved literal in the traversal
clause is a white literal, the order of white literals to be resolved in the derivation
by applying Resolution rule with coloring clauses in D1, . . . , Dn will not affect
the result. Thus use selection function δ to select white literals to be resolved,
until we get a traversal clause S′ such that there are no grey literals in it. By
the definition of success clause, S′ is a success clause. ut

Lemma 4. Let M be a set of coloring clauses and C be a traversal clause.
Assume C(H0)

D1−→δ H1
D2−→δ · · ·H(Hi)

Di−→δ · · ·
Dn−→δ Hn in which Hn is a

success clause and for each 1 6 j 6 n, the coloring clause Dj is in M , and
M,C →δ K such that grey(H) = grey(K). If K,D1, . . . , Dn →δ K ′, and K ′ is
not a success clause, then there exists a coloring clause Dk in D1, . . . , Dn, such
that K ′ Dk−→δ K

′′.

Proof. As K ′ is not a success clause, assume that the literals Pi and Qi are in
K ′. As Qi cannot be introduced in each step of resolution between a traversal
clause and a coloring clause, Qi is in C and K. As the literal Pi is in clause K ′,
during the derivation of K ′, there must be some clauses which contains Pi:

– if the literal Pi is in K, as Qi is also in K, Qi is a grey literal of K. As
grey(H) = grey(K), the literal Pi is also in H, and as Pi cannot be selected
during the derivation, it remains in the traversal clauses Hi+1, . . . ,Hn.

– if the literal Pi is introduced by applying Resolution rule with coloring clause
Dj in D1, . . . , Dn, which is used in the derivation of Hn as well, so the literal
Pi is also a member of Hn.

In both cases, the literal Pi is in Hn. As Hn is a success clause, the literal Qi
is not a member of Hn. As Qi is in C, there exists a coloring clause Dk in
D1, . . . , Dn with the literal Q⊥i selected. Thus, K ′ Dk−→δ K

′′. ut

Lemma 5. Let M be a set of A(E)-coloring clauses and C be a traversal clause.
If we have M,C →δ H and M,C →δ K, such that grey(H) = grey(K), then
starting from M,H a success clause can be derived if and only if starting from
M,K a success clause can be derived.

Proof. Without loss of generality, prove that if starting from M,H we can get
to a success clause, then starting from M,K, we can also get to a success
clause. By Proposition 2, starting from C, there exists H0(C)

M−→δ H1
M−→δ

· · ·Hi(H)
M−→δ · · ·

M−→δ Hn, in which Hn is a success clause. More precisely,

H0(C)
D1−→δ H1

D2−→δ · · ·Hi(H)
Di+1−→δ · · ·

Dn−→δ Hn, where for each 1 6 j 6 n,
the coloring clause Dj is in M . Then by Lemma 4, starting from M,K, we can
always find a coloring clause in D1, . . . , Dn to apply resolution with the new
generated traversal clause, until we get a success clause. As the white literals in
the generated traversal clauses decrease by each step of resolution, we will get a
success clause at last. ut



Resolution in Solving Graph Problems 19

Theorem 6 (Completeness). PRMδ with PSER is complete.

Proof. By Lemma 5, each time after we apply PSER, the satisfiability is pre-
served. ut


