
HAL Id: hal-01245138
https://hal.science/hal-01245138v2

Submitted on 26 Jul 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resolution in Solving Graph Problems
Kailiang Ji

To cite this version:
Kailiang Ji. Resolution in Solving Graph Problems. 8th Working Conference on Verified Software:
Theories, Tools, and Experiments (VSTTE 2016), Jul 2016, Toronto, Canada. �hal-01245138v2�

https://hal.science/hal-01245138v2
https://hal.archives-ouvertes.fr


Resolution in Solving Graph Problems

Kailiang Ji ?

LRI, Université Paris Sud
kailiang.ji@lri.fr

Abstract. Resolution is a proof-search method on proving satisfiabil-
ity problems. Various refinements have been proposed to improve the
efficiency of this method. However, when we try to prove some graph
properties, none of the refinements have an efficiency comparable with
traditional graph traversal algorithms. In this paper we propose a way
of solving some graph traversal problems with resolution. And we design
some simplification rules to make the proof-search algorithm work more
efficiently on such problems.

1 Introduction

Since the introduction of Resolution [11], many refinements have been proposed
to increase the efficiency of this method, by avoiding redundancies. A first refine-
ment, hyper-resolution, has been introduced by Robinson himself the same year
as Resolution [10]. More recently ordered resolution [9, 12], (polarized ) resolution
modulo (PRM) [5, 6], and finally ordered polarized resolution modulo (OPRM) [1]
introduced more restrictions. However, as we shall see, these kind of refinements
are still redundant.

In order to address the question of the redundancy of proof search methods,
we encode graph problems, e.g. accessibility or cycle detection, as Resolution
problem, and we compare two ways to solve these problems: by using a proof-
search method and by a direct graph traversal algorithm. If the proof-search
method simulates graph traversal step by step, and in particular never visits
twice the same part of the graph, we can say that it avoids redundancies. Oth-
erwise, this helps us analyze and eliminate the redundancies of the method, by
analyzing why the method visits twice the same part of the graph.

The two graph problems can be expressed by predicate formulae with class
variables (monadic second-order logic) [4, 7]. For instance, the cycle detection
problem can be expressed as ∃Y (s1 ∈ Y ∧∀x(x ∈ Y ⇒ ∃x′(edge(x, x′)∧x′ ∈ Y ))).
The satisfiability of this formula can be proved by reducing it to effectively
propositional case [8], where the sub-formula ∀xA is replaced by A(s1/x)∧ · · · ∧
A(sn/x), and ∃xA by A(s1/x)∨· · ·∨A(sn/x), in which s1, ..., sn are the constants
for all the vertices of a graph. By representing the theory of the graph as a set of
rewrite rules [7], these problems can be proved by some off-the-shelf automated

? This work is supported by the ANR-NSFC project LOCALI (NSFC 61161130530
and ANR 11 IS02 002 01)



2 K. Ji

theorem provers, such as iProver Modulo [2]. As these problems can be expressed
with temporal formulae [3], they can also be solved by model checking tools. In
this paper, a propositional encoding of these two problems is given. To reduce the
search space and avoid redundant resolution steps, we add a selection function
and a new subsumption rule. This method works for encoding of several graph
problems. Its generality remains to be investigated.

The paper is organized as follows. Section 2 describes the theorem proving
system PRM. In Section 3, some basic definitions for the expressing of graph
problems are presented. Section 4 and 5 presents the encoding of cycle detection
and accessibility respectively. In Section 6, some simplification rules are defined.
Finally, an implementation result is presented.

2 Polarized Resolution Modulo

In Polarized Resolution Modulo (see Figure 1), clauses are divided into two sets:
one-way clauses (or theory clauses) and ordinary clauses. Each one-way clause
has a selected literal and resolution is only permitted between two ordinary
clauses, or a one-way clause and an ordinary clause, provided the resolved literal
is the selected one (the one underlined later) in the one-way clause. In the rules of
Figure 1, P and Q are literals, C andD denote a set of literals. σ is a substitution
function, which is equal to the maximal general unifier (mgu) of P and Q. R is
a set of one-way clauses that are under consideration.

P ∨ C Q⊥ ∨D
Resolution

σ(C ∨D)

P ∨Q ∨ C
Factoring

σ(P,C)

P ∨ CExt.Narr. if Q⊥ ∨D is a one-way clause of R
σ(D ∨ C)

P⊥ ∨ CExt.Narr. if Q ∨D is a one-way clause of R
σ(D ∨ C)

Fig. 1. Polarized Resolution Modulo

Proving the completeness of the rules in Figure 1 requires to prove a cut
elimination lemma [6, 5] for Polarized Deduction Modulo, the deduction system
with a set of rewrite rules, containing for each one-way clause P⊥ ∨ C the rule
P →− C and for each one-way clause P ∨ C the rule P →+ C⊥.

Like in OPRM, in this paper we define a selection function to select literals in
an ordinary clause which have the priority to be resolved and add the selection
function to PRM.

Note that when applying a Resolution rule between an ordinary clause and
a one-way clause, we are in fact using an Extended Narrowing rule on this
ordinary clause. We write Γ 7→R C if C can be derived from the set of clauses
Γ by applying finitely many inference rules of PRM.



Resolution in Solving Graph Problems 3

3 Basic Definitions

In this paper, we consider a propositional language which contains two atomic
propositions Bi and Wi for each natural number. We denote a graph as G =
〈V,E〉, where V is a set of vertices enumerated by natural numbers, E is the
set of directed edges in the graph. The sequence of vertices l = s0, ..., sk is a
walk if and only if ∀0 ≤ i < k, (si, si+1) ∈ E. The walk l is closed if and only
if ∃0 ≤ j ≤ k such that sk = sj . The walk l is blocked if and only if sk has no
successors. The method we proposed is inspired by graph traversal algorithms.

Definition 1 (Black literal, white literal). Let G be a graph and {s1, ..., sn}
be the set of all the vertices in G. For any 1 ≤ i ≤ n, the literal Bi is called a
black literal and the literal Wi is called a white literal.

Intuitively, the black literals denote the vertices that have already been visited,
while the white literals denote the non-visited ones.

Definition 2 (Original clause, traversal clause, success clause). Let G be
a graph and {s1, ..., sn} the set of vertices in G. For each graph traversal problem
starting from si (1 ≤ i ≤ n), the clause of the form Bi∨W1∨· · ·∨Wn is called an
original clause (OC(si, G)). A clause with only white and black literals is called
a traversal clause. Let C be a traversal clause, if there is no i, such that both Bi
and Wi are in C, then C is called a success clause.

Among the three kinds of clauses, the original clause is related to the starting
point of the graph traversal algorithm, the traversal clause is the current state of
the traveling, and the success clause denotes that a solution is derived. Trivially,
the original clauses and success clauses are also traversal clauses.

4 Closed-walk Detection

In this section, we present a strategy of checking whether there exists a closed
walk starting from a given vertex. For a graph, each edge is represented as a
rewrite rule, and the initial situation is denoted by the original clause.

E-coloring rule Let G be a graph and V = {s1, ..., sn} be the set of vertices in
G. For each pair of vertices 〈si, sj〉 in V , if there exists an edge from si to sj ,
then we formalize this edge as an E-coloring rewrite rule

Wi ↪→ Bj .

The corresponding one-way clause of this rewrite rule is W⊥i ∨ Bj (called E-
coloring clause). The set of all the E-coloring clauses for G is denoted as EC(G).



4 K. Ji

Resolution for closed-walk detection Let G be a graph and s be a vertex of G,
then the the problem of checking whether, starting from s, there exists a closed
walk can be encoded as the set of clauses {OC(s,G)} ∪ EC(G). By applying
resolution rules among these clauses, a success clause can be derived if and only
if there exists a closed walk starting from s.

Example 1. Consider the following graph

start
s1 s2

s3

s4

s5s6

We prove that there exists a closed walk starting from s1. For this problem, the
original clause is B1 ∨W1 ∨W2 ∨W3 ∨W4 ∨W5 ∨W6 and the set of E-coloring
clauses for this graph are

W⊥
1 ∨B2, W⊥

1 ∨B3, W⊥
2 ∨B4, W⊥

3 ∨B5, W⊥
3 ∨B6, W⊥

4 ∨B5, W⊥
5 ∨B2.

The resolution steps are presented in the following tree from top to bottom

B1 ∨W1 ∨W2 ∨W3 ∨W4 ∨W5 ∨W6 W⊥
1 ∨B2

B1 ∨B2 ∨W2 ∨W3 ∨W4 ∨W5 ∨W6 W⊥
2 ∨B4

B1 ∨B2 ∨B4 ∨W3 ∨W4 ∨W5 ∨W6 W⊥
4 ∨B5

B1 ∨B2 ∨B4 ∨W3 ∨B5 ∨W5 ∨W6 W⊥
5 ∨B2

B1 ∨B2 ∨B4 ∨W3 ∨B5 ∨W6

The clause B1 ∨B2 ∨B4 ∨W3 ∨B5 ∨W6 is a success clause. Thus, there exists
a closed walk starting from s1.

Theorem 1. Let G be a graph and s be a vertex of G. Starting from s, there
exists a closed walk if and only if starting from {OC(s,G)} ∪ EC(G), a success
clause can be derived.

5 Blocked-walk Detection

In this section, a method on testing whether, starting from a vertex, there exists
a blocked walk or not is given. In this method, the set of edges starting from the
same vertex are represented as a rewrite rule.

A-coloring rule Let G be a graph and V = {s1, ..., sn} the set of vertices in G.
For each si in V , assume that starting from si, there are edges to si1 , ..., sij , then
we formalize such set of edges as an A-coloring rewrite rule

Wi ↪→ Bi1 ∨ · · · ∨Bij .

The one-way clause of this rewrite rule is W⊥i ∨Bi1 ∨· · ·∨Bij (called A-coloring
clause). The set of all the A-coloring clauses of G is denoted as AC(G).



Resolution in Solving Graph Problems 5

Resolution for blocked-walk detection Let G be a graph and s be a vertex of G,
then the problem of checking that starting from s, whether there exists a blocked
walk can be encoded as the set of clauses {OC(s,G)} ∪ AC(G). By applying
resolution rules among these clauses, a success clause can be derived if and only
if there is no blocked walk starting from s.

Example 2. Consider the graph

start
s1

s2

s3

s4

s5

s6

and check whether there exists a blocked walk starting from s1. For this problem,
the original clause is B1∨W1∨W2∨W3∨W4∨W5∨W6 and the set of A-coloring
clauses for this graph are

W⊥
1 ∨B2 ∨B3, W⊥

2 ∨B4, W⊥
3 ∨B2, W⊥

4 ∨B3, W⊥
5 ∨B4, W⊥

6 ∨B4.

The resolution steps are presented in the following tree top-down

B1 ∨W1 ∨W2 ∨W3 ∨W4 ∨W5 ∨W6 W⊥
1 ∨B2 ∨B3

B1 ∨B2 ∨B3 ∨W2 ∨W3 ∨W4 ∨W5 ∨W6 W⊥
2 ∨B4

B1 ∨B2 ∨B3 ∨B4 ∨W3 ∨W4 ∨W5 ∨W6 W⊥
3 ∨B2

B1 ∨B2 ∨B3 ∨B4 ∨W4 ∨W5 ∨W6 W⊥
4 ∨B3

B1 ∨B2 ∨B3 ∨B4 ∨W5 ∨W6

The clause B1 ∨ B2 ∨ B3 ∨ B4 ∨W5 ∨W6 is a success clause. Thus, there is no
blocked walk starting from s1.

Theorem 2. Let G be a graph and s be a vertex of G. Starting from s, there
is no blocked walk if and only if, starting from {OC(s,G)} ∪ AC(G), a success
clause can be derived.

6 Simplification Rules

Traditional automatic theorem proving methods are only practical for graphs of
relatively small size. In this section, the reason why the resolution method is not
as efficient as graph traversal algorithms is analyzed. Moreover, some strategies
are designed to address such problems in proof-search algorithms.

6.1 Selection Function

First we show that the number of resolution steps strongly depend on the literals
that are selected. More precisely, the number of literals that are selected will also
affect the number of resolution steps. Then a selection function is given.



6 K. Ji

Example 3. For the graph

start
s1 s2 s3 s4

we prove the property: starting from s1, there exists a closed walk. The original
clause is B1 ∨W1 ∨W2 ∨W3 ∨W4 and the E-coloring clauses of the graph are

W⊥1 ∨B2, W⊥2 ∨B1, W⊥2 ∨B3, W⊥3 ∨B4, W⊥4 ∨B3.

Starting from the original clause, we can apply resolution as follows: First, apply
resolution with E-coloring clause W⊥1 ∨B2, which yields

B1 ∨B2 ∨W2 ∨W3 ∨W4. (1)

Then for (1), apply resolution with E-coloring clause W⊥2 ∨B1, which yields

B1 ∨B2 ∨W3 ∨W4. (2)

Clause (2) is a success clause. However, from (1), if we apply resolution with
another E-coloring clause, more steps are needed to get a success clause.

The instinctive idea from Example 3 is similar to graph traversal algorithm. In
a traversal clause, if there exists a pair of literals Bi andWi, then the strategy of
selectingWi to have priority in applying resolution rules may have less resoution
steps to get a success clause.

Definition 3 (Grey literal). Let C be a traversal clause. For the pair of white
literals and black literals 〈Wi, Bi〉, if both Wi and Bi are in C, then Wi is called
a grey literal of C. The set of grey literals of C is defined as follows:

grey(C) = {Wi | Bi ∈ C & Wi ∈ C}

Example 4. For the graph

start
s1

s2

s3 s4

we prove the property: starting from s1, there is no blocked walk. The original
clause is B1 ∨W1 ∨W2 ∨W3 ∨W4 and the A-coloring clauses of the graph are

W⊥1 ∨B2 ∨B3, W⊥2 ∨B3, W⊥3 ∨B4

For the original clause, apply resolution with A-coloring clause W⊥1 ∨ B2 ∨ B3,
which yields

B1 ∨B2 ∨B3 ∨W2 ∨W3 ∨W4. (3)

Then for (3), we can apply resolution rules with A-coloring clausesW⊥2 ∨B3 and
W⊥3 ∨B4, and two new traversal clauses are generated:

B1 ∨B2 ∨B3 ∨W3 ∨W4, (4)



Resolution in Solving Graph Problems 7

B1 ∨B2 ∨B3 ∨B4 ∨W2 ∨W4. (5)
Then for (4), apply resolution rule with A-coloring clauseW⊥3 ∨B4, which yields

B1 ∨B2 ∨B3 ∨B4 ∨W4, (6)

and for this clause, we cannot apply resolution rules any more. For (5), we can
apply resolution rule with A-coloring clause W⊥2 ∨B3, and the clause generated
is the same as (6). Thus, the clause (5) is redundant.

To avoid generating redundant clauses similar to Example 4, the following
selection function is defined.

Definition 4 (Selection function). For any traversal clause C, the selection
function δ is defined as:

δ(C) =

{
single(grey(C)), grey(C) 6= ∅
C, Otherwise

in which single is a random process to select only one literal from a set of literals.

Notations The Polarized Resolution Modulo with δ is written as PRMδ. We write
Γ →δ

R C if the clause C can be derived from Γ in the system PRMδ.

6.2 Elimination Rule

As we will see, selecting literals, which is at the base of Ordered Resolution,
PRM, OPRM and this method are not sufficient enough, as we also have to
restrict the method at the level of clauses.

Example 5. Reconsider the graph in Example 4, we prove the property: starting
from s1, there exists a closed walk. The original clause is B1∨W1∨W2∨W3∨W4

and the E-coloring clauses of the graph are:

W⊥1 ∨B2, W⊥1 ∨B3, W⊥2 ∨B3, W⊥3 ∨B4

For the original clause, apply resolution rules with W⊥1 ∨B2 and W⊥1 ∨B3, two
new traversal clauses

B1 ∨B2 ∨W2 ∨W3 ∨W4, (7)
B1 ∨B3 ∨W2 ∨W3 ∨W4 (8)

are generated. For (7), apply resolution rule with W⊥2 ∨B3, which yields

B1 ∨B2 ∨B3 ∨W3 ∨W4. (9)

Then for (9), apply resolution rule with W⊥3 ∨B4, which yields

B1 ∨B2 ∨B3 ∨B4 ∨W4. (10)

Resolution rules cannot be applied on (10) any more. Then we can apply reso-
lution rule between (8) and W⊥3 ∨B4, with

B1 ∨B3 ∨W2 ∨B4 ∨W4 (11)

generated, on which the resolution rules cannot be applied neither.



8 K. Ji

In Example 5, The clause (8) has the same grey literal as (9). Note that no
success clause can be derived start from either (8) or (9).

Definition 5 (Path subsumption rule (PSR)). Let M be a set of A(E)-
coloring clauses and C be a traversal clause. If we have C,M →δ

R C1 and
C,M →δ

R C2, in which grey(C1) = grey(C2), the following rule

C1 C2

Ci
grey(C1) = grey(C2), i = 1 or 2

can be applied to delete either C1 or C2, without breaking the final result.

After each step of applying resolution rules, if we apply PSR on the set of
traversal clauses, the clause (8) in Example 5 will be deleted.

Theorem 3 (Completeness). PRMδ with PSR is complete.

7 Implementation

In this section, we talk about the issues during the implementation, and then
present the data of experiments.

7.1 Issues in Implementation

Success Clauses In normal resolution based algorithms, the deduction will
terminate if (i) an empty clause is generated, meaning the set of original clauses
is Unsatisfiable or (ii) the resolution rule cannot be applied to derive any more
new clauses, in this case the set of original clauses is Satisfiable. However, for
the problems in this paper, the derivation should stop when a success clause is
derived, which is neither Sat norUnsat. To implement our method in automated
theorem provers, there may be two ways to deal with the success clauses. The
first way is to give a set of rewrite rules, and make sure that every success clause
can be rewritten into empty clause. For example, we can introduce class variables
and treat the atomic propositions Bi andWi as binary predicates, i.e, replace Bi
with B(si, Y ) andWi withW (si, Y ). Thus the success clause B1∨· · ·∨Bi∨Wi+1∨
· · ·∨Wk is replaced by B(s1, Y )∨· · ·∨B(si, Y )∨W (si+1, Y )∨· · ·∨W (sk, Y ). To
deal with this kind of clause, the following rewrite rules are taken into account.

B(x, add(y, Z)) ↪→ x = y⊥ ∧B(x, Z) W (x, nil) ↪→ ⊥
W (x, add(y, Z)) ↪→ x = y ∨W (x, Z) x = x ↪→ >
for each pair of different vertices si and sj , si = sj ↪→ ⊥

This idea is a variation of the theory in [7]. The second way is to add a function
to check whether a clause is a success clause or not to the proof-search procedure.
Path Subsumption Rule To make it simple, an empty set G is given in the
initial part of the proof-search algorithm, and for the selected traversal clause
in U, if the selected grey literal of the traversal clause is in G, then the traversal
clause is dead, otherwise, add the selected grey literal to G.



Resolution in Solving Graph Problems 9

Init : original clause in U, coloring clauses in P
G = ∅ // G is a set of sets of grey literals

Output: Sat or Unsat
1 while U 6= ∅ do
2 c = select(U);
3 U = U \ c; // remove c from U
4 if c is an empty clause or a success clause then
5 return Unsat
6 end
7 g := δ(c); // δ is the literal selection function
8 if g /∈ G then
9 P = P ∪ {c}; // add c to P

10 G = G ∪ {g};
11 U = U + generate(c,P);
12 end
13 end
14 return Sat;

Algorithm 1: Proof Search Algorithm

Algorithm The proof-search algorithm with literal selection function and path
subsumption rule is in Algorithm 1. In this algorithm, select(U) selects a clause
from U, g is the selected grey literal in c and generate(c,P) produces all the
clauses by applying an inference rule on c or between c and a clause in P.

7.2 Experimental Evaluation

In the following experiment, the procedure of identifying success clauses, the
selection function, and the PSR are embedded into iProver Modulo. The data of
the experiments on some randomly generated graphs are illustrated in Table 1.

Table 1. Closed-walk and Blocked-walk Detection

Graph Result and Time

Prop N(v) N(e) Num Sat Succ PRMδ PRMδ + PSR

1.0× 103 1.0× 103 100 95 5 25m40s 25m0s
Closed Walk 1.0× 103 1.5× 103 100 50 50 1h06m40s 1h02m46s

1.0× 103 2.0× 103 100 23 77 1h09m44s 1h09m46s

1.0× 103 2.0× 103 100 100 0 17m48s
Blocked Walk 1.0× 103 3.0× 103 100 100 0 1h06m28s

1.0× 103 1.0× 104 100 0 100 24h50m43s

For the test cases of closed-walk detection, the total time on testing all the
100 graphs did not change much when we take PSR into account. By checking
the running time of each graph, we found that in most cases, PSR was inactive,
as most of the vertices did not have the chance to be visited again. However,
on some special graphs, the running time do reduces much. On blocked walk
detection, the running time grows while there are more edges on graphs, as the
number of visited vertices increased.



10 K. Ji

8 Conclusion and Future Work

In this paper, two graph problems, closed-walk and blocked-walk detection, are
considered. The problems are encoded with propositional formulae, and the edges
are treated as rewrite rules. Moreover, a selection function and a subsumption
rule are designed to address efficiency problems.

Safety and liveness are two basic model checking problems [3]. In a program,
safety properties specify that “something bad never happens”, while liveness as-
sert that “something good will happen eventually”. To prove the safety of a sys-
tem, all the accessible states starting from the initial one should be traversed,
which is a kind of blocked-walk detection problem. For liveness, we need to prove
that on each infinite path starting from the initial state, there exists a “good”
one. This problem can be treated as closed-walk detection. In the future, we will
try to address some model checking problems by improving our strategy.

Acknowledgments. I am grateful to Gilles Dowek, for his careful reading and
comments.

References

1. Burel, G.: Embedding Deduction Modulo into a Prover. In: Dawar, A., Veith, H.
(eds.) CSL 2010. LNCS, vol. 6247, pp. 155–169. Springer Berlin Heidelberg (2010)

2. Burel, G.: Experimenting with Deduction Modulo. In: Sofronie-Stokkermans, V.,
Bjørner, N. (eds.) CADE 2011. Lecture Notes in Artificial Intelligence, vol. 6803,
pp. 162–176. Springer (2011)

3. Clarke, Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cam-
bridge, MA, USA (1999)

4. Courcelle, B.: The Monadic Second-order Logic of Graphs. I. Recognizable Sets of
Finite Graphs. Information and computation 85(1), 12–75 (1990)

5. Dowek, G.: Polarized Resolution Modulo. In: Calude, C.S., Sassone, V. (eds.) TCS
2010. IFIP AICT, vol. 323, pp. 182–196. Springer Berlin Heidelberg (2010)

6. Dowek, G., Hardin, T., Kirchner, C.: Theorem Proving Modulo. Journal of Auto-
mated Reasoning 31, 33–72 (2003)

7. Dowek, G., Jiang, Y.: Axiomatizing Truth in a Finite Model (2013), https://who.
rocq.inria.fr/Gilles.Dowek/Publi/classes.pdf, manuscript

8. Navarro-Pérez, J.A.: Encoding and Solving Problems in Effectively Propositional
Logic. Ph.D. thesis, The University of Manchester (2007)

9. Reiter, R.: Two Results on Ordering for Resolution with Merging and Linear For-
mat. Journal of the ACM (JACM) 18(4), 630–646 (1971)

10. Robinson, J.A.: Automatic Deduction with Hyper-Resolution. Journal of Symbolic
Logic 39(1), 189–190 (1974)

11. Robinson, J.A.: A Machine-oriented Logic Based on the Resolution Principle. Jour-
nal of the ACM (JACM) 12(1), 23–41 (1965)

12. Slagle, J.R., Norton, L.M.: Experiment with an Automatic Theorem-prover Having
Partial Ordering Inference Rules. Communications of the ACM 16(11), 682–688
(1973)



Resolution in Solving Graph Problems 11

A Appendix

A.1 Correctness of the Encoding of Closed-Walk Detection Problem

To prove that this kind of encoding suit for all closed walk detection problems,
a proof of the theorem below is given.

Theorem 4. Let G be a graph and s be a vertex in G. Starting from s, there
exists a closed walk if and only if starting from {OC(s,G)} ∪ EC(G), a success
clause can be derived.

Before proving this theorem, several notations and lemmas are needed, which
will also be used in the following sections.

Notations Let C1, C2, C3 be clauses, Γ be a set of clauses:

– if C3 is generated by applying resolution between C1 and C2, then write
the resolution step as C1

C2−→ C3; if the resolution is based on a selection
function δ, then the resolution step is written as C1

C2−→δ C3.
– if C2 is generated by applying resolution between C1 and a clause in Γ ,

then write the resolution step as C1
Γ−→ C2; if the resolution is based on a

selection function δ, then the resolution step is written as C1
Γ−→δ C2.

– if C1 is generated by one step of resolution on some clauses in Γ , then write
the resolution step as Γ −→ Γ,C1; if the resolution is based on a selection
function δ, then the resolution step is written as Γ −→δ Γ,C1.

Lemma 1. For any two traversal clauses, we cannot apply resolution rules be-
tween them.

Proof. All the literals in traversal clauses are positive. ut

Lemma 2. If resolution rules can be applied between a traversal clause and a
coloring clause, then one and only one traversal clause can be derived.

Proof. As all the literals in the traversal clause are positive and there is only
one negative literal in the coloring clause, straightforwardly, only one traversal
clause can be derived. ut

Proposition 1. Let M be a set of coloring clauses, C1, . . . , Cn be traversal
clauses and S be a success clause. If M,C1, . . . , Cn → S, then there exists
1 ≤ i ≤ n, such that M,Ci → S, and the length of the later derivation is at
most equal to the former one.

Proof. By induction on the size of the derivation M,C1, . . . , Cn → S.

– If S is a member of C1, . . . , Cn, then there exists the derivation M,S → S
without applying any resolution rules.



12 K. Ji

– If S is not a member of C1, . . . , Cn, then in each step of the derivation,
by Lemma 1, the resolution rules can only be applied between a traversal
clause and a coloring clause. Assume the derivation is M,C1, . . . , Cn −→
M,C1, . . . , Cn, C

′ → S, in which, by Lemma 2, C ′ is a traversal clause.
Then for the derivation M,C1, . . . , Cn, C

′ → S, by induction hypothesis,
M,C ′ → S or there exists 1 ≤ i ≤ n such that M,Ci → S, with the steps
of the derivation at most equal to M,C1, . . . , Cn, C

′ → S. If M,Ci → S,
then the steps of the derivation are less than M,C1, . . . , Cn → S, thus this
derivation is as needed. If M,C ′ → S, then by Lemma 1, there exists Cj in
C1, . . . , Cn, such that Cj

M−→ C ′, thus the derivation M,Cj → S, with the
derivation steps at most equal to M,C1, . . . , Cn → S, is as needed.

ut

Proposition 2. Let M be a set of coloring clauses, C be a traversal clause, and
S be a success clause. If M,C → S(π1)

1, then there exists a derivation path
C(C0)

M−→ C1
M−→ C2 · · ·

M−→ Cn(S).

Proof. By induction on the size of the derivation π1.

– If C is a success clause, then the derivation path can be built directly.
– Otherwise, by Lemma 1, in each step of the derivation, the resolution rules

can only be applied between a traversal clause and a coloring clause. Assume
the derivation isM,C −→M,C,C ′ → S, then for the derivationM,C,C ′ →
S, by Proposition 1, there exists a derivation M,C → S(π2)

2 or M,C ′ → S,
with the length less than π1. For π2, by induction hypothesis, there exists a
derivation path C(C0)

M−→ C1 · · ·
M−→ Cn(S), and this is just the derivation

as needed. ForM,C ′ → S, by induction hypothesis, there exists a derivation
path C ′

M−→ C ′1 · · ·
M−→ C ′m(S). As C M−→ C ′, the derivation path C

M−→
C ′

M−→ C ′1 · · ·
M−→ C ′m(S) is as needed.

ut

Now it is ready to prove Theorem 4. The proof is as follows.
Proof of Theorem 4

– For the right direction, we assume that the path is

s1(sk1) sk2 · · · ski ski+1 · · · skj

By the method of generating E-coloring clauses of a graph, there exist E-
coloring clauses:

W⊥k1 ∨Bk2 , W⊥k2 ∨Bk3 , . . . , W
⊥
ki−1
∨Bki , W⊥ki ∨Bki+1

, . . . , W⊥kj ∨Bki .

1 we denote the derivation as π1.
2 we denote the derivation as π2.



Resolution in Solving Graph Problems 13

Then starting from the original clause C1 = B1∨W1∨· · ·∨Wn, the derivation

C1
D1−→ C2

D2−→ · · ·Ci−1
Di−1−→ Ci

Di−→ · · ·Cj
Dj−→ Cj+1

can be built, in which Cj+1 is a success clause and for each 1 ≤ m ≤ j, Dm

is the E-coloring clause W⊥km ∨Bkm+1 .
– For the left direction, by Proposition 2, starting from the original clause
C1 = B1 ∨W1 ∨ · · · ∨Wn, there exists a derivation path

C1
D1−→ C2

D2−→ · · ·Ci−1
Di−1−→ Ci

Di−→ · · ·Cj
Dj−→ Cj+1,

in which Cj+1 is a success clause and for each 1 ≤ m ≤ j, Dm is an E-
coloring clause. As Cj+1 is a success clause, for each black literal Bi in the
clause Cj+1, there exists an E-coloring clause W⊥i ∨Bki in D1, . . . , Dj . Thus
for each black literal Bi in the clause Cj+1, there exists a vertex ski such
that there is an edge from si to ski . As the number of black literals in Cj+1

is finite, for each vertex si, if Bi is a member of Cj+1, then starting from
si, there exists a path which contains a cycle. As the literal B1 is in Cj+1,
starting from s1, there exists a path to a cycle.

ut

A.2 Correctness of the Encoding of Block-Walk Detection Problem

Theorem 5. Let G be a graph and s1 be a vertex of G. Starting from s1, there
is no blocked walk if and only if, starting from {OC(s1, G)} ∪ AC(G), a success
clause can be derived.

Before proving this theorem, a lemma is needed.

Lemma 3. Let G be a graph and s1 be a vertex of G. Starting from s1, if all
the reachable vertices are traversed in the order s1, s2, . . . , sk and each reachable
vertex has at least one successor, then starting from {OC(s1, G)}∪AC(G), there
exists a derivation path C1(OC(s1, G))

D1−→ C2
D2−→ · · ·Ck

Dk−→ Ck+1, in which
Ck+1 is a success clause and ∀1 ≤ i ≤ k, Di is an A-coloring clause of the form
W⊥i ∨Bi1 ∨ · · · ∨Bij .

Proof. As s1, s2 . . . , sk are all the reachable vertices starting from s1, for a vertex
s, if there exists an edge from one of the vertices in s1, s2, . . . , sk to s, then s is
a member of s1, s2, . . . , sk. Thus, after the derivation C1

D1−→ C2
D2−→ · · ·Cj

Dj−→
Cj+1 , for each black literal Bi, the white literal Wi is not in Cj+1, thus Cj+1 is
a success clause. ut

Now it is ready to prove Theorem 5. The proof is as follows.
Proof of Theorem 5

– For the right direction, assume that all the reachable vertices starting from
s1 are traversed in the order s1, s2, . . . , sk. For the resolution part, by Lemma
3, starting from the original clause, a success clause can be derived.



14 K. Ji

– For the left direction, by Proposition 2, starting from the original clause
C1 = OC(s1, G), there exists a derivation path

C1
D1−→ C2

D2−→ · · ·Cj
Dj−→ Cj+1,

in which Cj+1 is a success clause and ∀1 ≤ i ≤ j, Di is an A-coloring clause
with W⊥ki underlined. As there is no i such that both Bi and Wi are in
Cj+1, for the vertices in sk1 , sk2 , . . . , skj , the successors of each vertex is a
subset of sk1 , sk2 , . . . , skj . As the black literal B1 is in the clause Cj+1, by
the definition of success clause, the white literal W1 is not in Cj+1, thus s1
is a member of sk1 , sk2 , . . . , skj . Then recursively, for each vertex s, if s is
reachable from s1, then s is in sk1 , sk2 , . . . , skj . Thus starting from s1, all
the vertices reachable have successors.

ut

A.3 Completeness of PRMδ + PSR

For the completeness of our method, we first prove that PRMδ is complete, then
we prove that PRMδ remains complete when we apply PSR eagerly.

Proposition 3 (Completeness of PRMδ). LetM be a set of coloring clauses
and C1, . . . , Cn be traversal clauses. If M,C1, . . . , Cn → S, in which the clause S
is a success clause, then starting from M,C1, . . . , Cn, we can build a derivation
by selecting the resolved literals with selection function δ in Definition 4 and get
a success clause.

Proof. By Proposition 1 and Proposition 2, there exists 1 ≤ i ≤ n, such that
Ci(Ci0)

D1−→ Ci1 · · ·
Dn−→ Cin(S). As there are no white literals in any clauses of

D1, . . . , Dn and in each step of the resolution, the resolved literal in the traversal
clause is a white literal, the order of white literals to be resolved in the derivation
by applying Resolution rule with coloring clauses in D1, . . . , Dn will not affect
the result. Thus use selection function δ to select white literals to be resolved,
until we get a traversal clause S′ such that there are no grey literals in it. By
the definition of success clause, S′ is a success clause. ut

Lemma 4. Let M be a set of coloring clauses and C be a traversal clause.
Assume C(H0)

D1−→δ H1
D2−→δ · · ·H(Hi)

Di−→δ · · ·
Dn−→δ Hn in which Hn is a

success clause and for each 1 ≤ j ≤ n, the coloring clause Dj is in M , and
M,C →δ K such that grey(H) = grey(K). If K,D1, . . . , Dn →δ K ′, and K ′ is
not a success clause, then there exists a coloring clause Dk in D1, . . . , Dn, such
that K ′ Dk−→δ K

′′.

Proof. As K ′ is not a success clause, assume that the literals Bi and Wi are in
K ′. As Wi cannot be introduced in each step of resolution between a traversal
clause and a coloring clause, Wi is in C and K. As the literal Bi is in clause K ′,
during the derivation of K ′, there must be some clauses which contains Bi:



Resolution in Solving Graph Problems 15

– if the literal Bi is in K, as Wi is also in K, Wi is a grey literal of K. As
grey(H) = grey(K), the literal Bi is also in H, and as Bi cannot be selected
during the derivation, it remains in the traversal clauses Hi+1, . . . ,Hn.

– if the literal Bi is introduced by applying Resolution rule with coloring clause
Dj in D1, . . . , Dn, which is used in the derivation of Hn as well, so the literal
Bi is also a member of Hn.

In both cases, the literal Bi is in Hn. As Hn is a success clause, the literal Wi

is not a member of Hn. As Wi is in C, there exists a coloring clause Dk in
D1, . . . , Dn with the literal W⊥i selected. Thus, K ′ Dk−→δ K

′′. ut

Lemma 5. Let M be a set of A(E)-coloring clauses and C be a traversal clause.
If we have M,C →δ H and M,C →δ K, such that grey(H) = grey(K), then
starting from M,H a success clause can be derived if and only if starting from
M,K a success clause can be derived.

Proof. Without loss of generality, prove that if starting from M,H we can get
to a success clause, then starting from M,K, we can also get to a success
clause. By Proposition 2, starting from C, there exists H0(C)

M−→δ H1
M−→δ

· · ·Hi(H)
M−→δ · · ·

M−→δ Hn, in which Hn is a success clause. More precisely,

H0(C)
D1−→δ H1

D2−→δ · · ·Hi(H)
Di+1−→δ · · ·

Dn−→δ Hn, where for each 1 ≤ j ≤ n,
the coloring clause Dj is in M . Then by Lemma 4, starting from M,K, we can
always find a coloring clause in D1, . . . , Dn to apply resolution with the new
generated traversal clause, until we get a success clause. As the white literals in
the generated traversal clauses decrease by each step of resolution, we will get a
success clause at last. ut

Theorem 6 (Completeness). PRMδ with PSR is complete.

Proof. By Lemma 5, each time after we apply PSR, the satisfiability is preserved.
ut


