From Inter-Annotation to Intra-Publication Inconsistency - Archive ouverte HAL
Chapitre D'ouvrage Année : 2015

From Inter-Annotation to Intra-Publication Inconsistency

Résumé

What are effective ways to help people with chronic illness, e.g. diabetes and heart disease? Computational linguistics relies on human-annotated data to train machine learners. Inconsistency among the human annotators must be carefully managed (otherwise, the annotations are useless in computation). How can this annotation process be made scalable? ABSTRACT Curing chronic illnesses and diseases requires the huge effort of collecting all available information on this matter and piecing it together with the aids of mathematical and computer modeling. Both phases of information collection and piecing together are prone to error. Errors may result from human annotation inconsistency, machine learning and parameterization when using supervised learning. On a different scale, published results that need to be collected may suffer from another kind of disagreement either due to varying experimental methodologies or assumptions. Here, we discuss these inconsistencies and disagreements in scientific literature and we investigate those of the inter-annotation of named entities in bioliterature from empirical perspectives.
Fichier principal
Vignette du fichier
AbiHaidar_Tufis_IR14.pdf (290.98 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01245137 , version 1 (16-03-2016)

Identifiants

  • HAL Id : hal-01245137 , version 1

Citer

Alaa Abi Haidar, Mihnea Tufis, Jean-Gabriel Ganascia. From Inter-Annotation to Intra-Publication Inconsistency. Inconsistency Robustness, 52, College Publications, pp.614, 2015, Studies in Logic, 978-1-84890-159-9. ⟨hal-01245137⟩
152 Consultations
98 Téléchargements

Partager

More