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Abstract. Sign languages (SLs) are visuo-gestural representations used by deaf
communities. Recognition of SLs usually requires manual annotations, which
are expert dependent, prone to errors and time consuming. This work introduces
a method to support SL annotations based on a motion descriptor that charac-
terizes dynamic gestures in videos. The proposed approach starts by computing
local kinematic cues, represented as mixtures of Gaussians which together corre-
spond to gestures with a semantic equivalence in the sign language corpora. At
each frame, a spatial pyramid partition allows a fine-to-coarse sub-regional de-
scription of motion-cues distribution. Then for each sub-region, a histogram of
motion-cues occurrence is built, forming a frame-gesture descriptor which can
be used for on-line annotation. The proposed approach is evaluated using a bag-
of-features framework, in which every frame-level histogram is mapped to an
SVM. Experimental results show competitive results in terms of accuracy and
time computation for a signing dataset.

1 Introduction

Sign languages (SLs) are natural languages used to communicate with and among the
deaf communities, which, like spoken languages, differ from one country to another.
Additionally, SLs are less-resourced languages with very few reference books describ-
ing them (grammar rules, etc.), a limited number of dictionaries and corpora, and even
less dedicated processing tools.

Annotation software are tools used for linguistic studies, that allow researchers
to visualize their data (mainly videos for SLs), annotate them with linguistic inputs,
and analyze these inputs [1]. These corpus-based studies allow to create statistically-
informed models that are useful for SL description, but also for SL processing. At this
moment, such software are limited to only include automatic processing on the sec-
ondary data, the annotations, which are textual data. They do not include automatic
processing on the primary data, the video. However, there is a growing interest on im-
age and video processing tools, to characterize particular recorded gestures from local
and global primitives such as motion, shape, body parts interactions, among others [2],
[3].

This paper introduces a new proposal to support SLs annotations based on a mo-
tion descriptor that characterize temporal gestures in video sequences. The proposed
approach is developed for French Sign Language corpus annotation. It starts by com-
puting semi-dense trajectories, provided by point tracking in consecutive frames, over
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a set of gestures recorded in a video. Then, kinematic-cue words, represented as local
mixture of Gaussians, are recursively computed at each time and for each trajectory
during the video. These features are extremely fast to compute, and the action descrip-
tor is available at each frame, thus allowing prediction on partial video sequences, and
then on-line gesture recognition capability.

2 Sign Language

2.1 Main linguistic properties

SLs are visuo-gestural representations that follow specific rules induced by use and in-
teraction among corporal articulators and the visual perception. This language promotes
the simultaneous use of a number of articulators, the linguistic use of the space in front
of the signer so-called ’signing space’, and the omnipresence of iconicity at all levels of
the language [4]. The main linguistic specificities and challenges are the followings:

– Signs can be broken down into smaller constituents whose linguistic nature, defini-
tion and detection are still subject to debate;

– Signs can bear strong modification of their constituents depending on the context,
and modelling all possible variations can require too many different training exam-
ples to keep the categories consistent;

– Signs can be more or less lexicalised, and the most productive ones are built on the
fly and are not indexed in a dictionary, which makes them extremely difficult to be
modelled from a classical approach.

SLs characterization must also consider non-manual activity that convey meaning-
ful information. For instance, SL production involves non-manual articulators such as
head, face, and torso which are relatively synchronized on different spatial and temporal
scales. In fact, the signer uses the signing space to support and topologically structure
his discourse. This spatial and multi-component property, as well as the importance of
the productive signs make the design of SL processing tools a very challenging task.

2.2 The LSF (French Sign Language) corpora

The corpora used in this study is extracted from the corpus collected during DictaSign,
a three-year FP7 ICT project that aimed to improve the state of web-based communica-
tion for deaf people [5]. It is composed of nine videos that contain isolated dates, such
as ’Lundi 2 novembre 2013’ (Monday, November 2nd, 2013). The lexicon is constituted
of the seven days, the twelve months, and a set of numbers. In LSF, a date is composed
of four elements following the order: DAY NUMBER MONTH YEAR. The day and
month signs are simple gestural units than can present regional variants. These dates are
less complex than SL utterance, but they include various issues such as lexicon variabil-
ity, co-articulation. They also include some spatial constraints, but limited to the image
plane. This seems to us good candidates as a first step, to evaluate the performance of
our method on motion description with this kind of data.
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3 Background on motion descriptors

Motion analysis is a fundamental tool to segment potential region of interest, quan-
tify, detect, recognize gestures or describe spatio-temporal interactions. One of the ad-
vantages of motion based characterization is the relative independence to appearance,
which has potential applications in uncontrolled conditions.

Motion descriptors based on tracked local space-time trajectories from optical flow
fields, currently provide the best performance to represent gestures and understand
video sequences [6], [7], [8]. To recognize human activities, these strategies namely
integrates local features along the trajectories to capture shape, appearance and motion
information, namely using HOF (Histograms of Optical Flow), MBH (Motion Bound-
ary Histograms) and HOG (Histograms of Oriented Gradients) [7]. This descriptor was
also used in [9], but using improved motion trajectories obtained by correcting the cam-
era motion in video sequences. In general, these descriptors are dependent on the ap-
pearance and structural image features computed around trajectories, fact that could
be critical in language recognition in which shape signs and appearance have high in-
ter subject variability. Additionally, the spatio-temporal volumes are heuristically cut
off from a fixed temporal length (for example: 15 frames in [7]) that may be a prob-
lem to represent series of gestures of a SL utterance that can vary from one subject to
another and also depending of the represented dialog. Besides, the dynamic trajectory
information is poorly exploited, i.e., the action descriptors only use the trajectory as
information support to compute static frame features (namely spatial features such as
image gradients), neglecting relevant kinematic information that is naturally available
on the trajectory.

Other works have characterized the dynamic of dense beams of trajectories to de-
scribe actions in video sequences. For instance, in [10] a set of k cut trajectories are
characterized using first order derivatives in the (x, y) axes, which may be sensitive to
motion direction and to scale. In [11] is firstly considered strong sparse coding assump-
tions to filter out motion trajectories. Then, the remaining trajectories are characterized
using Largest Lyapunov Exponent and the correlation dimension.

Specifically, in the domain of SLs, several works have been focused in the auto-
matic recognition of atomic gestures by characterizing postures, shape regions, global
movements among others (see [3] for an overview of the domain). These works in-
clude the use of a broad spectrum of methods such as tracking of articulated shapes,
colour segmentation to characterize postures, and the static and temporal characteri-
zation shape articulators. In terms of annotation support, some projects have tried to
integrate video analysis modules into annotation software. For instance, Ancolin is a
prototype annotation software [12] developed onto a distributed architecture, that in-
cludes several external plugins for sign language video processing such as colour skin
detection, characterization of head shape and size, and motion history images to code
arm movements. This video characterization provides additional useful information to
the annotation but remains dependent on accurate segmentation of human silhouettes
and is also highly dependent on the user. SignStream [1] is another annotation software,
currently used for linguistic analysis that includes components for 3D head detection
and tracking to estimate head gesture: Currently, this application includes new modules
to automatically characterize hand gestures in ASL using a tracking system [2]. Addi-
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tionally, the SLMotion toolkit provides a framework for automatic and semi-automatic
analysis, feature extraction and annotation of individual sign language videos. The pro-
gram includes support for exporting the annotations in ELAN3 format.

Fig. 1: Pipeline of the proposed approach for SL recognition and annotation support.
(a) First, a set of trajectories are computed. (b) For each trajectory, a set of kinematic-
cue words are computed using recursive Mixture of Gaussian. (c) A pyramidal partition
is applied at each frame to support hierarchical BoW representation, which is in turn
used to recognize particular FSL gestures.

4 The proposed method

The proposed strategy recognizes SL gestures by using an on-line spatio-temporal char-
acterization of the signer movements recorded in a video. The Figure 1 illustrates a
pipeline of the proposed approach.

4.1 Computing semi-dense trajectories

Point trajectories are useful motion features based on tracking salient points along the
video sequence, allowing in most cases a relevant representation of action present in
the video. The proposed approach requires a set of trajectories with a suitable trade-off
between accuracy and computation time, in order to support fast annotation prediction.
In this work were considered two different methods to compute motion trajectories (see
examples in Fig 2), described hereunder:

Dense trajectories [7] are extracted from a dense optical flow field estimated at mul-
tiple spatial scales and regularized using a median filter. Additionally, a trajectory
is considered as outlier and removed if it meets any of the two following con-
ditions: (1) the standard deviation of the velocity along the trajectory is above a
given threshold, and (2) it presents sudden displacements, corresponding to vectors
whose magnitude is larger than a certain proportion of the overall displacement of
the trajectory.

3 software widely used for linguistic analysis of video data
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Semi-Dense trajectories [13] are computed from a set of weakly salient points, tracked
using a coarse-to-fine prediction and matching approach, allowing a high degree of
parallelism and dominant movement estimation. This technique produces high den-
sity trajectory beams, robust to large camera accelerations and allowing statistically
significant trajectory based representation, with a good trade-off between accuracy
and performance.

Fig. 2: Spatio-temporal representation of trajectories and MoG kinematic representa-
tion. Each row represents a spatio-temporal gesture corresponding to two days. The sec-
ond and third columns illustrate the dense trajectories and their kinematic descriptors,
respectively. The fourth and fifth columns correspond to the semi-dense trajectories and
their kinematic descriptors.

4.2 Gaussian mixture representation of kinematic features

Each computed trajectory Γ (t) ∈ R2 represents a particle traveling in the 2d space
(x, y) from time t1 to tn. At each time t, the trajectory motion information can be
characterized by a collection of kinematic features {F it }i, such as the velocity, acceler-
ation, curvature among others, using finite difference approximation. In this work, each
computed kinematic feature is modelled as a random variable following a mixture of
K Gaussian densities, whose parameters are defined as:

∑K
k=1 w

k
tN (µkt , σ

k
t ), where

(µkt , σ
k
t ) are the mean and standard deviation of each Gaussian mode and wkt represents

the contribution of each mode, with
∑K
k=1 w

k
t = 1.

The MoG representation is herein implemented as described in Algorithm 1 [14].
This algorithm allows an on-line MoG updating and therefore a kinematic gesture rep-
resentation is available at each frame. First, the density parameters are initialized, as-
signing to the mean the first value of each kinematic feature computed, to the standard
deviation any fixed value and the weight ωt,k being the same for each mode k. Then, the
distributions that are most likely matched by the current kinematic sample (i.e. when
the sample distance to the mode is less than λ times its standard deviations) are updated.
The density parameters

{
µkt , σ

k
t

}
are updated using a on-line cumulative filter with a

learning rate parameter α ∈ [0, 1] which takes into account the history of the kinematic
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Algorithm 1 Recursive Mixture of Gaussian estimated locally for each computed tra-
jectory and for each considered kinematic feature.

for each time t do
for each trajectory Γ do

if |Γ | > 3 then
for each kinematic feature i do

calculate feature Ft = F (i)
for each mode k do

if
∣∣Ft − µkt ∣∣ ≤ λσkt then
µkt = µkt−1 + α(Ft − µkt−1)

(σkt )
2 = α

(
µkt−1 − Ft

)2
+ (1− α) (σkt−1)

2

ωkt = ωkt−1 + α
end if

end for

normalize ωkt such that
K∑
k=1

wkt = 1

rank the modes in decreasing order of ωk
t

σk
t

keep the first B modes such that: B = arg
K

min
b=1

{
b;

b∑
k=1

wkt > T

}
end for

end if
end for

end for

measure along the trajectory, with t ≈ 1/α. Each ωkt is also updated according to the
matched distribution at each time. After that, the distributions are sorted in decreasing
ordered according to ωk

t

σk
t

. Finally, only the B first distributions of the MoG are consid-
ered. If any distribution is initialized (no existing one is matched), then the parameters
of the distribution with lowest weight are replaced by the initial values. This recursive
representation has the main advantage of computational speed which is essential to on-
line annotation tools, the recent history of each kinematic measure being available at
each frame.

Kinematic features Ft: In order to keep the computation fast, the kinematic features
considered in this work were: the velocity v(t) = Γ ′(t), depicted by its direction θ(t) =
arg v(t) and modulus (speed) s(t) = ||v(t)||. The curvature was also included; it is
related with how rapidly the trajectory is bending to one side, and corresponds to the
normal acceleration when the curvilinear speed is constant. The curvature is herein
implemented as proposed in [15], using finite difference on consecutive points of Γ as

follows: κ(t − 1) =

√
ζ(ζ−b)(ζ−d)(ζ−e)

bde , where ζ = (b + d + e)/2, as illustrated in
Figure 1.

Each trajectory is then characterized at time t by the set of kinematic features
F t = {θ(t), s(t), κ(t)}. The proposed strategy is flexible to include any other local
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kinematic measure computed along a 2d trajectory. An additional advantage of the pro-
posed strategy is that any kinematic feature can access independently to the recognition
or a set of features can be chosen through a learning stage, in order to reach higher ex-
ecution times or reduce memory requirements, preserving a proper accuracy. Figure 2
shows computed trajectories. The recursive means of computed kinematic features are
represented using a RGB color map representation, the blue being the curvature and the
red and green being respectively the modulus and the direction of the velocity.

4.3 Spatial pyramid representation and Codebooks Learning

In SLs, the signs are visuo-gestural representations, which require a temporal and spa-
tial characterization. In the proposed approach, a regional analysis of the MoG features
are carried out by following a fine-to-coarse partition of each frame. This spatial pyra-
mid forms a set of partition layers {Li}0≤i≤Nr

(see in Figure 1-(c)), whose total number
of sub-regions is: s r =

∑Nr

i=0 4
i = 4Nr+1−1

3 .
In the training step, different configurations of the spatial pyramid representation

were used to learn the codebooks of kinematic words computed from the MoG re-
cursive representation. Each codebook is made up by a set of MoG kinematic words,
formed by the output of a classical k-means algorithm computed using a random selec-
tion of 10% of the MoG features extracted over the whole training video set. All the
feature words are computed with the same α, with n the number of kinematic measures
estimated at each time on each trajectory and b the number of modes retained from
the MoG distribution. Then, each codebook contains kl representative feature words,
each word having a dimension of 3nb. During a first configuration, a global codebook
{D0} was learned from the region of L0, and then a histogram of motion word oc-
currences was considered for each sub-region of the spatial pyramid. This histogram is
constructed by counting the number of times each one of the kl kinematic centroid is
closest to the computed features, based on the Euclidean distance on R3n. In this case,
the total size of the descriptor is the concatenation of histograms computed for each
sub-region, with size of s r× kl0 . In a second configuration, for each sub-region of the
spatial pyramid representation was considered a independent codebook. From the set
of codebooks {Dl}1≤l≤Λ is then computed histogram of occurrences with variable size
according to the size of each regional codebook, resulting a more compact descriptor
w.r.t the first version. Finally, the labeling of each potential sign gesture is performed
by a Support Vector Machine (SVM) using the standard LIBSVM [16] implementation,
using the one-against-one multi-class SVM classification with a Radial Basis Function
(RBF) kernel.

5 Results

A first exploration over a SL corpus of signatures representing Dates was carried out
to evaluate the proposed approach in the task of sign recognition to support annota-
tion. The experimental evaluation was performed under a leave-one-out cross valida-
tion scheme by using different segments of the videos. The best performance of the
proposed approach was obtained with a pyramid ofNr = 2 levels and a learning rate of
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α = 0.25 corresponding, to a time depth of 4 frames. The number of estimated modes
in each MoG was set to 7, taking into account the 5 dominant modes.

Evaluations over the SL dataset were carried out taking into account different lexi-
cal complexities of the signs. First, the words recognition related with days and months
was performed. Because the approach is based on statistical representations of spatio-
temporal gestures, it was only considered gestures with more that 5 samples available
into the dataset, corresponding to 4 days and 5 months. In Table 1 is shown the per-
formance obtained by the proposed approach for recognizing these spatio-temporal
gestures. In general the proposed approach is able to recognize different atomic ges-
tures that correspond to localized movements. The best performance of the proposed
approach was achieved by using dense trajectories with a compact spatial pyramid rep-
resentation of regional dictionaries. Some mistakes in the recognition may be attributed
to regional variations of gestural signs.

Table 1: Classification rate of individual gestures corresponding to days and months
Gesture Spatial Configuration Trajectories

Dense Semi-dense

Days Pyr single Dic (L0) 74.07 66.66
Pyr mult Dics 81.48 74

without Sub-regions 70.37 62.96
–

Months Pyr single Dic (L0) 75.05 63.45
Pyr mult Dics 80 72.21

without Sub-regions 65 55.3

Second, the performance of the approach to recognize dates was evaluated. Com-
plete dates have more complex lexical structure and they are composed by the ordered
sign information of day, month and year 4. The proposed approach achieves a recogni-
tion rate of 75% on a total of 7 different dates. In Table 2 is shown the results obtained
by using different spatial configurations and the different types of trajectory.The best re-
sults is obtained using a spatial pyramid configuration of multiple dictionaries learned
by region and the dense trajectories. The both pyramidal representations herein imple-
mented allows a more robust representation than a global space-frame description, i.e,
without a sub-regional division. Some mistakes are due to the natural variability be-
tween different signers and to the limited number of samples available for each date.

Action recognition evaluation: Because the proposed approach is based on the recog-
nition of spatio-temporal patterns, it can be extended to recognize other motion ac-
tivities. An additional evaluation was herein considered in public action recognition

4 An example of a considered date is: Vendredi douze septembre mille six cent quatre vingt dix,
which means Friday, September the 12th, 1690
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Table 2: Classification rate using different spatial configurations and trajectories for
complete date phrases

Spatial Configuration Trajectories
Dense Semi-dense

Pyr single Dic (L0) 75.03 67.13
Pyr mult Dics 77.21 70.3

without Sub-regions 72.45 62

datasets. Two different datasets were considered: the KTH (six action classes, con-
tained in a total of 2 391 videos) and the UT-Interaction ( six different interactions
in 120 videos) [17]. Table 3 summarizes the results obtained for the proposed approach
with other state-of-the art approaches. It generally achieves competitive results with the
great advantage of being computationally efficient and usable in real-time applications.
In contrast, other motion descriptors typically use a lot of features for each trajectory,
including appearance information.

Table 3: The right table reports the comparison with state-of-the-art methods using the
KTH database following the original experimental setup [18]. The figures marked with
(∗) have been computed using a k-fold validation with k = 5 [19]. The left table shows
the comparison with state-of-the-art methods using the UT-database using k-fold vali-
dation with k = 10, as described in [17]

Methods Accuracy
Proposed approach 92.23
Wang et. al. [7] 94.2
Laptev et. al. [20] 91.8

Proposed approach ∗ 97.0
Liu et. al. ∗[19] 93.8

Methods Accuracy
Proposed approach 90.3
Laptev et. al. [6] 87.6
Yu et. al. [21] 83.3
Daysy [22] 71

The proposed approach achieved memory efficiency, taking in average 0.30 mil-
liseconds for each frame to build the descriptor. The experiments were carried out on a
single core i3-3240 CPU @3.40GHz.
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6 Conclusions

This work introduced a new motion descriptor that is able to recognize motion gestures
related with SLs. The proposed approach allows an on-line support to SL annotation, by
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combining trajectory beams and Mixture of Gaussian representation of kinematic cues.
The motion cues are spatially aggregated at each frame using a pyramid representation.
The proposed approach can also be included as a plugin in SL systems and used as part
of more sophisticated SL analysis. A more exhaustive evaluation with a larger dataset
will be performed in order to increase the statistical samples of each gesture.
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