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Abstract

A new texture representation framework called statistical binary patterns

(SBP) is presented. It consists in applying rotation invariant local binary

pattern operators (LBPriu2) to a series of moment images, defined by lo-

cal statistics uniformly computed using a given spatial support. It can be

seen as a generalisation of the commonly used complementation approach

(CLBP), since it extends the local description not only to local contrast

information, but to higher order local variations. In short, SBPs aim at

expanding LBP self-similarity operator from the local gray level to the re-

gional distribution level. Thanks to a richer local description, the SBPs have

better discrimination power than other LBP variants. Furthermore, thanks

to the regularisation effect of the statistical moments, the SBP descriptors

show better noise robustness than classical CLBPs. The interest of the ap-

proach is validated through a large experimental study performed on five
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texture databases: KTH-TIPS, KTH-TIPS 2b, CUReT, UIUC and DTD.

The results show that, for the four first datasets, the SBPs are comparable

or outperform the recent state-of-the-art methods, even using small support

for the LBP operator, and using limited size spatial support for the compu-

tation of the local statistics.

Keywords: texture classification, local binary pattern, statistical moments

1. Introduction

Texture analysis is an active research topic in computer vision and image

processing. It has been widely used in many applications including medical

image analysis, remote sensing, object recognition, document classification,

content-based image retrieval and many more. As one of the major problems

in texture analysis, texture classification has received considerable attention

over the two last decades, and many novel methods have been proposed.

[1, 2, 3, 4, 5].

The texture classification problem is typically divided into the two sub-

problems of representation and classification. It is generally agreed that tex-

ture features play a very important role. If inadequate feature descriptors are

used, even the best classifier will fail to achieve good results. Despite decades

of research efforts on texture description, it remains a challenging problem,

because of many variations that can affect texture patterns, like viewpoint

changes, illumination variation, rotation, noise, and so on. Thus, a good

texture descriptor should not only capture highly discriminative information

but also be robust to extrinsic changes.

Most earlier texture representations focused on filter banks and the sta-
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tistical distributions of their responses. Among the popular descriptors in

these approaches are Gabor filters [6], MR8 [7], Leung and Malik’s filters [8],

steerable filters [9] or wavelets [10]. More recently, Ojala et al. with the Lo-

cal Binary Patterns (LBP) [1] and Varma and Zisserman with the VZ-Joint

classifier [11] have shown that local intensities or differences in a small patch

can produce better performance than filter banks with large spatial support.

Due to their great computational efficiency and good texture characteriza-

tion, the LBPs are often preferred to other frameworks. They have been

applied in many applications of computer vision and a large number of LBP

variants [12, 13, 14, 15, 16, 17, 18] have been introduced.

Although significant progress has been made, most LBP variants still

have prominent drawbacks, like noise sensitivity [12], and a limitation to the

contrast information. In this paper, we propose a generic statistical approach,

which considerably enhances both the discriminative power of LBPs and their

robustness to small variations, notably image noise.

The proposed algorithm encodes the local structure of the gray level dis-

tribution, summarised by moments of order up to 4. We first consider a series

of local statistical moments. The self-similarity LBP operators are applied

on those images. We further encode a binary image, obtained by threshold-

ing the moment images with the corresponding global averages. Integrating

these complementary ingredients, our algorithm encodes rich descriptive in-

formation while providing robustness to environmental changes. Experimen-

tal results on five large and representative texture databases show that our

approach favourably competes with state-of-the-art descriptors.

Our method is naturally related to filter bank approaches [6, 7, 8, 9],
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and can also be seen as a pre-processing technique, since the moment images

are the output of local filters. By the way, moment images have been par-

tially used before, in [19, 20, 21, 1] where mean or variance filters are used

for noise robustness or for complementary information purposes. In this pa-

per, we show that the series of moment images calculted from a pre-defined

structuring element at different orders (up to 4th order) bring more textural

information since the regional gray level distribution is better represented

using different statistical moments.

The rest of this paper is organised as follows. Section 2 discusses the

related literature on LBP-based texture descriptors, and Section 3 details the

proposed approach. Section 4 develops the implementations being evaluated

and their parameter setting. Experimental results are presented in Section 5

and conclusions are finally drawn in Section 6.

2. Related work

Basic LBPs are “micro” features, capturing the relationships between

pixels in small-scale neighbourhoods, but they have several limitations, such

as small spatial support region, loss of local textural information, rotation

and noise sensitivities. To overcome these drawbacks, a lot of efforts have

been made. To recover from the loss of information, local image contrast

was introduced by Ojala et al. [1] as a complementary measure, and better

performance has been reported. In a “completed” LBP model, Guo et al.

[13] included both the magnitudes of local differences and the pixel intensity

itself, and improved again the performance. In terms of locality, Liao et al.

[12] proposed to extract global features from the Gabor filter responses as
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a complementary descriptor. Liu et al. [17] have recently generalized LBPs

with two complementary types of features extracted from local patches, based

on pixel intensities and differences, reporting impressive texture classification

rates. In [16], an “LBP like” feature, the Local Binary Count (LBC), is

proposed, by encoding only the number of neighbours whose value is higher

than the centre pixel. Heikkila et al. [22] exploited circular symmetric LBP

(CS-LBP) for local interest region description. Zhao et al. [23] presented the

LBP histogram Fourier (LBP-HF) features while Maani [24] defined local

frequency components from the 1D Fourier transform of the neighbouring

function. In [25], Chen et al. proposed the WLD (Weber Local Descriptor),

a bio-inspired extension of the LBP based on Weber’s law. For preprocessing

step, Gabor filters [26] are widely used for capturing more global information.

Different neighbourhoods have also been used: elliptical [27], three-patch or

four-patch neighbourhood [28] to exploit anisotropic information. Logically,

multi-scale or multi-structure approaches [29, 21] were considered to gather

information at larger scales. Zhao et al. [30] combined LBP with covariance

matrix to improve the performance.

2.1. LBP

The LBP descriptor, first proposed by Ojala et al. [1], encodes the spatial

relations in images. Let f be a discrete image, modelled as a mapping from

Z2 to R. The original LBP encoding of f is defined as the following mapping

from Z2 to {0, 1}P :

LBPP,R(f)(z) = (s(f(yp)− f(z)))0≤p<P , (1)
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with s(x) =

1, x ≥ 0

0, otherwise.

Here yp (0 ≤ p < P ) are the P neighbours of pixel z, whose values are evenly

measured (or interpolated) on the circle of radius R centred on z.

The uniformity measure of an LBP is defined as follows:

U(LBPP,R) =
P∑
p=1

|LBPp
P,R − LBPp−1

P,R |, (2)

where LBPp
P,R is the p-th bit of LBPP,R, and LBPP

P,R = LBP0
P,R. An LBP

is called uniform if U(LBPP,R) ≤ 2. Ojala et al. observed that, on natural

texture images, most patterns are uniform. Finally the rotation invariant

uniform LBP is defined as follows:

LBPriu2
P,R =


P−1∑
p=0

LBPp
P,R, if U(LBPP,R) ≤ 2

P + 1, otherwise.

(3)

LBPriu2 proved [1] a very efficient local texture descriptor and then has been

intensively used in texture classification. Uniform patterns are considered as

more reliable and more statistically significant. Furthermore, ignoring non-

uniform patterns considerably reduces the length of the descriptor, with only

P + 2 distinct LBP riu2
P,R compared to 2P distinct LBP P,R.

2.2. Complemented LBP

Guo et al. [13] presented a state-of-the-art variant by considering the local

differences as two complementary components, signs: sp = s(f(yp) − f(z))

and magnitudes: mp = |f(yp)− f(z)|. They proposed two operators, called
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CLBP-Sign (CLBP S) and CLBP-Magnitude (CLBP M) to code these two

components. The first operator is identical to the LBP. The second one which

measures the local variance of magnitude is defined as follows:

CLBP MP,R(f)(z) = (s(mp − m̃))0≤p<P , (4)

where m̃ is the mean value of mp for the whole image. In addition, Guo et al.

observed that the local value itself carries important information. Therefore,

they defined the operator CLBP-Center (CLBP C) as follows:

CLBP C(f)(z) = s(f(z)− f̃), (5)

where f̃ is set as the mean gray level of the whole image. Because these

operators are complementary, their combination leads to a significant im-

provement in texture classification, then this variant is also considered as a

reference LBP method.

2.3. Noise tolerant LBP variants

To address the problem of noise sensitivity, different methods have been

proposed, that can be generally categorised into three groups.

The most popular approach uses different symbols to code small differ-

ences. Tan and Triggs [31] proposed local ternary patterns (LTP), using

ternary {−1, 0, 1} instead of binary encoding, where 0 is used when the pixel

difference is less than a given threshold. Several variants have been pre-

sented: Nanni et al. [32] proposed quinary encoding, while Akhloufi and

Bendada [33] determined the threshold adaptively; Liao et al. [34] used pixel

ratio instead of differences in order to deal with complex gray scale intensity

changes.
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The second approach uses pre-processing filters in encoding step to reduce

the influence of noise. Instead of using central pixel as threshold, several

authors used the median [35] or the mean value of neighbouring pixels [19,

20, 21]. Ojala et al. [1] also used variance as complementary information

to make LBP more robust to noise. Recently, Liu et al. [36] presented

a mechanism of “Average Before Quantization” in encoding step. Those

methods make the texture representations more robust against noise, while

allowing them to capture more spatial information.

The last one is based on an error-correction mechanism or soft assignment

to recover uncertain bit in LBPs. Ren et al. [37] presented a mechanism

to recover the corrupted patterns by encoding small pixel difference as an

uncertain bit that is determined later based on other bits. Iakovidis et al.

[38] incorporated fuzzy logic in LBP encoding to cope with uncertainty in

noisy ultrasound images.

3. Statistical Binary Pattern

The Statistical Binary Pattern (SBP) representation aims at enhancing

the expressiveness and discrimination power of LBPs for texture modelling

and recognition, while reducing their sensitivity to unsignificant variations

(e.g. noise). The principle consists in applying rotation invariant uniform

LBP to a set of images corresponding to local statistical moments associated

to a spatial support. The resulting code forms the Statistical Binary Patterns

(SBP). Then a texture is represented by joint or marginal distributions of

SBPs. The classification can then be performed using nearest neighbour

criterion on classical histogram metrics like χ2. We now detail those different
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steps.

3.1. Moment images

A real valued 2d discrete image f is modelled as a mapping from Z2 to

R. The spatial support used to calculate the local statistics is modelled as

B ⊂ Z2, such that O ∈ B, where O is the origin of Z2.

The r-order moment image associated to f and B is also a mapping from

Z2 to R, defined as:

mr
(f,B)(z) =

1

|B|
∑
b∈B

(f(z + b))r (6)

where z is a pixel from Z2, and |B| is the cardinality of the structuring

element B. Accordingly, the r-order centred moment image (r > 1) is defined

as:

µr(f,B)(z) =
1

|B|
∑
b∈B

(
f(z + b)−m1

(f,B)(z)
)r

(7)

where m1
(f,B)(z) is the average value (1-order moment) calculated around

z. Finally the r-order normalised centred moment image (r > 2) is defined

as:

βr(f,B)(z) =
1

|B|
∑
b∈B

f(z + b)−m1
(f,B)(z)√

µ2
(f,B)(z)

r

(8)

where µ2
(f,B)(z) is the variance (2-order centred moment) calculated around

z.

3.2. Statistical Binary Patterns

Let R and P denote respectively the radius of the neighbourhood circle

and the number of values sampled on the circle. For each moment image M ,

one statistical binary pattern is formed as follows:
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• one (P +2)-valued pattern corresponding to the rotation invariant uni-

form LBP coding of M :

SBPP,R(M)(z) = LBPriu2
P,R (M)(z) (9)

• one binary value corresponding to the comparison of the centre value

with the mean value of M :

SBPC(M)(z) = s(M(z)− M̃) (10)

Where s denotes the pre-defined sign function, and M̃ the mean value of the

moment M on the whole image. SBPP,R(M) then represents the structure of

moment M with respect to a local reference (the centre pixel), and SBPC(M)

complements the information with the relative value of the centre pixel with

respect to a global reference (M̃). As a result of this first step, a 2(P + 2)-

valued scalar descriptor is then computed for every pixel of each moment

image.

3.3. Texture Descriptors

Let {Mi}1≤i≤nM
be the set of nM computed moment images. SBP{Mi} is

defined as a vector valued image, with nM components such that for every

z ∈ Z2, and for every i, SBP{Mi}(z)i is a value between 0 and 2(P + 2).

If the image f contains a texture, the descriptor associated to f is made

by the histogram of values of SBP{Mi}. We consider two kinds of histograms.

The first one is the joint histogram H defined as follows:

H : [[0 ; 2(P + 2)[[nM→ N
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H(v) = |{z; SBP{Mi}(z) = v}| (11)

Depending on the size of the texture images, the joint distribution may

become too sparse when the dimension (i.e. the number of moments) in-

crease. Then we also consider the marginal histograms {hi}i≤nM
defined as:

hi : [[0 ; 2(P + 2)[[→ N

hi(n) = |{z; SBP{Mi}(z)i = n}| (12)

The texture descriptor can then be formed by a joint histogram H or

by the concatenation of nM marginal histograms {hi}. The length of the

descriptor vector is [2(P + 2)]nM in the first case, and 2nM(P + 2) in the

second case.

3.4. Texture Classification

Two texture images being characterised by their respective histogram

(descriptor) F and G, their texture dissimilarity metrics is calculated using

the classical χ2 distance between distributions:

χ2(F,G) =
d∑
i=1

(Fi −Gi)
2

Fi +Gi

(13)

where d is the number of bins (dimension of the descriptors). Our classi-

fication is then based on a nearest neighbour criterion. Every texture class

with label λ is characterised by a prototype descriptor Kλ, with λ ∈ Λ. For

an unknown texture image f , its descriptor Df is calculated, and the texture

label is attributed as follows:

l(f) = arg min
λ∈Λ

χ2(Df , Kλ) (14)
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4. Implementations

In this section, we detail the instances of the SBP framework that will be

evaluated in this paper, as well as their parameter settings.

4.1. Mean and Variance

Our first experiments focused on SBP2(P,R) = SBPm1µ2
P,R , i.e., the SBPs

obtained with the mean m1 and the variance µ2
1. Using two orders of

moments, the size of the joint histogram in texture descriptor remains rea-

sonable. Figure 1 illustrates the calculation of the texture descriptor using

m1 and µ2 images. The spatial relationships between local structures on each

image are characterised using LBPriu2
P,R . In addition, two binary images are

computed by thresholding the moment images with respect to their average

values. For each moment, the local pattern then have 2(P + 2) distinct val-

ues. Finally, the joint histogram of the two local descriptors is used as the

texture feature and is denoted SBPm1µ2 . Therefore, the feature vector length

is 4(P + 2)2.

On the histogram depicted in Figure 1, the peak lines correspond to non-

uniform bins, which mainly appear due to quantisation noise on constant

valued area, and then are fully representative of the texture. Aside from

the peaks, the histogram shows a relatively smooth structure, thanks to the

LBPriu2 coding which possesses, unlike traditional LBP coding, a natural

metrics. The complementarity of the two moment components is visible on

the histograms. Furthermore, the global shape of the histogram is represen-

tative of the texture class, as can be seen on Figure 2, where Figures 2(b)

1It was also presented in the preliminary paper [39].
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Figure 1: Texture representation using SBP2 =SBPm1µ2 . The structuring element B =

{(1, 5), (2, 8)} (see Section 4.4) is used for computing the moment images, and LBPriu224,3 is

used for LBP encoding (red pixels correspond to non-uniform patterns).

and (d) show SBP2 descriptors for two images from the same texture class,

whereas Figure 2(f) shows the SBP2 descriptor for another texture. Figures

3(a)-(d) explicits the interpretation of the SBP2 descriptor, according to the

meaning of the 4 regions within the 2d histogram:

• First quadrant (Figure 3(a)): Homogeneous dark areas

• Second quadrant (Figure 3(b)): Dark areas near contours

• Third quadrant (Figure 3(c)): Homogeneous light areas

• Fourth quadrant (Figure 3(d)): Light areas near contours

Several remarks can be made on the properties of SBPm1µ2 and its link

to existing work.

• Robustness to noise: m1 and µ2 act like a pre-processing step which

reduces small local variations and then enhances the significance of the
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Figure 2: (a)-(b), (c)-(d) and (e)-(f): Texture images and their corresponding SBP2 de-

scriptors.
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Figure 3: Interpretation of the SBP2 descriptor (e) and its 4 regions (a-b) with, on the

left, the corresponding back-projected pixels.
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binary pattern with respect to the raw images.

• Rotation invariance: isotropic structuring elements which discards all

orientation information should be used in order to keep the rotation

invariance property of the local descriptor.

• Information richness: moment images already convey information about

local structures, and thus, applying LBPs at a larger-scale on those mo-

ment images allows our algorithm to capture more global information.

Also, the two orders of moments provide complementary information

of the spatial structure.

There are also links between SBPm1µ2 and the CLBP descriptors of Guo

et al. [13] (see Sec. 2). First, the binary images used in SBP correspond to

CLBP C operator. Second, the respective roles of m1 and µ2 are somewhat

similar to the CLBP S and CLBP M operators. However in CLBP and its

variants, CLBC [16] and CRLBP [20], the magnitude component (CLBP M)

is more a contrast information complementing CLBP S, whereas in our al-

gorithm, SBPµ2 represents the local structure of a contrast map, and can be

considered independently on SBPm1 .

4.2. Higher order moments

We have also evaluated the SBP model on higher order moments. Indeed,

the objective of the SBP framework is to extend the LBP texture descriptors

from the local level, represented by pixel z, to the regional distribution level

of z + B, by approximating the distribution to a set of statistical moments.

However the mean and variance only describe faithfully the distribution in
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particular cases like Gaussian distributions, which is obviously insufficient in

many locations of natural texture images. Higher order moments may cap-

ture relevant information to complete the description. For example, skewness

(β3) is a measure of (dis)symmetry of the distribution while kurtosis (β4) de-

scribes the height and sharpness of its peak.

Figure 4 shows different moment images for different orders, and their

LBP encoding ((P,R) = (24, 3)) where red pixels correspond to non-uniform

patterns. The different patterns appearing in the moment images and their

LBP illustrate the complementarity of the different orders of moments. At

the same time, the increasing number of red pixels in the LBPriu2 images

as the order grows, is an illustration of the instability of the higher order

moments: because they amplify the small variations, more unstable local

variations appear on the higher order moment images. The consequence is

a decrease in the number of significant LBP values in the images. Thus, we

limited the evaluation to the 4th order moment.

Regarding the size of the texture descriptor, it will naturally grow as the

number of moments increases. When using joint histograms, the descriptor

size is (2(P+2))n, where P is the number of neighbours used in LBP, and n is

the number of moment images. When using marginal histograms, the size is

only 2n(P + 2), but at the price of a significant loss of information. We then

propose a trade-off based on concatenation of joint histograms corresponding

to pairs of moment images.

Formally, we can recursively define the higher order SBP hybrid texture

descriptor as follows. Let M1 and M2 be moments or combinations of mo-

ments by their joint or concatenated histogram. We shall denote SBPM1M2
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(a) Original image (b) m1 (c) m1 LBP

(d) µ2 (e) µ2 LBP (f) µ3 (g) µ3 LBP (h)β3

(l) β3 LBP (i) µ4 (j) µ4 LBP (k) β4 (m) β4 LBP

Figure 4: Several moment images and their LBP encodings at different orders of a textured

image. LBPriu224,3 is used and non-uniform patterns are highlighted by red pixels in images

of LBP encoding.

(resp. SBPM1 M2) the texture descriptor made by the joint (resp. concate-

nated) histograms constructed from SBPM1 and SBPM2 .

In our experiments for higher order moments, we have only considered

pairs of moments for joint histograms. Specifically, for the third order mo-

ments, we have evaluated the two following descriptors (their size is 3(2(P +

2))2 in both cases):

• Non normalised third order

SBP
′

3(P,R) = SBPm1µ2 m1µ3 µ2µ3
P,R

• Normalised third order

SBP3(P,R) = SBPm1µ2 m1β3 µ2β3
P,R

Accordingly, for the fourth order, we have evaluated the two following
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descriptors (their size is 6(2(P + 2))2 in both cases):

• Non normalised fourth order

SBP
′

4(P,R) = SBPm1µ2 m1µ3 µ2µ3 m1µ4 µ2µ4 µ3µ4
P,R

• Normalised fourth order

SBP4(P,R) = SBPm1µ2 m1β3 µ2β3 m1β4 µ2β4 β3β4
P,R

4.3. Multiscale complementary SBP descriptor

Our SBP descriptors can be easily extended by considering other aspects

of LBP encoding. We address hereafter two popular extensions proposed by

other LBP-based variants for improvement of SBP descriptors.

• Multiscale approach [29]

• Complementary information [13]

For multiscale approach, several supporting neighbourhoods {(P1, R1), (P2, R2), . . . , (Pk, Rk)}

are considered instead of one single scale (P,R). The multiscale SBP de-

scriptors (M SBP) are obtained by concatenating SBPs calculated from each

single support.

• M SBP2 = SBP2(P1, R1) . . . SBP2(Pk, Rk)

• M SBP3 = SBP3(P1, R1) . . . SBP3(Pk, Rk)

• M SBP4 = SBP4(P1, R1) . . . SBP4(Pk, Rk)

Concerning the second extension, complementary magnitude information

is exploited by CLBP M [13]. It is well-known that this kind of complemen-

tary information are very rich and it is the principal factor for improving the
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performance in most recent LBP-based variants such as CLBP [13], CLBC

[16], CRLBP [20], BRINT [36], disCLBP [40], SCLBP [41]. In this paper,

the complementary descriptors are constructed in the same way as our SBP

descriptors using CLBP M operator.

• SBPM
2 = (CLBP M)m1m2

• SBPM
3 = (CLBP M)m1µ2 m1β3 µ2β3

• SBPM
4 = (CLBP M)m1µ2 m1β3 µ2β3 m1β4 µ2β4 β3β4

They are then concatenated with SBP descriptors to obtain complementary

descriptors (C SBP).

• C SBP2 = SBP2 SBPM
2

• C SBP3 = SBP3 SBPM
3

• C SBP4 = SBP4 SBPM
4

Finally these two last improvements (M SBP and C SBP) can be combined

by concatenating the two descriptors to obtain the multiscale complementary

descriptor (MC SBP). In Section 5, MC SBP is evaluated using five different

scales (P,R) ∈ {(8, 1), (8, 2), (8, 3), (8, 4), (8, 5)}.

4.4. Parameter settings

We now describe the different parameters that can be adjusted in the

framework, and the different settings chosen for the evaluation. Apart from

the choice of moments and their combinations, as presented above, two pa-

rameters need to be set in the calculation of the SBP:
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Input B Mean (m1) Variance (µ2)

Figure 5: Computation of moment images using structuring element B = {(1, 4), (2, 8)}.

• the spatial support B for calculating the local moments, also referred

to as structuring element.

• the spatial support {P,R} for calculating the LBP.

Although those two parameters are relatively independent, it can be said

that B has to be sufficiently large to be statistically relevant, and that its size

should be smaller or equal to the typical period of the texture. Regarding

{P,R}, it is supposed to be very local, to represent micro-structures of the

(moment) images.

As mentioned earlier, for rotation invariance purposes, we shall use isotropic

structuring elements. To be compliant with the LBP representation, we

have chosen to define the structuring elements as unions of discrete circles:

B = {{Pi, Ri}}i∈I , such that (Pi)i (resp. (Ri)i) is an increasing series of

neighbour numbers (resp. radii). As an example, Figure 5 shows the mo-

ment images using a structuring element B = {(1, 4), (2, 8)}.

Specifically, we have evaluated the different following structuring ele-

ments: {(1, 6)}, {(1, 8)}, {(1, 4), (2, 8)}, {(1, 5), (2, 6)}, {(1, 5), (2, 8)}, {(1, 5), (2, 10)},

{(1, 6), (2, 10)} and {(1, 6), (2, 12)}. In the next section, we only show exper-

iments using structuring element {(1, 5), (2, 8)} due to its good results on the
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different datasets.

Regarding {P,R}, the spatial support of the LBP, we have chosen, for

comparison purposes with the previous methods, to evaluate the three usual

settings used in the literature: {8, 1}, {16, 2}, and {24, 3} (except for CUReT

dataset, where {8, 1}, {16, 3}, and {24, 5} are considered).

5. Experiments

We present hereafter a comparative evaluation of the proposed descriptors

2. The following descriptors will be addressed: SBP2 = SBPm1µ2
P,R , SBP

′
3 =

SBPm1µ2 m1µ3 µ2µ3
P,R , SBP3 = SBPm1µ2 m1β3 µ2β3

P,R , SBP
′
4 = SBPm1µ2 m1µ3 µ2µ3 m1µ4 µ2µ4 µ3µ4

P,R ,

SBP4 = SBPm1µ2 m1β3 µ2β3 m1β4 µ2β4 β3β4
P,R . In order to equitably evaluate the

proposed descriptors, they are compared, together with other state-of-the-

art descriptors, using the same classification criterion, i.e. nearest neighbour

with χ2 distance, which is the most commonly used method in the related

literature. However, some of those methods may have better results using

other classifiers such as SVMs.

5.1. Databases and Experimental Protocols

The effectiveness of the proposed method is assessed by a series of exper-

iments on five large and representative databases: CUReT [42], UIUC [2],

KTH-TIPS [43], KTH-TIPS2b [44] and DTD [45].

The CUReT (Columbia-Utrecht Reflection and Texture) database con-

tains 61 texture classes, each having 205 images acquired at different view-

2Our code is publicly accessible via this address: https://github.com/

nguyenthanhphuong/SBP
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points and illumination orientations. There are 118 images shot from a view-

ing angle smaller than 60◦. Following [11, 13], we selected 92 images out of

118, from which a sufficiently large region could be cropped (200×200) for

all the texture classes. All the cropped regions were converted to grey scale

(see examples in Figure 6).

Figure 6: Examples of texture images from the CUReT database.

The UIUC texture database includes 25 classes with 40 images in each

class. The resolution of each image is 640×480. The database contains

materials imaged under significant viewpoint variations (see Figure 7).

The KTH-TIPS dataset [43] contains 10 materials. For each material,

images were captured at nine scales spanning two octaves, viewed under

three different illumination directions and three different poses, thus giving

a total of 9 views per scale, and then 81 images per material. The result

on KTH-TIPS database is reported as the mean classification rate over 100

random split into training and testing data, where in each material, 40 images
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Figure 7: Examples of texture images on the UIUC database.

are used for training and the rest is used for testing.

The KTH-TIPS2b database contains images of 11 materials. Each mate-

rial contains 4 physical samples taken at 9 different scales, 3 viewing angles

and 4 illuminations, producing 432 images per class (see [44] for more de-

tails). Figure 8 shows examples of the 11 materials. All the images were

cropped to 200 × 200 pixels and converted to grey scale. This database is

considered more challenging than the previous version KTH-TIPS. In addi-

tion, it is more complete than KTH-TIPS2a where several samples have only

72 images.

The DTD database [45], consisting of 5640 images that were collected

using Google and Flickr by entering perceptual attributes as search queries,

contains 47 classes inspired from human perception, not material. Image sizes

range between 300x300 and 640x640. Each class (category) has 120 images

containing at least 90 % of the surface representing the category attribute.
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Figure 8: Examples of texture images on the KTHTIP2b database.

Figure 9: Examples of texture images on the DTD database. Each row contains images

of a same category.

Figure 9 shows some texture images of this database.

5.2. Computational cost

We consider in this section the computational cost of the proposed de-

scriptors, in terms of time and memory consumption, with respect to other

LBP-based operators. Experiments on Outex [46] TC10 test suite contain-

ing 4 320 images of 128 × 128 pixels were performed on a machine with 2.0

GHz CPU, 4 Go RAM and Linux 3.2.0-23 kernel. Table 1 presents the com-

putation time (in seconds) of different descriptors in three configurations of

(P,R). We consider the structuring element {(1, 5), (2, 8)} and report the
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Table 1: Computational costs of different descriptors (FET: Feature Extraction Time,

MT: Matching Time).

Descriptor (P,R)=(8,1) (P,R)=(16,2) (P,R)=(24,3)

FET Feature size MT FET Feature size MT FET Feature size MT

LBPriu2
P,R 52.71 10 1.18 98.43 18 2.13 145.07 26 3.40

CLBP S/M/Criu2
P,R 64.26 200 16.98 98.70 648 66.98 186.32 1152 456.98

SBPm1µ2
P,R (SBP2) 158.45 400 29.65 258.96 1296 136.34 511.78 2304 1044.74

total time for classifying the 3 840 test images against the 480 reference im-

ages. It can be seen from Table 1 that the computation time of the SBP

descriptors is sensibly higher than basic LBPriu2 or complemented LBP. Ba-

sically, this time is proportional to the size of the descriptor, and so will be

still larger for higher order moments. However, it remains relatively low and

faster than filter bank approaches such as Gabor filters [6], MR8 [7], Leung

and Malik’s [8] filters, or wavelets [10].

5.3. Results on the CUReT and UIUC datasets

Since the experiment settings as well as the observations obtained on

those two datasets are similar, we present the results in the same section. In

the experiments on the CUReT database, as in [2, 13], to get statistically

significant experimental results, N training images were randomly chosen

from each class while the remaining 92−N images per class were used as the

test set. Similarly, in experiments made on the UIUC database, N training

images were randomly chosen from each class while the remaining 40 − N

images per class were used as test set. The average classification rates on

those databases over a hundred random splits with different parameters are
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Table 2: Classification results on CURET dataset.
(P,R)=(8,1) (P,R)=(16,3) (P,R)=(24,5)

Number of training images N = 46 23 12 6 46 23 12 6 46 23 12 6

LTP [31] 85.13 79.25 72.25 63.09 92.66 87.30 80.22 70.50 91.81 85.78 77.88 67.77

LBPriu2/VARP,R [1] 93.87 88.76 81.59 71.03 94.20 89.12 81.64 71.81 91.87 85.58 77.13 66.04

CLBP S/M [13] 93.52 88.67 81.95 72.30 94.45 90.40 84.17 75.39 93.63 89.14 82.47 73.26

CLBP S/M/C [13] 95.59 91.35 84.92 74.80 95.86 92.13 86.15 77.04 94.74 90.33 83.82 74.46

BF + CLBP S M/C[51] 95.68 91.77 86.77 78.97 96.08 92.46 85.28 80.84 95.01 91.99 84.52 77.67

SBP2 97.32 93.49 88.23 78.37 98.01 94.91 90.60 81.98 96.89 92.95 88.37 78.29

SBP3 97.54 94.07 89.14 79.87 97.00 93.71 89.32 80.31 84.43 73.74 62.77 49.65

SBP4 97.72 93.90 89.26 78.44 94.47 89.38 83.90 73.39 51.72 40.22 31.23 22.80

Number of training images N = 46 23 12 6

MC SBP2 98.67 95.46 90.42 78.95

MC SBP3 98.73 95.86 91.33 79.82

MC SBP4 98.71 95.82 91.21 80.07

reported respectively in Tables 2 and 3. Table 4 3 compares the best results

between different methods on these datasets.

As can be seen from these tables, the SBP descriptors significantly im-

prove the best results of recent LBP-based methods on CURet and UIUC

data sets (from 2% to 7%). For example, with (P,R) = (16, 3), the best

classification rates obtained by the CLBP with different numbers of training

images (N = 46, 23, 12, or 6) on CUReT dataset are respectively 95.86%,

92.13%, 86.15%, and 77.04%. With the same configuration settings, the SBP

descriptors reach classification rates of 98.01%, 94.91%, 90.60%, and 81.91%.

The best result (98.73%) which is obtained with MC SBP3 improves the

state-of-the-art performance on this dataset. For UIUC dataset, our best

result (97.4%) outperforms LBP-based variants and it can be comparable to

other state-of-the-art results.

3The nearest neighbour criterion is used for evaluating these methods. The results of

[7], [11], [47], [48], [43], [49] and [50] are taken from [47].
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Table 3: Classification results on UIUC dataset.
(P,R)=(8,1) (P,R)=(16,2) (P,R)=(24,3)

Number of training images N = 20 15 10 5 20 15 10 5 20 15 10 5

LBPriu2 [1] 54.65 52.94 47.14 39.72 61.32 56.42 51.16 42.67 64.05 60.05 54.25 44.59

CLBP S/M [13] 81.80 78.55 74.8 64.84 87.87 85.07 80.59 71.64 89.18 87.42 81.95 72.53

CLBP S/M/C [13] 87.64 85.70 82.65 75.05 91.04 89.42 86.29 78.57 91.19 89.21 85.95 78.05

CRLBP(α = 1) [20] 86.91 85.67 82.20 73.95 92.92 91.82 88.15 81.98 93.31 92.03 89.47 81.90

BF + CLBP S/M [51] 91.21 87.15 83.19 75.65 93.45 90.99 87.97 80.19 93.78 91.64 88.12 80.23

SBP2 91.31 89.56 85.97 78.19 95.52 94.34 91.87 85.69 96.55 95.40 93.07 87.11

SBP3 93.43 91.79 88.47 80.77 96.35 95.27 92.91 86.96 97.09 96.00 93.78 88.21

SBP4 91.55 89.74 86.36 77.75 94.94 93.46 90.75 83.37 95.99 94.77 92.16 85.53

Number of training images N = 20 15 10 5

MC SBP2 97.04 96.03 94.00 87.91

MC SBP3 97.4 96.35 94.11 87.95

MC SBP4 95.64 94.66 92.16 85.21

5.4. Results on KTH-TIPS and KTH-TIPS 2b datasets

Table 5 shows our results compared with different methods. Even using a

small spatial support (P,R) = (16, 2) at a single scale, our descriptor (SBP3)

reaches a classification accuracy of 98.1 %, which is higher than most of other

methods. Considering multiple scales, the result can be further improved

(98.29 %).

For KTH-TIPS 2b, we followed the training and testing scheme used

in [44]. Experiments were done by training on one, two, or three samples

(Ntrain on Table 6); testing is always performed on unseen samples only. For

example, there exist six experiments where two samples are used as training

and the two remaining samples are used as testing, and the classification rate

reported is the average of those six obtained results.

Table 6 details the SBP results obtained at different orders and with

different parameters. In addition, Figure 10 presents the best SBP results

compared with the best results obtained by reference methods on KTH-

TIPS 2b: LBPriu2 [1], VZ-MR8 [7], VZ-Joint [11], CLBC [16], CLBP [13]
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and NI/RD/CI [55]. As it can be seen, the SBP framework significantly

outperforms the competing algorithms, with an improvement which can reach

3.7%. Recently, Khan et al. [56] have significantly improved the state-of-

the-art result (70.6%) on KTH-TIPS 2b dataset. However their method is

based on a complex combination of many different texture descriptors: CLBP

[13], WLD [25], BGP [57] , LPQ [58] and BSIF [59]. Furthermore, using

multiscale approach, our descriptor (MC SBP) still outperforms this result on

KTH-TIPS 2b dataset, by reaching 71.59%. Only the combination between

Improved Fisher Vector (IFV) and a deep learning technique (DeCAF) [45]

outperforms this result. If they are considered separately, the results is not

better than ours (IFV: 69.3, DeCAF: 70.7).

5.5. Experiment on DTD dataset

We have carried out an experiment on DTD dataset [45], compared with

other LBP-based descriptors. We obtained a classification rate of 26 % with

SBP using 1-NN classification. This result is better than other LBP-based

methods using the same classification technique (see Table 7), but is signif-

icantly lower than the best methods on this dataset (66.7 % with a com-

bination between IFV and DeCAF [45]). It must be said that this dataset

shows an extreme variability in terms of appearance, scale and shape (see

also Figure 9), that a simple, single-scale descriptor cannot represent ad-

equately. While learning techniques used in [45] somehow compensate the

descriptors for those variabilities, we associated our descriptors with the very

simple Nearest Neighbour classifier (since the goal of the paper is to prove the

4Using IFV and DeCAF separately, the results are 69.3 and 70.7 respectively.
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Figure 10: Comparing the best SBP descriptor on single scale (Ours 1), SBP descriptor

using limited self-similarity LBPriu28,1 (Ours 2) and multiscale complementary SBP descrip-

tor (Ours 3) with state-of-the-art methods on on KTH-TIPS2b database. Ours 1: SBP3

with (P,R) = (24, 3), Ours 2: SBP3 with (P,R) = (8, 1) and Ours 3: MC SBP4 with

(P,R) = {(8, 1), (8, 2), (8, 3), (8, 4), (8, 5)}.

strength of SBP descriptors only). Furthermore, the results on this dataset

largely depend on machine learning techniques used for classification. Ac-

cording to the evaluation report 5 and [45], even with SVM classification,

the results may significantly vary according to the used kernel. For example,

using LBP method, the result is 7.35 % with linear SVM classifier, and 19.07

% with exp-chi2 kernel. If MR8 descriptor is used, the obtained result varies

from 15.36 % with a linear SVM to 28.24 % with exp-chi2 kernel.

5.6. Global discussion

From the above experiments on five large datasets, we can derive a number

of general conclusions:

5http://www.robots.ox.ac.uk/˜vgg/data/dtd/eval.html
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• The principle of SBPs is to extend the LBPs from the gray level to the

local distribution, approximated by its first statistical moments. Being

local filters, moment images can also be regarded as a filter bank pre-

processing technique. The comparative evaluation shows that SBPs

outperform recent state-of-the-art biologically-inspired filtering (BF)

[51] for LBP-based operators (see BF+CLBP S/M/C in Tables 2, 3).

• SBP2 works well in all datasets and (P,R) configurations. It outper-

forms all competing LBP-based variants and is comparable to the state-

of-the-art methods.

• SBP3 and SBP4 can perform better than SBP2 when the spatial sup-

port of LBP is small (R < 3). The two preferred configurations are:

(P,R) = (8, 1) or (P,R) = (16, 2). Moreover, SBP3 proved more stable

than SBP4 in various datasets. Higher order moments should not be

used this way when R is large. Indeed, higher order moment images

have more local variations, which leads to a majority of non-uniform

patterns. In our experiments, the configuration (P,R) = (16, 2) proved

a good trade-off for higher order SBP on the considered datasets.

• Using LBPriu2
16,2 as self-similarity operator, SBP3 outperforms the state-

of-the-art results in many evaluations.

• Even with the smallest LBP spatial support (LBPriu2
8,1 ), SBP3 and SBP4

can outperform or be comparable to the best results of other LBP-based

variants and recent methods (see “Ours 2” in Figure 10). It implies that

SBP descriptors can reduce considerably their computational cost with
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respect to recent methods without decreasing the performance by using

LBPriu2
8,1 as self-similarity operator.

• The SBPs use only a single scale (P,R) of LBP operator. They do not

need to consider multi-scale approach using different configurations of

(P,R) like recent LBP-based variants (e.g. BRINT [36], NI/RD/CI

[55]) to obtain state-of-the-art results, with the notable exception of

the DTD dataset, whose variability is too high to be addressed by

single-scale descriptors.

• The SBP framework provides efficient descriptors without using com-

plementary magnitude information (CLBP M), which is currently the

essential factor for improving the performance in most state-of-the-

art LBP-based variants, such as CLBP [13], CLBC [16], CRLBP [20],

BRINT [36], disCLBP [40], SCLBP [41].

• Considering complementary multiscale approach, MC SBP still im-

proves the performance, notably in comparison with state-of-the-art

results.

• Non-normalised moments, because they do not bring enough extra in-

formation with respect to the second order, do not improve the per-

formance of SBP descriptors. Therefore only higher order SBP with

normalised moments (SBP3 and SBP4) are recommended.

• Concerning the spatial support used to calculate moment images (struc-

turing element), elements with two circles are recommended. Using

smaller structuring elements make the statistics unsignificant, whereas
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using bigger elements increase the feature extraction time without in-

creasing the classification rate significantly. In practice, {(1, 5), (2, 8)}

is empirically chosen as structuring element.

6. Conclusion and perspectives

We have proposed a new collection of texture descriptors by extending the

binary patterns from the pixel level to the local distribution level, applying

rotation invariant self-similarity binary patterns to a set of moment images

calculated using a structuring element as spatial support of the statistics.

The interest of the proposed approach has been validated by a comparative

evaluation on five large databases. It has been shown that the statistical

binary patterns outperform the reference LBP variants, even using small LBP

spatial support (e.g. LBPriu2
8,1 ), and limiting the cardinality of the structuring

element (e.g. around 15). Unlike most state-of-the-art LBP variants, the

SBPs do not use complementary magnitude information (CLBP M), but can

be considered as a generalisation of the complementation approach, since it

extends the self-similarity operator not only to local contrast information,

but to higher order local variations.

The representation of local distribution using moment images, which is at

the base of the SBPs, has a regularisation effect which makes the SBP more

robust to small variations (e.g., noise) without reducing its discrimination

power.

Finally, although our experiments have shown some benefits in using

higher order (3 and 4) moments, two factors limit the interest of using them:

(1) the computational cost due to the increased descriptor dimension, and
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(2) their limited expresiveness due to the higher proportion of non uniform

patterns. As a consequence, higher order moments are under-exploited in

this study and more efficient ways to represent the local distribution should

be investigated in the future.
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Method CUReT (N=46) UIUC (N=20)

Ours (MC SBP) 98.73 97.4

dis(S +M)riN,R [40] 98.3

VZ MR8 [7] 97.43

VZ Joint [11] 98.03 97.83

SRP [47] 98.52 96.27

Lazebnik [2] 72.5 96.03

Multiscale BIF [50] 98.6 98.8

Hayman [43] 98.46 92.0

RP [52] 98.52

BRINT2 S M (MS9) [36] 97.86

DNS+LBP24,3 [53] 94.52

Zhang et al. [48] 95.3 98.7

Xu et al. [49] 92.74

Joint Sort [3] 96.93 92.73

PRICoLBP [4] 98.4

Mono LBP [54] 98.27 95.44

Table 4: Comparison between the best results of different methods on CUReT and UIUC

dataset.

Table 5: Classification rates obtained on KTH-TIPS dataset.

Method SBP2 SBP3 SBP4 M SBP2 [9] [4] [47]

Result 97.18 98.10 97.63 98.29 96.41 98.4 97.71
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Table 6: Classification rates obtained on the KTH-TIPS 2b database.

(P,R) (8,1) (16,2) (24,3)

Ntrain 1 2 3 1 2 3 1 2 3

LBP [1] 48.1 54.2 52.6 50.5 55.8 59.1 49.9 54.6 57.8

NI/RD/CI [55] 56.6 61.9 64.8 57.7 62.5 65.1 52.4 57.5 61.7

CLBP S/M [13] 53.43 58.26 60.42 54.92 59.33 62.29 54.30 58.96 61.91

CLBP S/M/C [13] 53.28 60.89 64.90 55.06 62.03 67.11 55.32 62.37 67.42

CLBC S/M [16] 50.29 55.42 57.87 50.84 55.20 57.58 50.16 54.93 58.21

CLBC S/M/C [16] 52.04 59.60 63.68 53.37 60.61 65.49 52.53 59.46 64.14

(P,R) {(8,1),(16,2)} {(16,2),(24,3)} {(8,1),(16,2),(24,3)}

NI/RD/CI [55] 58.1 62.9 66.0 55.9 61.0 64.2 56.7 61.7 65.0

Ntrain = 1 2 3

VZ-Joint 53.3 59.3 60.7

VZ-MR8 46.3 52.3 55.7

CLBP + WLD + BGP + LPQ + BSIF [56] 70.6

Timofte and Van Gool [60] 66.3

Cimpoi et al. [45] DeCAF + IFV 76.2 4

Our descriptors

(P,R)=(8,1) (P,R)=(16,2) (P,R)=(24,3)

Ntrain 1 2 3 1 2 3 1 2 3

SBP2 57.68 63.24 66.03 59.03 64.91 68.60 59.04 65.20 68.81

SBP3 58.98 64.30 67.07 60.08 65.63 69.61 59.46 65.86 70.08

SBP4 55.16 60.97 65.19 57.07 63.26 66.96 56.74 62.75 67.07

Ntrain 1 2 3

MC SBP2 57.74 64.04 68.54

MC SBP3 58.35 65.12 70.43

MC SBP4 59.03 65.99 71.59

Table 7: Classification rate on the DTD dataset with different LBP-based methods.

Method LBP riu2
(24,3) CLBP riu2

(24,3)S/M/C SBP2(24, 3) CSBP2(24, 3)

Classification rate 14.51 20.49 26.18 26.38
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