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Abstract

The proposal of this study is to analyze the texture pattern recognition over
the local jet space looking forward to improve the texture characterization.
Local jets decompose the image based on partial derivatives allowing the tex-
ture feature extraction be exploited in different levels of geometrical struc-
tures. Each local jet component evidences a different local pattern, such
as, flat regions, directional variations and concavity or convexity. Subse-
quently, a texture descriptor is used to extract features from 0th, 1st and
2nd-derivative components. Four well-known databases (Brodatz, Vistex,
Usptex and Outex) and four texture descriptors (Fourier descriptors, Gabor
filters, Local Binary Pattern and Local Binary Pattern Variance) were used
to validate the idea, showing in most cases an increase of the success rates.

Keywords: Local jet space, pattern recognition, texture, image analysis

1. Introduction

Local jets make a decomposition of the image, that is an intensity func-
tion, based on partial derivatives [1, 2, 3]. This approach can be seen as a
model of receptive fields of human cortex [4]. Receptive fields are able to
discriminate geometric characteristics of the visual scene like lines, edges,
orientations, or curvatures. In [3], a local jet space framework was developed
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to process and represent images extracting relevant information over the de-
composition of the image by a set of functions, demonstrating its efficiency
in optical flow estimation, Non-Local means filtering, background subtrac-
tion and image and object characterization. Moreover, this framework can
be used in a wide range of applications, such as real time video processing,
detecting, predicting and filtering.

In the context of image representation, the behavior of local jet can be
used to highlight the geometric characteristics of texture patterns. Further-
more, the local jet decomposition creates a similarity space of image that can
be explored to classify texture images. Texture features have been played a
significant role in pattern recognition and image analysis, including appli-
cations using real and synthetic images in several fields, for example plant
analysis and identification [5, 6, 7, 8], medical image analysis [9, 10, 11] and
many others. Aiming to increase the potential of traditional texture descrip-
tors, our proposal is to enhance the texture feature extraction process using
the local jet decomposition as initial transformation. The texture image is
represented by a set of features composed by the result of the application of
a texture descriptor on the local jet components.

The performance of the proposal is assessed over four databases: Bro-
datz [12], Usptex [13], Vistex [14], and Outex [15]; using four texture feature
descriptors: Fourier, Gabor, Local Binary Pattern and Local Binary Pat-
tern Variance. A principal component analysis (PCA) [16] was performed
to reduce the dimension of features and linear discriminant analysis (LDA)
is used to perform the classification. In most experiments, the proposed
approach obtained higher success rate compared to the feature descriptors
applied without the local jet decomposition.

The remainder of this paper is organized as follows. Section 2 presents the
theory of local jet. Section 3 describes how is the process of feature extraction
in the local jet space as well as each of the texture extractors used in the
experiments. Section 4 outlines the experiments to validate the proposal,
detailing the databases and procedures for classification. The results and
discussion of the classification experiments are reported in Section 5, and,
finally, conclusions are presented in Section 6.

2. Local Jet

To extract the basic local representation of images, we have used the
multiscale local jet, which can be used as a similarity space [2], based on the
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approximation provided by the Taylor expansion. For a function f : R2 → R,
at order r, the Taylor expansion is

f(x+ c1, y + c2) =
r∑

k=0

k∑
i=0

(
k

i

)
ck−i1 ci2

∂kf

∂xi∂yk−i
(x, y) +O(‖c‖r), (1)

where c = (c1, c2) is the residual. The notation of partial derivatives can be

changed to fij = ∂kf
∂xi∂yk−i . In image processing context, f : Ω ∈ R2 → R is

the original image and the derivatives are estimated at a certain scale [1], by
convolving the image with Gaussian derivatives, as

fσij = f ?
∂i+jGσ

∂xi∂yj
, (2)

where Gσ is the bi-dimensional Gaussian filter with standard deviation σ,
which represents the estimation scale. Hence, the local jet space is the set
{fσij|i+j 6 r, σ ∈ S}. In this work, the scale parameter is set to 1 (i.e. only
one scale is used), and the order of derivation is set to 2. Thus, the local jet
space of image f : Ω ∈ R2 → R is the collection {f00, f10, f01, f20, f02, f11}.
Figure 1 shows this decomposition applied to a texture image.

Each image in local jet space highlights different geometric properties of
scene image. Figure 2 shows the isolines of a texture image and the isolines
of some local jet components. We can see that the peaks in original image is
blurred in f00 component in which flat regions can be better analyzed. On
f10 resulting image, the intensity of directional variation is evidenced and the
intensities in second order components represent the measure of concavity
or convexity of each pixel neighbor on the image surface, emphasizing the
different local variations.

3. Texture Feature Extraction on Local Jet Space

The primary goal of the proposed approach was to emphasize the intrinsic
content in texture images that can not be extracted directly from the original
image. The local jet decomposition enhances geometric properties in texture
images to improve the action of feature extractors.

The flow in Figure 3 summarizes the idea where local jet decomposition
until the second order on Equation(2) is applied in all images of the database,
i.e., six local jet components are calculated for each image. A texture feature
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Figure 1: Local jet decomposition of one Brodatz texture image based on Taylor expansion.

extractor is used on these local jet components characterizing each image in
six n−dimensional feature vectors. The dimension n of each feature vector is
dependent on the feature extractor. The PCA transformation is applied to
the resulting set of feature vectors of each texture descriptor. This procedure
aims to find the directions of the feature space along which the variability of
feature vectors is maximal, allowing to reduce the dimension of the feature
space.

Different feature extractors are used in this approach based on their dif-
ferent analysis of geometric properties. The application of this methodology
is not limited to these feature extractors. They were chosen due to the well-
known applications of these descriptors in the literature. In the remainder,
each descriptor is presented.
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Figure 2: Isolines of local jet decomposition. (a) A cropping of one image form Brodatz
database and its original image isolines (b). Isolines of (a): (c) f00, (d) f10, (e) f20 and
(f) f11.

3.1. Fourier descriptors

The Fourier descriptors was proposed originally by Cosgiff in 1960 [17] to
caracterize a periodic signal. For texture classification, Azencott et al. [18]
extract texture features based on windowed Fourier filters.

The basic idea behind Fourier descriptors is that texture features are
extracted on the frequency domain. Then, this process is performed by the
application of 2D Fourier transform on the texture image f(x, y) multiplied
by (−1)x+y to shift the origin of F (u, v) spectrum to center of the area
occupied by the frequency domain [19] as

F[f(x, y)(−1)x+y] = F (u−M/2, v −N/2), (3)

where M×N is the size of image. This procedure allows the use of concentric
circles on (0, 0) to obtain the features.

Based on [19, 20], the feature vector is composed by two different char-
acteristics extracted from spectrum: Ea is the energy extracted from sectors
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Figure 3: Proposed method scheme. The local jet decomposition is applied to each image
of the database resulting in six local jet components normalized in [0, 255]. Fourier, Gabor,
Local Binary Pattern and Local Binary Pattern Variance were used to extract n features
from each component generating a feature vector vi ∈ R6n. The technique for dimension
reduction PCA is applied to the set of vectors of dimension 6n for each texture descriptor
to obtain the coordinates with greatest variability. The feature space is composed by these
transformed feature vectors.

of circular rings, and Eb is the energy from circular regions, defined as

Eaij =

∫ λi+1

λi

∫ θj+1

θj

|F (λ, θ)|2dθdλ, (4)

Ebi =

∫ λi

0

∫ 2π

0

|F (λ, θ)|2dθdλ, (5)

where (λ, θ) are the polar coordinates of points in the frequency domain, and
{λi}Mi=1 and {θj}Nj=1 are the sets of parameters for the method with M radius
and N orientations. The texture image is wholly represented by the Fourier
descriptor vector

FD = [Ea11, ..., EaMN , Eb1, ..., EbM ]. (6)

3.2. Gabor filters descriptors

Gabor filters [12, 21, 22] may identify edges in images according to a set
of orientations and scales, as well as local image microstructures. This last
property is applied to characterize texture images.
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Formally, a 2D Gabor filter is a bidimensional Gaussian function modu-
lated by sine and cosine function [22, 21]. The Gabor functions g(x, y) and
its Fourier transform G(u, v) can be defined as

g(x, y) =
1

2πσxσy
exp

[
−1

2

(
x2

σ2
x

+
y2

σ2
y

)
+ 2πjWx

]
, (7)

G(u, v) = exp

[
−1

2

(
(u−W )2

σ2
w

+
v2

σ2
v

)]
, (8)

where σu = πσx
2

and σv = πσy
2

. Based on g(x, y), the filter set can be obtained
through dilations and rotations, i.e.,

gmn(x, y) = a−mG(x′, y′), with a > 1,m, n ∈ N,
x′ = a−m(x cos θ + y sin θ), and y′ = a−m(−x sin θ + y cos θ), (9)

where θ = nπ
N

and N is the number of orientations.
The feature extraction procedure is based on the convolution of the tex-

ture image by a bank of Gabor filters with M scales and N orientations
previously defined [12]. In the frequency domain, the spectrum energy E is
a general descriptor. Then, the feature vector is composed by the spectrum
energy of each convolution. The texture image is wholly represented by the
Gabor filter descriptors vector

GFD = [E11, E12, ..., E21, ..., EMN ]. (10)

3.3. Local Binary Pattern

Proposed by Ojala et al. [23, 15], Local Binary Pattern (LBP ) is a simple
yet efficient operator to analyze texture images. This operator characterizes
the spatial structure based on local image binary patterns. For each pixel
(i, j) in image, the LBP code is computed by

LBPP,R(i, j) =
P−1∑
p=0

s(gp − gc)2p, where s(x) =

{
1, if x ≥ 0,
0, if x < 0,

(11)

gc is the gray level of central pixel (i, j), gp is the gray level of the p neighbors
(p = 0, ..., P − 1) and R is the radius of the neighborhood. The matrix with
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the LBP code of each pixel is the LBP map of the image and the histogram
of the LBP map globally represents the texture.

In [15], Ojala et al. define a uniformity measure U

U(LBPP,R(i, j)) = |s(gp−1 − gc)− s(g0 − gc)|+
P−1∑
p=1

|s(gp − gc)− s(gp−1 − gc)|

(12)
and a contrast and rotation invariant texture descriptor using

LBP riu2
P,R (i, j) =

{ ∑P−1
p=0 s(gp − gc), if U(LBPP,R(i, j)) ≤ 2,

P + 1, otherwise.
(13)

In our study, we consider the histogram of original LBP code to describe
the texture image, and the rotation invariance is left only to the descriptor
LBPV as described below.

3.4. Local Binary Pattern Variance

Ojala et al. [15] suggest the use of variance measure V ARP,R to incor-
porate the contrast of local image texture information to LBP riu2

P,R operator.
Hence,

V ARP,R =
1

P

P−1∑
p=0

(gp − µ)2, where µ =
1

P

P−1∑
p=0

gp, (14)

is combined with LBP riu2
P,R to obtain a powerful rotation invariant operator

for local image texture analysis.
However, Guo et al. [24] show limitations of using V ARP,R by having

continuous values that need to be quantized. This situation leads to the
issue of choosing the number of bins of the histogram. On the one hand,
if too few bins are used, they could not be enough to represent the image.
On the other hand, if too many bins are used, it could generate a sparse or
unstable histogram. Alternatively, Guo et al. propose the use of V ARP,R as
an adaptive weight in histogram calculation of LBP code. Let the texture
image be a M × N matrix with maximal LBP pattern value equal K, the
whole texture image is represented by the Local Binary Pattern Variance
(LBPV ) histogram
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LBPVP,R(k) =
M∑
i=1

N∑
j=1

w(LBP riu2
P,R (i, j), k), k ∈ [0, K], (15)

w(LBP riu2
P,R (i, j), k) =

{
V ARP,R(i, j), if LBP riu2

P,R (i, j) = k,
0, otherwise.

(16)

4. Experiments

In this section, we show the various experiments that were carried out
to demonstrate the better performance of extracting features from local jet
space for texture classification instead of extracting features directly from the
original images. In our experiments, we have used four databases: Brodatz,
Vistex, Usptex and Outex, described in Table 1 with number of classes,
number of images in all databases, number of images per class and size of
each image. The entirety of each database was used in the experiments.

Table 1: Databases.

Database # Classes # Images # Images per class # Image size

Brodatz [25] 111 1110 10 200× 200 pixels
Vistex [14] 54 864 16 128× 128 pixels
Usptex [13] 191 2292 12 128× 128 pixels
Outex [26] 68 1360 20 128× 128 pixels

To demonstrate the efficiency of our proposed approach, we have ex-
tracted features from images without preprocessing and we have compared
with the results of extracting features over the local jet space. Fourier descrip-
tors, Gabor filters, Local Binary Pattern and Local Binary Pattern Variance,
as explained before in Section 3, were used in the experiments. Moreover,
another set of experiments were conducted to verify the robustness of the
proposed approach in front of noise images. To achieve this goal, the Gaus-
sian noise, which appears during the process of image acquisition caused due
poor illumination, electronic circuit noise, among others. Three different ver-
sions of each database have been generated using intensities of the Gaussian
noise with zero mean and variance σ equals to 0.01, 0.05, e 0.1. Figure 4
shows samples of the modified databases with noise.
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Figure 4: Image samples from the modified databases with Gaussian noise. Each row
shows one image from the Brodatz, Vistex, Usptex and Outex databases, from top to
bottom. First column represents the original image and the remainder columns represent
the images with Gaussian noise zero mean and variance σ = 0.01, 0.05 e 0.1, from left to
the right.

As the feature space is a subset of R6n, a dimensionality reduction method
called Principal Components Analysis (PCA) was used. PCA converts a set
of features extracted from image in orthogonal components to each others, so
there is no redundant information. The transformed vector is as large as the
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original vector, however, that vector is a set of linearly uncorrelated values,
sorted according to the variance of the original data [16]. In all cases, the
classification was performed using Linear Discriminant Analysis [27] over the
feature space transformed by PCA. The validation scheme of classification
was stratified 10-fold cross-validation [28]. The experiments of comparison
(i.e. the traditional methodology of texture extraction) were also conducted
with PCA transformation over the feature space and classification using LDA,
under stratified 10-fold cross-validation scheme.

5. Results and Discussions

For pattern recognition purpose, one of the ways of evaluating a feature
extractor is to look at the dimension of descriptors. The lower the dimen-
sion of features, the more efficient the feature extractor. For this reason
we analyse the success rate according to the dimension of features for each
feature extraction method used here compared to the proposed local jet ap-
proach combining feature extraction method. Furthermore, these plots are
shown for each database used in the experiments. Thus, it will be shown 16
graphics, being four databases (Brodatz, Vistex, Usptex and Outex) and four
feature extractors (Fourier descriptors, Gabor filters, Local Binary Pattern
and Local Binary Pattern Variance), as can be seen at Figures 5-8. It can
also be observed in these figures that the behavior of the curves is similar
with respect to the increase of the dimension of descriptors (x-axis). More-
over, the proposed approach has better success rates compared to traditional
methodology with low dimension of descriptors.

The results can be summarized and analyzed in two modes: with a fixed
dimension of descriptors or comparing the best results, regardless of the
dimension of descriptors. Considering the same dimension, the proposed
approach has success rate higher than the approaches used in traditional
way, as detailed in Figures 5-8 and Table 2. Here, the best improvement is
the application of local jet associated with the Fourier descriptor in Usptex
database. If we consider only the best success rate, ignoring the dimension
of descriptors, the success rate rises considerably according to Table 3. In
this regard, the proposed approach was responsible for an average increase
of 2.6 percent in success rate for all traditional methods.

It is noticeable that in almost all experiments using local jet space resulted
in a higher success rate. Two main observations should be done, the first
is related to results by combining the local jet space with LBP method,
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Figure 5: Dimension of descriptors × Success rate comparing the traditional features
extraction and feature extraction on local jet space for Brodatz database.

Table 2: Success rate of all experiments using the same dimension of descriptors. #
represents the dimension of descriptors and * means 163 descriptors for Brodatz database.

Success rate (%) / (± std)

Method/Database # Brodatz Vistex Usptex Outex

% (± std) % (± std) % (± std) % (± std)

Fourier 127* 88.22 (± 0.52) 90.19 (± 0.66) 74.67 (± 0.24) 82.05 (± 0.36)
Local jet + Fourier 127* 94.49 (± 0.37) 97.09 (± 0.28) 87.28 (± 0.28) 86.04 (± 0.30)
Gabor 20 92.09 (± 0.33) 89.38 (± 0.47) 81.80 (± 0.36) 82.82 (± 0.41)
Local jet + Gabor 20 92.44 (± 0.36) 93.46 (± 0.37) 85.11 (± 0.19) 83.12 (± 0.37)
LBP 256 95.62 (± 0.32) 97.34 (± 0.27) 84.43 (± 0.39) 79.83 (± 0.59)
Local jet + LBP 256 98.81(± 0.20) 99.17(± 0.18) 91.52(± 0.40) 86.73(± 0.56)
LBPV 10 87.99 (± 0.34) 81.35 (± 0.46) 73.65 (± 0.34) 64.20 (± 0.43)
Local jet + LBPV 10 88.96 (± 0.43) 87.12 (± 0.39) 66.53 (± 0.28) 57.30 (± 0.60)
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Figure 6: Dimension of descriptors × Success rate comparing the traditional features
extraction and feature extraction on local jet space for Vistex database.

Table 3: The best success rate of each experiment. # represents the dimension of descrip-
tors.

Dimension of descriptors (#) / Success rate (%) / (± std)

Method/Database Brodatz Vistex Usptex Outex

# % (± std) # % (± std) # % (± std) # % (± std)

Fourier 23 93.69 (± 0.17) 24 94.56 (± 0.28) 18 85.01 (± 0.31) 25 85.32 (± 0.42)
Local jet + Fourier 42 95.56 (± 0.23) 69 97.84 (± 0.14) 50 89.63 (± 0.24) 63 87.16 (± 0.43)
Gabor 19 92.18 (± 0.35) 18 90.09 (± 0.25) 20 81.80 (± 0.36) 19 82.96 (± 0.62)
Local jet + Gabor 30 93.31 (± 0.28) 30 95.28 (± 0.36) 30 87.81 (± 0.23) 29 85.46 (± 0.31)
LBP 84 97.86 (± 0.16) 60 98.87 (± 0.17) 80 90.93 (± 0.20) 73 85.51 (± 0.41)
Local jet + LBP 216 99.02 (± 0.19) 91 99.86 (± 0.16) 104 94.29 (± 0.23) 56 88.98 (± 0.22)
LBPV 10 87.99 (± 0.34) 10 81.35 (± 0.46) 10 73.65 (± 0.34) 10 64.20 (± 0.43)
Local jet + LBPV 15 90.32 (± 0.35) 15 89.12 (± 0.31) 15 74.65 (± 0.30) 15 63.06 (± 0.69)
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Figure 7: Dimension of descriptors × Success rate comparing the traditional features
extraction and feature extraction on local jet space for Usptex database.

because this combination produces the best success rate for all cases. The
second observation relates to the results obtained in the experiments with
Usptex and Outex, that are very difficult databases, where the best result
without local jet decomposition is 84.43% for Usptex and 82.82% for Outex
and using our proposal it was obtained 91.52% and 86.73%, respectively,
according to Table 2.

Another points to be highlighted concern the results of LBPV, Gabor
and Fourier. According to results obtained when using LBPV, which does
not show an effective improvement by using the local jet space, coming to
have lower success rate in the case of Usptex database for low dimension of
descriptors. This is due to LBPV exploits complementary information for
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Figure 8: Dimension of descriptors × Success rate comparing the traditional features
extraction and feature extraction on local jet space for Outex database.

local variance of spatial patterns. However, local jet breaches the geometric
patterns in each component reducing the local variance of these patterns. In
general, this behavior benefits feature descriptors which disjointly measure
the texture patterns. On the other hand, when the texture descriptor ana-
lyzes the variation among the patterns this property is less relevant in the
local jet space.

Despite the similarity in the geometric interpretation of Gabor filters and
local jet, the results of the combination Local jet + Gabor show a considerable
increase in the success rate for all tests, as shown at Table 3. This is due to the
fact that when applying the local jet over the image, important directional
characteristics are isolated on each component and Gabor descriptors extract
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this information more accurately. In the same direction, Fourier descriptors
also make use of the isolated directional characteristics by collecting relevant
information in the same frequency points in the Fourier spectrum.

In the experiments related to noise invariance, again, the methodology
using local jet space resulted in a higher success rate in most of the cases, as
shown at Table 4. The results presented in Table 4 consider the number of
descriptors that produces the best success rate for each experiment. Accord-
ing to the increasing of the Gaussian noise variance, the traditional methods
tend to decrease the success rate, mainly when using LBP and LBPV de-
scriptors. On the other hand, at the same time when using the local jet
space and the same feature descriptors, the decay of success rate is smoother
than in the conventional approach, proving the robustness of local jet space
dealing with noisy images.

6. Conclusions

In conclusion, we investigated the potential of local jet space to improve
the texture characterization by the highlight of the geometric patterns ob-
tained through partial derivatives. In order to carry out this task, we applied
classical texture descriptors to the six local jet components, resulting in a fea-
ture space of R6n. To validate the proposal, the experiments were performed
in Brodatz, Vistex, Usptex and Outex texture databases using Fourier, Ga-
bor, LBP and LBPV as texture descriptors. In addition, PCA was used for
dimensionality reduction, and to compare the new approach with the texture
descriptors without using local jets considering feature vectors with the same
dimension.

The results from the comparison between texture features extracted from
the local jet space and directly from the image indicate the importance of
the former, resulting in higher success rates for texture classification. For
the particular experiment with Fourier descriptors and Usptex database, we
have found the greatest increase of success rate, from 74.67% to 87.28%, by
using of local jet decomposition. More generally, the proposed approach was
responsible for an average increase of 2.6% in success rate for all traditional
methods when considering only the best success rate of each experiment.
The combination of the local jet space and texture feature extractors, leads
us to the results that are promising for the field of pattern recognition and
image analysis.
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Table 4: Success rates of texture classification for three databases modified from the
original ones obtained through addition of Gaussian noise with zero mean and variance σ
= 0.01, 0.05 e 0.1.

Dimension of descriptors (#) / Success rate (%) / (± std)

Database Method l = 0.01 l = 0.05 l = 0.1

# % (± std) # % (± std) # % (± std)

Brodatz

Fourier 23 93.25 (± 0.26 ) 23 91.73 (± 0.22 ) 38 90.58 (± 0.33 )
Local jet + Fourier 48 94.35 (± 0.25 ) 24 92.03 (± 0.22 ) 45 91.25 (± 0.56 )
Gabor 19 91.20 (± 0.32 ) 19 90.85 (± 0.34 ) 19 88.99 (± 0.47 )
Local jet + Gabor 29 91.29 (± 0.49 ) 29 88.59 (± 0.46 ) 29 87.67 (± 0.53 )
LBP 35 92.09 (± 0.43 ) 19 84.69 (± 0.45 ) 11 78.06 (± 0.41 )
Local jet + LBP 69 95.52 (± 0.11 ) 24 89.47 (± 0.20 ) 22 84.92 (± 0.35 )
LBPV 10 85.20 (± 0.37 ) 10 72.57 (± 0.55 ) 9 62.44 (± 0.83 )
Local jet + LBPV 14 84.98 (± 0.29 ) 15 82.50 (± 0.38 ) 14 80.06 (± 0.66 )

Vistex

Fourier 24 94.03 (± 0.33 ) 32 89.25 (± 0.45 ) 24 85.68 (± 0.56 )
Local jet + Fourier 45 95.30 (± 0.27 ) 47 89.10 (± 0.56 ) 36 83.40 (± 0.67 )
Gabor 18 85.64 (± 0.50 ) 17 80.72 (± 0.29 ) 18 76.37 (± 0.49 )
Local jet + Gabor 29 91.67 (± 0.66 ) 30 81.16 (± 0.51 ) 30 74.76 (± 0.77 )
LBP 16 84.51 (± 0.30 ) 12 68.69 (± 0.38 ) 22 60.16 (± 0.36 )
Local jet + LBP 39 91.32 (± 0.41 ) 18 79.65 (± 0.34 ) 7 68.55 (± 0.48 )
LBPV 7 70.57 (± 0.44 ) 9 60.24 (± 0.68 ) 8 53.61 (± 0.71 )
Local jet + LBPV 15 82.03 (± 0.43 ) 14 72.20 (± 0.68 ) 14 61.93 (± 0.55 )

Usptex

Fourier 25 73.99 (± 0.42 ) 25 56.22 (± 0.21 ) 16 47.19 (± 0.33 )
Local jet + Fourier 45 73.43 (± 0.40 ) 50 50.00 (± 0.58 ) 28 41.68 (± 0.53 )
Gabor 17 70.66 (± 0.54 ) 14 53.17 (± 0.48 ) 19 40.82 (± 0.25 )
Local jet + Gabor 28 71.03 (± 0.41 ) 30 49.40 (± 0.48 ) 30 38.43 (± 0.28 )
LBP 12 44.11 (± 0.32 ) 10 21.99 (± 0.31 ) 22 17.12 (± 0.43 )
Local jet + LBP 19 69.18 (± 0.33 ) 18 35.54 (± 0.48 ) 8 22.86 (± 0.44 )
LBPV 6 32.67 (± 0.45 ) 8 20.03 (± 0.26 ) 6 17.03 (± 0.34 )
Local jet + LBPV 15 49.83 (± 0.43 ) 12 27.07 (± 0.37 ) 14 19.11 (± 0.31 )

Outex

Fourier 13 71.52 (± 0.49 ) 17 56.15 (± 0.52 ) 29 46.37 (± 0.52 )
Local jet + Fourier 52 69.29 (± 0.41 ) 50 51.25 (± 0.80 ) 60 42.77 (± 0.72 )
Gabor 18 69.85 (± 0.92 ) 18 49.42 (± 0.45 ) 17 40.22 (± 0.71 )
Local jet + Gabor 30 68.06 (± 0.44 ) 28 46.41 (± 0.43 ) 30 37.65 (± 0.51 )
LBP 34 28.32 (± 0.93 ) 6 26.41 (± 0.81 ) 3 19.99 (± 0.53 )
Local jet + LBP 18 44.01 (± 0.53 ) 8 29.65 (± 0.49 ) 12 21.76 (± 0.58 )
LBPV 7 25.35 (± 0.79 ) 3 26.10 (± 0.41 ) 3 19.93 (± 0.54 )
Local jet + LBPV 15 36.74 (± 0.63 ) 15 26.20 (± 0.35 ) 12 22.16 (± 0.75 )
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