Nicolas Beldiceanu
email: beldiceanu@cosytec.com

Eric Bourreau
email: bourreau@cosytec.com

H Simonis
email: simonis@cosytec.com

A Note on Perfect Square Placement

 L'archive ouverte pluridisciplinaire

Problem

We discuss the following perfect square placement problem (also called squared square problem [START_REF] Croft | Guy Unsolved Problems in Geometry[END_REF][LW92]): Pack a set of squares with given integer sizes into a bigger square in such a way that no squares overlap each other and all square borders are parallel to the border of the big square. For a perfect placement problem, all squares have different sizes. The sum of the square surfaces is equal to the surface of the packing square, so that there is no spare capacity. The problem data come from [START_REF] Bouwkamp | Duijvestijn Catalogue of Simple Perfect Squared Squares of orders 21 through 25[END_REF], which lists all simple perfect square placement problems of order 21 to 25. Simple in this context means that the problems do not contain a subset of squares (greater than one) which are placed in a rectangle. Duijvestijn has shown in 1962 that no instances exist with less than 21 squares [START_REF]Duijvestijn Simple Perfect Squared Square of Lowest Order[END_REF]. A single problem exists with 21 squares. In this problem, the squares have sizes [2,4,6,7,8,9,11,15,16,17,18,19,24,25,27,29,33,35,37,42,50] and must be packed into a square of size 112. A solution is shown below. There are 8 problems of order 22, 12 of order 23, 26 of order 24, and 160 of order 25. A constraint approach for this problem was already studied in [START_REF] Aggoun | Beldiceanu Extending CHIP in Order to Solve Complex Scheduling Problems[END_REF], where a solution is found in 38 seconds. The same problem was mentioned in [START_REF] Van Hentenryck | Scheduling and Packing in the Constraint Language cc(FD)[END_REF], where a solution was found in 60 seconds. Both results were obtained on SUN workstations. With the program shown here, we find a solution in 0.3 seconds on a PC.

Program

The CHIP program to solve the square placement problem is given below. Each square is defined by two domain variables X and Y and integer Width and Height values. The predicate run has an input parameter, which is the problem instance number and two output parameters, the lists of the X and Y values for the coordinates of the bottom left corners of the squares. The predicate gen_data/6 reads the problem definition of the instance and generates lists of domain variables for the X and Y values. The square sizes are given in decreasing order, the largest square is the first entry in the lists. The predicate gen_rect/5 creates a list of rectangles (each a list of four variables X, Y, Width and Height) from the four parameter lists. The diffn [START_REF] Beldiceanu | Contejean Introducing Global Constraints in[END_REF] constraint states that the set of squares do not overlap and fit into the available space. The first argument is a list of rectangles, generated by gen_rect/5. The fourth argument defines the available space. We also use two redundant cumulative [START_REF] Aggoun | Beldiceanu Extending CHIP in Order to Solve Complex Scheduling Problems[END_REF] constraints which project the placement in x or y dimension. The first argument gives the origin, the second argument the size and the third argument the height of the squares to be placed. Arguments 6 and 7 define the available placement space. The argument 8 enforces an additional constraint that the available space must be completely used. The labeling routine is described in [START_REF] Aggoun | Beldiceanu Extending CHIP in Order to Solve Complex Scheduling Problems[END_REF]. We first find an assignment of all X variables, and then find an assignment for the Y variables. Many other assignment strategies are possible, the one shown here gives the best results on perfect placement problems. The labeling method works by finding the smallest value in the domain of the unassigned variables and then assigning this value to some variable. On backtracking, other variables will be assigned to this value. The predicate lmindomain/2/3 finds the smallest value a list of domain variables. The predicate fix_min/3 is a non-deterministic predicate which either fixes a variable to the minimal value

Possible Improvements

A major decrease of the total execution time is possible by introducing constraints to avoid redundant, symmetrical solutions. For each problem in the data-set, there are 8 symmetrical solutions obtained by applying the symmetries in the plane. We choose not to attempt this in this benchmarking problem, in order to simplify comparisons between different systems.

Summary

In this note we have presented the solution of a set of perfect square placement problems with CHIP. A rather simple CHIP program can be used to find solutions to all problem instances.

Figure 1 :

 1 Figure 1: Solution of the 21 square problem

Square placement program in CHIP Results The

 table below gives the results for CHIP V5.2 on the benchmark set. The results were obtained with the commercial CHIP version on a Pentium MMX 233MHz PC, running WindowsNT 4.0 with 64 Mb of memory. The table shows the instance number, the number of backtracking steps and the execution time required to find a first solution, the total number of solutions found and the backtracking count and execution times to find all solutions by complete enumeration of the search space. Note that for most problems 8 solutions are found, these correspond to one solution under all plane symmetries. Problems 166 and 167 (also 168 and 169, and 182 and 183) have identical data, but two independent (non-isomorphic) solutions. These problems are given in this form in the original data set. The maximum time to find a first solution was spent on problem 59 with 32.5 seconds (3877 backtracking steps), the maximum time to explore the complete search space was spent in problem 48 with 503 seconds (66100 backtracking steps). On the other hand, for 38 problems a first solution was found without backtracking, and 94 problems were explored completely with less than 2000 backtracking steps.

	29 77 125	642 50 8 2	5127 681 321 261	8 8 8 8		3987 1611 2941 1138	27489 10635 24576 7491
	run(Nr,LX,LY):-30 78 126 174	572 71 31 2	4697 751 300 240	8 8 8 8		3066 3068 1491 1036	22082 18677 9443 6960
	gen_data(Nr,LX,LY,LW,LH,Max), 31 10 240 79 423 3495 127 6 311 175 1 240 gen_rect(LX,LY,LW,LH,Lrect), 32 12 270 80 12 250 128 0 221 176 0 230 Max1 is Max + 1, diffn(Lrect,unused,unused,[Max1,Max1]), 8 8 8 8 8 8 8 8 33 211 1993 8 81 18 300 8 129 34 431 8 177 1 251 8	2227 4804 2829 2718 3441 1172 7715 1511 3417 1765 5468 3121	14010 31896 16864 24055 23844 7681 70091 14290 18066 12488 30805 20570
	cumulative(LX,LW,LH,unused,unused,Max,Max1,[Max,0,1]), 34 0 141 8 2379 16224 82 9 250 8 2364 11737 130 121 1582 8 2726 25847 178 4 330 8 2306 15061
	cumulative(LY,LH,LW,unused,unused,Max,Max1,[Max,0,1]), 35 443 3655 8 2803 20319 83 86 831 8 2764 19758 131 4 230 8 1584 11016 179 65 751 8 1245 8473
	labeling(LX), 36 84 15 2 132 87 180 10	180 321 781 410	8 8 8 8		676 5494 1585 831	3295 45526 9453 6639
	labeling(LY). 37 85 35 1 133 0 181 185	190 551 230 1793	8 8 8 8		1312 2191 1606 983	8272 17094 10045 7521
	38 86 134 182 gen_data(Nr,LX,LY,Sizes,Sizes,MaxPlace) :-49 470 8 161 1993 8 11 290 8 0 230 16 39 9 250 8 87 1 240 8 135 18 361 8 183 0 211 16 data(Nr,NbSquare,MaxPlace,SizeSquares), length(LX,NbSquare), 40 8 271 8 88 3 230 8 136 0 190 8 184 0 290 8	2533 3426 1863 3233 1490 4998 1113 3233 3117 5154 5125 1128	16333 27961 10965 21020 9203 39787 6840 21341 21471 37103 41770 9714
	length(LY,NbSquare), 41 18 89 1052 137 21 185 0	311 10986 411 200	8 8 8 8		1044 4204 3141 804	6500 35491 23093 6679
	LX :: 1..MaxPlace, 42 28 90 90 138 6 186 0	460 931 231 241	8 8 8 8		1629 4565 1887 2037	10765 34680 13280 12659
	LY :: 1..MaxPlace, 43 0 91 0 139 67 187 2	250 200 841 240	8 8 8 8		818 4415 10246 583	5858 28882 93965 3324
	reverse(SizeSquares,Sizes). 44 0 201 92 12 250 140 2 220 188 5 271	8 8 8 8		1297 4017 1247 706	9274 23914 9223 5138
	45 93 141 189	3 61 0 75	230 711 200 1352	8 8 8 8		839 3070 1554 1744	5388 24966 11286 17155
	fix_min([V|R], M, R) :-V = M, inc_choice. fix_min([V|R], M, [V|S]) :-V #> M, fix_min(R, M, S). lmindomain([H|T], M) :-domain_info(H, Min, _, _, _, _), lmindomain(T, Min, M). lmindomain([], M, M). lmindomain([X|Y], M, Mend) :-domain_info(X, Min, _, _, _, _), M1 is min(M,Min), lmindomain(Y, M1, Mend). inc_choice. inc_choice:-incval(choice,_), fail. Program 1 : Instance Backtrack for first solution Time for first solution [ms] Number of solutions 46 4 190 8 94 4 250 8 142 95 1302 8 190 1 320 8 47 0 200 8 95 133 1792 8 143 0 260 8 191 0 240 8 48 81 891 8 96 69 441 8 144 6 260 8 192 2 250 8 1 22 341 8 49 1275 10455 8 97 130 1502 8 145 184 3094 8 193 275 3635 8 2 180 1242 8 50 64 722 8 98 0 180 8 146 0 220 8 194 40 471 8 3 53 511 8 51 98 982 8 99 0 170 8 147 7 251 8 195 10 341 8 4 28 250 8 52 359 3174 8 100 3479 30724 8 148 119 1101 8 196 8 281 8 5 94 701 8 53 24 440 8 101 684 7401 8 149 0 221 8 197 7 441 8 6 93 661 8 54 200 2002 8 102 60 821 8 150 123 1282 8 198 0 220 8 7 11 190 8 55 17 321 8 103 52 841 8 151 1 201 8 199 2 250 8 8 6 160 8 56 0 170 8 104 91 1001 8 152 47 651 8 200 4 250 8 9 0 140 8 57 94 801 8 105 0 210 8 153 6 281 8 201 5 281 8 10 14 231 8 58 54 731 8 106 16 340 8 154 25 401 8 202 0 230 8 11 177 1312 8 59 3877 32537 8 107 11 351 8 155 0 210 8 203 0 230 8 12 7 120 8 60 2660 23124 8 108 17 441 8 156 22 381 8 204 0 260 8 13 5 150 8 61 8 260 8 109 2 240 8 157 1 211 8 205 2 380 8 14 659 4206 8 62 152 901 8 110 28 471 8 158 49 691 8 206 0 270 8 15 2795 20509 8 16 818 6199 8 17 40 341 8 18 1 150 8 19 6 190 8 20 239 1503 8 21 9 230 8 22 895 4987 8 23 1862 15943 8 24 393 2884 8 25 50 431 8 26 1041 10245 8 27 70 471 8 28 153 1342 8 76 14 271 8 124 1 230 8 172 1 240 8 75 7 240 8 123 6 251 8 171 0 230 8 74 0 181 8 122 642 5308 8 170 0 230 8 73 10 230 8 121 2 241 8 169 4 291 16 72 669 4686 8 120 0 200 8 168 4 291 16 71 1 171 8 119 0 180 8 167 380 4526 16 70 23 460 8 118 8 281 8 166 380 4386 16 69 9 200 8 117 383 4196 8 165 2 241 8 68 1 200 8 116 0 210 8 164 10 511 8 67 80 1132 8 115 72 741 8 163 10 391 8 66 35 371 8 114 0 190 8 162 2 250 8 65 157 1271 8 113 21 410 8 161 0 210 8 64 2553 22332 8 112 278 3175 8 160 4 270 8 63 1 211 8 111 82 942 8 159 67 752 8 207 1 310 8	Backtrack for solutions and proof 1576 all 2633 2229 2552 1286 2801 1175 1160 66100 2879 1339 714 1139 8760 2606 3924 3277 3644 4336 3023 3284 1007 2500 1747 3410 2769 1788 1143 4884 13601 1183 1964 1273 5216 7380 813 1273 1491 7586 5307 823 1916 891 4337 3076 694 1384 1004 2741 3640 1600 1774 1140 5818 2833 1196 2132 4265 2199 3748 1371 1971 3874 23980 3796 1492 1704 1634 19810 3474 3316 1918 2895 6255 1864 1379 1261 2406 5484 5114 1604 2214 7019 4813 1298 1046 1578 1991 781 8396 6627 4114 1610 3701 3117 5080 1521 1840 1630 6475 855 1408 2608 8792 797 2408 8321 4047 5832 3291 4047 1694 1910 2375 3909 2381 2375 2065 3305 1669 875 2682 641 3158 1926 2203 1675 1549 3237 1799 3770 730 14250 10293 1526 7249 2976 1453 1389	Time for all 10074 15973 15943 17735 solutions 5648 21971 9033 8292 and proof 503094 21812 9292 4897 [ms] 59705 20029 35020 31886 5608 26959 23744 32917 6469 23604 10636 27900 18437 13249 14311 34299 120363 6689 13860 5958 28311 57443 5488 9754 6228 60416 34710 5728 10906 7802 31145 23624 4697 8893 4316 19408 21891 11867 15181 4827 48570 20620 8272 17826 5818 16884 23994 7351 10786 18747 240706 30674 11256 9824 21782 187911 24195 26718 13109 7941 39937 13880 7681 11817 16253 34359 31415 11847 14791 14311 26599 9404 14290 8602 17575 42230 4537 8182 29012 14902 83310 5758 9293 14781 52936 33709 24105 42671 22692 33298 49050 9995 11427 21961 44594 29702 17355 22392 3125 10115 28280 11988 11557 4917 18527 4236 7150 21201 17295 20770 4486 11256 10745 17324 5268 11596 32477 4556 32937 128915 81818 11126 50573 39878 18757 8673 10345

gen_rect([],[],[],[],[]

). gen_rect([X|Rx],[Y|Ry],[W|Rw],[H|Rh],[[X,Y,W,H]|R]) :-gen_rect(Rx,Ry,Rw,Rh,R). labeling([]). labeling([X|Y]) :lmindomain([X|Y], M), fix_min([X|Y], M, R), labeling(R).

Appendix A

The following table contains all the data for all problem instances from [START_REF] Bouwkamp | Duijvestijn Catalogue of Simple Perfect Squared Squares of orders 21 through 25[END_REF]. The fields describe the problem number, the number of squares, the size of the master square and a list of the square sizes. The problem number corresponds to the page number in [START_REF] Bouwkamp | Duijvestijn Catalogue of Simple Perfect Squared Squares of orders 21 through 25[END_REF]. Problems 166 and 167, 168 and 169, 182 and 183 are identical, but have two non-isomorphic solutions.