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Abstract
The quantitative verification of Probabilistic Automata (PA) is undecidable in general. Unary
PA are a simpler model where the choice of action is fixed. Still, the quantitative verification
problem is open and known to be as hard as Skolem’s problem, a problem on linear recurrence
sequences, whose decidability is open for at least 40 years. In this paper, we approach this
problem by studying the languages generated by unary PAs (as defined below), whose regularity
would entail the decidability of quantitative verification.

Given an initial distribution, we represent the trajectory of a unary PA over time as an
infinite word over a finite alphabet, where the nth letter represents a probability range after
n steps. We extend this to a language of trajectories (a set of words), one trajectory for each
initial distribution from a (possibly infinite) set. We show that if the eigenvalues of the transition
matrix associated with the unary PA are all distinct positive real numbers, then the language
is effectively regular. Further, we show that this result is at the boundary of regularity, as non-
regular languages can be generated when the restrictions are even slightly relaxed. The regular
representation of the language allows us to reason about more general properties, e.g., robustness
of a regular property in a neighbourhood around a given distribution.

1 Introduction

Markov decision processes (MDPs for short) are a standard model for describing probabilistic
systems with nondeterminism. The system or controller has a strategy according to which
it chooses an action at every step, which is then performed according to a probability
distribution defined over the set of possible resultant states. The usual question is whether
some property (e.g. reaching a set of Goal states) can be achieved with probability at least
some threshold γ.

In many interesting settings, the controller cannot observe the state in which it operates
or only has partial information regarding the state (Partially Observable MDPs, POMDPs).
Probabilistic automata (PAs for short) [20, 19] form the subclass of POMDPs where the
controller cannot observe anything. The problem of whether there is a strategy to reach Goal
with probability at least a threshold γ (also called a cut-point) is already undecidable [4].
Even approximating this probability has been shown undecidable in PAs [12]. In fact,
deciding whether there exists a sequence of strategies with probability arbitrarily close to
γ = 1 is already undecidable [8], and only very restricted subclasses are known to ensure
decidability [7, 6].

A line of work, which we follow, is to consider unary PAs [5, 21], where the alphabet has
a single letter. That is, there is a unique strategy, and the model is essentially a Markov
chain. Surprisingly, the ‘simple’ problem of whether there exists a finite number of steps
after which the probability to be in Goal is higher than the threshold γ ∈ (0, 1) is open
and has recently been shown [3] to be as hard as the so-called Skolem’s problem, which is a
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Property of eigenvalues of Markov chain Regular Language Ultimately periodic trajectories

Distinct, positive real numbers X (Thm.4) X (from below)
Distinct, roots of real numbers × (Thm.5) X (Prop.2)
Distinct × (from above) × ([2], Thm.3)

Table 1 A summary of the results in this paper.

long-standing open problem on linear recurrence sequences [13, 11, 15]. One way to tackle
the problem is to approximate it, asking whether for all ε there exists a number of steps
nε after which the probability to be in Goal is at least γ − ε. The decidability and precise
complexity of this problem has been explored in [5]. A more general approximation scheme,
valid for much more general questions which can be expressed in some LTL logic, has also
been tackled by generating a regular language of approximated behaviors [1].

In this paper, we study classes for which the language of exact behaviors is (ω-)regular,
allowing for the exact resolution of any regular question (e. g. checking any LTLI formula
[1, 2]). We define the trajectory from a given initial distribution as an (infinite) word over
the alphabet {A,B}. The nth letter of a trajectory being A (for Above, respectively, B for
Below) represents that after n steps the probability to be in Goal is greater than or equal to
(respectively lesser than) the threshold γ. Further, we consider the language of a unary PA
as the set of trajectories (words) ranging over a (possibly infinite) set of initial distributions.
Thus, we can answer questions such as: does there exist a trajectory from the set of initial
distributions satisfying a regular property or do all trajectories satisfy it. We can also tackle
more complicated questions such as robustness wrt. a given initial distribution δinit: does a
regular property hold for all initial distributions “around” δinit.

As motivation, consider a population of yeast under osmotic stress [14]. The stress
level of the population can be studied through a protein which can be marked (by a
chemical reagent). For the sake of illustration, consider the following simplistic model
of a Markov Chain Myeast with the protein being in 3 different discrete states (namely
the concentration of the protein being high (state 1), medium (state 2) and low (state
3)). The transition matrix, also denoted Myeast, gives the proportion of yeast moving
from one protein concentration level to another one, in one time step (say, 15 seconds).

Myeast =

0.8 0.1 0.1
0.1 0.8 0.1
0.2 0.1 0.7


For instance, 20% of the yeast with high protein con-
centration will have low protein concentration at the
next time step. The marker can be observed optically
when the concentration of the protein is high. We know
that the original proportion of yeast in state 1 is 1/3
(by counting the marked yeast population), but we are
unsure of the mix between low and medium. The initial set of distributions is thus
Inityeast = {(1/3, x, 2/3 − x) | 0 ≤ x ≤ 2/3}. The language of Myeast will tell us how
the population evolves wrt the number of marked yeast being above or below the threshold
γyeast = 5/12, depending on the initial distribution in Inityeast. Now, suppose an experi-
ment with yeasts reveals that there are at first less than 5/12 of marked yeast (i.e. with high
concentration of proteins), then more than 5/12 of marked yeast, and eventually less than
5/12 of marked yeasts. That is, the trajectory is B for a while, then A for a while, then it
stabilises at B. Let us call this property as (Pyeast) (note that this is a regular property).
We are interested in checking whether our simplistic model exhibits at least one trajectory
with the property (Pyeast), and if yes, the range of initial values generating trajectories with
this property.

Our contributions as depicted in table 1 are the following: if the eigenvalues of the
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transition (row-stochastic) matrix associated with the unary PA are distinct roots of real
numbers, then any trajectory from a given initial distribution is ultimately periodic. This is
tight, in the sense that, there are examples of trajectories which are not ultimately periodic
even for unary PAs with 3 states [2, 21] (with some eigenvalue not root of any real number).
Our main result is that if, further, the eigenvalues are distinct positive real numbers, then
the language generated by a unary PA starting from a convex polytope of initial distribu-
tions is effectively regular. Surprisingly, this result is also tight: there exist unary PA with
eigenvalues being distinct roots of real numbers (starting from a convex initial set) which
generate a non-regular language, as we show in Section 6.

The proof of our main regularity result is surprisingly hard to obtain. First, for each
trajectory ρ, one obtains easily a number of steps nρ after which the trajectory is constant.
However, there is in general no bound on nρ uniform over all ρ in the language. Thus, while
every trajectory is simple to describe, the language turns out to be in general much more
complex. We prove that the language does have a representation as a finite union of lan-
guages of the form wAiA∗B∗A∗B∗A∗ · · ·B∗Aω with a bounded number of alternations. Our
method computes effectively the language of Myeast, asMyeast has positive real eigenvalues,
answering the question whether there exists an initial trajectory s.t. property (Pyeast) holds.

2 Preliminaries and definitions

IDefinition 1. A Probabilistic Automaton (PA) A is a tuple (Q,Σ, (Mσ)σ∈Σ, Goal), where
Q is a finite set of states, Σ is a finite alphabet, Goal ⊆ Q, andMσ is the |Q|×|Q| transition
stochastic matrix for each letter σ ∈ Σ. The PA is called unary PA (uPA for short) if |Σ| = 1.

For a unary PA A on alphabet {σ}, there is a unique transition matrix M = Mσ of
Q×Q with value in [0, 1]. For all x ∈ Q, we have

∑
y∈QM(x, y) = 1. In other words, M is

the Markov chain on set of states Q associated with A.
A distribution δ over Q is a function δ : Q→ [0, 1] such that

∑
q∈Q δ(q) = 1. GivenM as-

sociated with a uPA, we denote byMδ the distribution given byMδ(q) =
∑
q′∈Q δ(q′)M(q′, q)

for all q ∈ Q. Notice that, considering δ and Mδ as row-vectors, this corresponds to per-
forming the matrix multiplication. That is, we consider M as a transformer of probabilities,
as in [10, 1]: (Mδ)(q) represents exactly the probability to be in q after applying M once,
knowing that the initial distribution is δ. Inductively, (Mnδ)(q) represents the probability
to be in q after applying n times M , knowing that the initial distribution is δ. We now
review literature relating several problems on uPA with the Skolem’s problem, named after
the Skolem-Mahler-Lech Theorem [11],[13].

2.1 Relation with the Skolem problem
We start by defining three basic problems which have been studied extensively in different
contexts. Given an initial distribution δ0 and a uPA A with Matrix M , target states Goal
and threshold γ:
Existence problem: does there exist n ∈ N such that the probability to be in Goal after
n iterations of M from δ0 is γ (i.e.,

∑
q∈Goal(Mnδ0)(q) = γ) ?

Positivity problem: for all n ∈ N is the probability to be in Goal after n iterations of M
from δ0 at least γ (i.e.,

∑
q∈Goal(Mnδ0)(q) ≥ γ)?

Ultimate Positivity problem: does there exist n ∈ N s.t., for all m ≥ n, the probability
to be in Goal after m iterations of M from δ0 is at least γ (i.e.,

∑
q∈Goal(Mmδ0)(q) ≥ γ)?
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Note that all these problems are defined from a fix initial distribution δ0. These problems
for PAs are specific instances of problems over general recurrence sequences, that have been
extensively studied [15, 9]. It turns out that the existence for the special PA case is as hard
as the existence (Skolem) problem over general recurrence sequences as shown in [3].

I Theorem 1. [3, 9] For general unary PAs, the existence and positivity are as hard as the
Skolem’s problem.

The positivity result comes from the interreducibility of Skolem’s problem and the pos-
itivity problem for general recurrence sequences [9]. The decidability of Skolem has been
open for 40 years, and it has been shown that solving positivity, ultimate positivity or ex-
istence for general uPAs even for a small number of states (<50, depending on the problem
considered) would entail major breakthroughs in diophantine approximations [17].

2.2 Simple unary PAs

In order to obtain decidability, we will consider restrictions over the matrix M associated
with the uPA. The first restriction, fairly standard, is thatM has distinct eigenvalues, which
makes M diagonalizable.

I Definition 2. A stochastic matrix is simple if all its eigenvalues are distinct. A uPA is
simple if its associated transition matrix is.

Some decidability results [18, 16] have been proved in the case of distinct eigenvalues for
variants of the Skolem, which implies the following for simple uPAs:

I Theorem 2. For simple unary PAs, ultimate positivity is decidable [18].
For simple unary PAs with at most 10 states1, positivity is decidable [16].

We will consider the simple uPA restriction. Notice that the decidability restrictions in
Theorem 2 for these two closely related problems have led to two different papers [16],[18] in
the same conference, using different techniques. As we want to answer in a uniform way any
regular question (subsuming among others the above three problems and regular properties
such as (Pyeast)) for uPAs of all sizes, we will later impose more restrictions. We start
with the simple well-known observation that a simple unary PA has a unique stationary
distribution.

I Lemma 1. Let M be a simple stochastic matrix. Then there exists a unique distribution
δstat such that Mδstat = δstat.

Proof. We give a sketch of proof here. We will later get an analytical explanation of this
result. We haveMδ = δ iff (M−Id)δ = 0. AsM is diagonalizable and 1 is a eigenvalue ofM
of multiplicity 1, we have Ker(M − Id) is of dimension 1. The intersection of distributions
and of Ker(M − Id) is of dimension 0, that is, it is a single point. J

As usual with PAs, we consider the probability to be in the set of states Goal, that
is
∑
q∈Goal(Mnδ)(q). We consider only one threshold γ, for simplicity. In fact, the case

of multiple thresholds reduces to this case, since the behavior is non-trivial for only one
threshold, namely γstat =

∑
q∈Goal δstat(q) (see Lemma 11 in the appendix).

1 One more than the Skolem variant because of the fact that all the rows of a Markov chain sum to 1



S. Akshay, B. Genest, B. Karelovic, N. Vyas 5

2.3 Trajectories and ultimate periodicity

We want to know whether the nth distribution Mnδ of the trajectory starting in dis-
tribution δ ∈ Init is above the hyperplane defined by

∑
q∈Goal xq = γ, i.e., whether∑

q∈Goal[Mnδ](q) ≥ γ. We will write ρn(δ) = A (Above) for
∑
q∈Goal[Mnδ](q) ≥ γ, and

ρn(δ) = B (Below) else.

I Definition 3. The trajectory ρδ = ρ0ρ1 · · · ∈ {A,B}ω from a distribution δ is the infinite
word with ρn = ρn(δ) for all n ∈ N.

We write the eigenvalue of M as p0, . . . , pk with ||pi|| ≥ ||pj || for all i < j. Notice that
k + 1 = |Q| the number of states (as the uPA is simple). It is a standard result that all
eigenvalues of Markov chains have modulus at most 1, and at least one eigenvalue is 1. We
fix p0 = 1. As shown in Lemma 12 in the appendix, we have, for some ai(δ) ∈ C:

(1) ρδ(n) = A iff
k∑
i=0

ai(δ)pni ≥ γ

In the following, we denote uδ(n) =
∑k
i=0 ai(δ)pni for all n ∈ N. If ρδ is (effectively)

ultimately periodic (i.e, of the form uvω), every (omega) regular property, such as existence,
positivity and ultimate positivity is decidable (and are in fact easy to check). Unfortunately,
this is not always the case, even for small simple unary PAs.

I Theorem 3. [2] There exists an initial distribution δ0 and simple unary PA A with 3
states, and coefficients and threshold in Q, such that ρδ0 is not ultimately periodic.

Proof Sketch. The unary PA is given by: Goal = {1} is the first state, γ = 1
3 and the

associated matrix M0 and initial distribution δ0 are:

M0 =

0.6 0.1 0.3
0.3 0.6 0.1
0.1 0.3 0.6

 and δ0 =

 1
4
1
4
1
2


The reason the trajectory is not ultimately periodic follows from the fact that the eigen-

values of M0 are 1, r0e
iθ0 and r0e

−iθ0 with r0 =
√

19/10 and θ0 = cos−1(4/
√

19). J

An easy way to obtain ultimately periodic trajectories is to restrict to eigenvalues v
which are roots of real numbers, that is, there exists n ∈ N \ {0} with vn ∈ R.

I Proposition 1. Let A be a simple unary PA with eigenvalues (pi)i≤m all roots of real
numbers. Then ρδ is ultimately periodic for all distributions δ. The (ultimate) period of ρδ
can be chosen as any m ∈ N \ {0} such that pmi is a positive real number for all i ≤ m.

Now, for a finite state (Büchi) automaton B over the alphabet {A,B}, the membership
problem, of whether a given single trajectory ρδ ∈ L(B), is decidable. As it is easy to obtain
a (small) automaton B for each of the existence, positivity and ultimate positivity problem
such that this problem is true iff ρδ ∈ L(B), we obtain:

I Proposition 2. Let A be a simple unary PA with eigenvalues all roots of real numbers.
Let δ0 be a distribution. Then the existence, positivity and ultimate positivity problems
from initial distribution δ0 are decidable.
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3 Language of a unary PA

Using automata-based methods allows us to consider more complex problems, where the
initial distribution is not fixed. We define the set Init of initial distributions as a convex
polytope, that is the convex hull of a finite number of distributions.
I Definition 4. The language of a unary PA A wrt. the set of initial distributions Init is
L(Init,A) = {ρδ | δ ∈ Init} ⊆ {A,B}ω.
Note that A and B, and the language, depend on the threshold γ. As we assumed this
threshold value to be fixed, the language only depends on A and Init. As A is often clear
from the context, we will often write L(Init) instead of L(Init,A). For the yeast example
M = Myeast, we have eigenvalues 1; 0.7; 0.6:

M ·

5/12
1/3
1/4

 = 1

5/12
1/3
1/4

 ; M ·

 5/12
−5/12

0

 = 0.7

 5/12
−5/12

0

 ; M ·

 5/12
0

−5/12

 = 0.6

 5/12
0

−5/12


We can decompose two initial distributions δ1, δ2 ∈ Inityeast on the eigenvector basis:

 1/3
1/4
5/12

 =

5/12
1/3
1/4

+ 1
5

 5/12
−5/12

0

− 2
5

 5/12
0

−5/12

 ;

1/3
1/3
1/3

 =

5/12
1/3
1/4

− 1
5

 5/12
0

−5/12


Projecting on the first component, we have ρδ1(n) = A iff 1

120.7n − 1
60.6n ≥ 0, that is ρδ1 =

B4Aω. Also, ρδ2(n) = A iff − 1
120.6n ≥ 0, that is ρδ2 = Bω. With the techniques developed

in the following, we can prove more generally that, for all n ∈ N, we can find an ε s.t.,
δ = (1/3 1/3− ε 1/3 + ε)T has trajectory ρδ = BnAω, and that L(Inityeast) = B∗Aω ∪Bω.
Thus, property (Pyeast), from Introduction, does not hold for every initial distribution.

In general, if L(Init,A) is regular, then any regular question will be decidable. For
instance, if L(Init,A) is regular, then it is decidable whether there exists δ0 ∈ Init such
that the existence problem is true for A, δ0. One can also ask whether for a given convex
polytope Q, some property (such as positivity) expressed e.g. with LTLI [1] is true. Taking
δ in the interior of Q, this corresponds to checking the robustness of the property around δ.

Clearly, simple PA A does not ensure the regularity of L(Init,A) because of Theorem 3
(by choosing Init = {δ0} which is a convex polytope). Surprisingly, restricting eigenvalues
to be distinct and roots of real numbers does not ensure regularity either (see Section 6). In
the following, we thus take a stronger restriction: we assume that the eigenvalues of M are
distinct and positive real numbers. That is, p0 = 1 > p1 > · · · > pk ≥ 0 with k+ 1 = |Q| the
number of states. From Proposition 1, we obtain as corollary that for all δ0, we have either
ρδ0 = wAω or ρδ0 = wBω for w a finite word of {A,B}∗:

I Corollary 2. Let M be a stochastic matrix with positive real eigenvalues. Then every
trajectory ρδ0 is ultimately constant.

However, the language L(Inityeast,Myeast) shows that L(Init,A) is not always of the simple
form

⋃
w∈WA

wAω ∪
⋃
w∈WB

wBω, for WA,WB two finite sets of finite words over {A,B}∗.
Nevertheless, in the next two sections, we succeed in proving the regularity of L(Init,A),
which is our main result:
I Theorem 4. For all unary PA A with distinct positive real number eigenvalues, and for
a convex polytope Init, the language L(Init,A) is effectively regular.
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p = (1/3, 0, 2/3)

q = (1/3, 1/3, 1/3) a2(q) = 0

r = (1/3, 5/12, 1/4)
a3(r) = 0

s = (1/3, 1/3, 0)

e a1(e) > 0

f
a1(f) < 0

g

a1(g) = 0

h

a1(h) = 0 t

a1(t) = 0

Figure 1 Breaking into convex polytopes with constant signs

Notice that the hypotheses of Theorem 4 are decidable for A with rationals coefficients in
Q. Indeed, it suffices to use linear algebra in order to compute the eigenvalues and vectors,
and check whether their complex part is null. We also show that this result is tight, i.e.,
relaxing the hypothesis leads to non-regularity (see Section 6).

3.1 Partition of the set Init of initial distributions

Recall that we write uδ(n) :=
∑k
i=0 ai(δ)pni , where ai(δ) are given by Equation (1) from the

previous section. Because the eigenvalues are real numbers, ai(δ) is a real number for every
i and δ. Notice that ai is a linear function in δ, that is, ai(αδ1 + βδ2) = αai(δ1) + βai(δ2).
The trajectory ρδ depends crucially on the sign of a0(δ), and if a0(δ) = 0, on the sign of
a1(δ), etc. First, let Li = {δ | a0(δ) = · · · = ai(δ) = 0}. This is a vector space (i.e., it
is in Rk and contains the space of distributions over Q), as for any ν1, ν2 ∈ Rk, we have
ν1, ν2 ∈ Li implies that any linear combination αδ1 + βδ2 ∈ Li (since ai(ν) is linear in ν,
and the kernel of a linear function is a vector space).

We will divide the space of distributions into a finite set H of convex polytopes H ∈ H
to keep the sign of each ai constant on each polytope. Each H ∈ H satisfies that for all
e, f ∈ H, for all i ≤ k, we have ai(e), ai(f) do not have different signs (either one is 0, or
both are positive or both are negative). This can be done since ai(ν) is continuous (as it is
linear). This is pictorially represented in the left of figure 1. For instance, we divide Inityeast
into three polytopes: {(1/3, y, 2/3− y) | y ≤ 1/3} and {(1/3, y, 2/3− x) | 1/3 ≤ y ≤ 5/12}
and {(1/3, y, 2/3 − x) | y ≥ 5/12} as for δ = (1/3, 1/3, 1/3) we have a0(δ) = 1, a1(δ) = 0
(and a2(δ) = −1/5) and for δ = (1/3, 5/12, 1/4) we have a0(δ) = 1, a1(δ) = −1/5, a2(δ) = 0.

In general, we can assume that each of H ∈ H is the convex hull of k+ 2 points (else we
divide further: this can be done as the space has dimension k+1). Consider the right part of
Figure 1. Let Init be the convex hull of points e, f, g, h (in three dimensions) and a0(x) = 0
and a2(x) > 0 for all x ∈ {e, f, g, h, t}. Hence the sign of each trajectory ultimately depends
upon a1(x). In the example, a1(g) = a1(h) = 0 while a1(e) > 0 > a1(f). Then there is
a point t between e and f for which a1(t) = 0 (in fact, t = |a1(f)|/(|a1(e)| + |a1(f)|)e +
|a1(e)|/(|a1(e)| + |a1(f)|)f). We have L1 ∩ Init is the convex hull of h, g, t. We break Init
into two convex polytopes, the convex hull of h, g, t, e and the convex hull of h, g, t, f .

Let H ∈ H. We let P be the finite set of (at most k+ 2) extremities of H. In particular,
H is the convex hull of P . Now it suffices to show that the language L(H) (taking H as
initial set of distributions) of each of these convex polytopes H is regular to prove that the
language L(Init) =

⋃
H∈H L(H) is regular.
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3.2 High level description of the proof
The proof of the regularity of the language L(H) starting from the convex polytope H
is performed as follows. We first prove that there exists a Nmax such that the ultimate
language (after Nmax steps) of H is effectively regular using analytical techniques.
I Definition 5. Given Nmax, the ultimate language from a convex polytope H is defined
as LNmaxult (H) = {v | ∃w ∈ {A,B}Nmax , wv ∈ L(H)}.

In the next section (Corollary 6), we show that this ultimate language LNmaxult (H) is
regular, of the form (A∗)B∗ · · ·B∗Aω∪(A∗)B∗ · · ·A∗Bω with a bounded number of switches
between A and B’s. However, while for each prefix w ∈ {A,B}Nmax , the set Hw of initial
distributions in H whose trajectory starts with w is a convex polytope; the language L(Hw)
from Hw can be complex to represent. It is not in general wLNmaxult (H), but a strict subset.

In Section 5 (Lemma 9), we prove that the language L(H ′) associated with some carefully
defined convex polytope H ′ ⊆ H has a regular language, of the form

⋃
w∈W wAiA∗B∗ · · ·

B∗Aω ∪ wAiA∗B∗ · · ·A∗Bω for a finite set W . Further, removing H ′ from H gives rise to
a finite number of convex polytopes with a smaller number of “sign-changes”, as formally
defined in the next section. Hence we can apply the arguments inductively (requiring po-
tentially to change the Nmax considered). Finally, the union of these languages gives the
desired regularity characterization for L(H).

4 Ultimate Language

4.1 Limited number of switches.
We first show that the ultimate language LNmaxult (H) is included into A∗B∗A∗ · · ·A∗Bω ∪
A∗B∗A∗ · · ·B∗Aω for some Nmax ∈ N, with a limited number of switches between A and B
depending on properties of the set P of extremities of H.

We start by considering the generalisation of a sequence uδ to a function over positive
reals, and we will abuse the notation uδ to denote both the sequence and the real function.
I Definition 6. A function of type k ∈ N is a function of the form u : R>0 → R, with

u(x) =
k∑
j=0

αjp
x
j , where p0 > · · · > pk > 0.

Now, let u : R≥0 → R be a continuous function. We can associate with function u the
(infinite) word L(u) ∈ {A,B}ω, L(u) = (a0a1 . . .), where for all n ∈ N, an is defined as
an = A if u(n) ≤ 0 and an = B otherwise. We have easily that ρδ = L(uδ). Knowing the
zeros of uδ and its sign before and after the zeros, defines uniquely the trajectory ρδ.

For example, let u be such that it has four zeros: u(N−0.04) = u(N+10.3) = u(N+20) =
u(N + 35) = 0 for some integer N . Assume that u(0) < 0, u(N + 1) > 0, u(N + 11) <
0, u(N + 30) < 0 and u(N + 40) > 0. Thus, by continuity of u, u is strictly negative on
[0, N−1], non negative on [N,N+10], strictly negative on [N+11, N+34] and non negative
on [N + 35,∞). Thus the associated trajectory ρδ = BNA11B24Aω.

Hence, it is important to analyze the zeros of functions uδ. If the number of zeros is
bounded, then the number of alternations between A’s and B’s in any trajectory ρδ from
δ ∈ H will be bounded. In fact, it is a standard result (which we do not use hence do
not reprove here) that every type k function u has at most k zeros. We now show a more
precise bound on the number of zeros. Namely, for the convex hull H ′ of a finite set P ′ of
distributions in H, the number of alternations between A’s and B’s in H ′ is limited by the
number of alternations of the sign of the dominant coefficients of the distributions in P ′.
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Let z ∈ N. For i ∈ {0, . . . , z}, let ui(x) := ai0p
x
0 + ai1p

x
1 + · · · + aikp

x
k, with p0 >

p1 > p2 > . . . > pk > 0, representing for instance the functions associated with the z + 1
extremities of H ′. We denote dom(ui) the dominant coefficient of ui, that is the smallest
integer j with aij 6= 0. We reorder (ui)i∈{1,...,z} such that dom(ui) ≤ dom(ui+1) for all i < z.
We denote sign_dom(ui) ∈ {+1,−1} as the sign of dom(ui). We will assume, as for H,
that for all i, i′, j, aij and ai

′

j have the same sign. We let Z(u0, · · · , uz) = |{i ≤ z − 1 |
sign_dom(ui) 6= sign_dom(ui+1)}|. That is, Z(u0, · · · , uz) is the number of switches of
sign between the dominant factors of ui and ui+1. We have 0 ≤ Z(u0, · · · , uz) ≤ z. Notice
that as for dom(ui) = dom(uj), we have sign_dom(ui) = sign_dom(uj), Z(u0, · · · , uz)
does not depend upon the choice in the ordering of (ui)i∈{0,...,z}. We can now give a bound
on the number of zeros of functions which are convex combinations of u0 · · ·uz.

I Lemma 3. Let u0 · · ·uz be z+ 1 type k functions. There exists a Nmax ∈ N such that for
all λi ∈ [0, 1] with

∑
i λi = 1, denoting u(x) =

∑z
i=0 λiu

i(x), u(x) has at most Z(u0, · · · , uz)
zeros after Nmax. Further, if u(x) has exactly Z(u0, · · · , uz) zeros after Nmax, then its sign
changes exactly Z(u0, · · · , uz) times (that is, no zero is a local maximum/minimum).

In other words, we show that u(x) behaves like a polynomial of degree Z(u0, · · · , uz) (as it
has Z(u0, · · · , uz) dominating factors), although it has degree k > Z(u0, · · · , uz). In fact, we
prove that for ` = dom(ui), the coefficients aijpxj for all j > ` play a negligible role wrt. ai`px` .

Let H ∈ H, and P its finite set of extremal points. We can apply Lemma 3 to u0, . . . , uz,
the functions associated with the points of P (in decreasing order of dominating coefficient),
and obtain a Nmax. Now, since P is finite, the trajectories from P are ultimately constant,
hence there exists Ny such that for all i ≤ y, the trajectory of ui is wAω or wBω for some
w ∈ {A,B}Ny . We define NH to be the maximum of Ny and Nmax. With this bound on
the number of zeros, we deduce the following inclusion for the ultimate language LNHult (H):

I Corollary 4. Let y = Z(u0, . . . , uz). The ultimate language LNHult (H) ⊆ C∗1 · · ·C∗y−1C
ω
y ∪

C∗1 · · ·C∗y−1C
ω
y−1 for {Ci, Ci+1} = {A,B} for all i < y; and Cy = A iff sign_dom(u0) is

positive.

We can have 4 different sequences for C∗1 · · ·C∗y−1C
ω
y with {Ci, Ci+1} = {A,B}, depending

on the first and last letters C1, Cy (or equivalently, Cy and parity of y which determines C1).
The proof of our main result on regularity of L(H) will proceed by induction over the

switching-dimension Z(H) of H which we define as Z(H) = Z(u0, . . . , uz). Notice that
we could define the switching dimension for any convex set (not necessarily a polytope)
whenever the sign of ai(δ) does not change within the convex set. Finally, we also define
sign_dom(H) = sign_dom(u0).

4.2 Characterization of the Ultimate Language.
We now show that the ultimate language of H is exactly LNHult (H) = A∗B∗A∗ · · ·A∗Bω ∪
A∗B∗A∗ · · ·B∗Aω, with at most Z(H) switches of signs. We will state the associated tech-
nical Lemma 5 in the more general settings of “faces” as defined below, as it will be useful in
the next section. Let P be the finite set of extremal points of a H. We call (f0, . . . , fy) ⊆ P
a face of H if Z(v0, . . . , vy) = y = Z(H) for the functions (v0, . . . , vy) associated with the
extremal points (f0, . . . , fy). Notice that denoting H ′ the convex hull of F , we can choose
NH′ = NH (which is not the case for H ′ an arbitrary polytope included into H).

I Lemma 5. Given a face (f0, . . . , fy) ⊆ P of H with associated functions vi, we have,
for all n1, n2, . . . , ny ∈ N there exist λi ∈ [0, 1] with

∑
i λi = 1, such that denoting ṽ(x) =∑y

i=1 λiv
i(x), L(ṽ) = wAn1Bn2 . . . BnyAω (for y even) for some prefix w ∈ {A,B}NH .
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That is, for all n1, · · ·ny, one can find a prefix w of size NH and a point δ in the convex hull
of e1, · · · ey, such that ρδ = wAn1Bn2 · · ·BnyAω (assuming the correct parity of y). Let H ′
be the convex hull of f0, . . . , fy. Hence Z(H ′) = Z(H). Then, the ultimate language of H ′
(i.e., the language after prefixes of size NH associated with y) contains A∗B∗ . . . B∗Aω with
y switches between A and B, which is the converse of Corollary 4. We can thus deduce the
following about the ultimate language:

I Corollary 6. LNHult (H) = LNHult (H ′) = C∗1C
∗
2 . . . C

∗
yA

ω ∪ C∗1C∗2 . . . C∗y−1B
ω with

{Ci, Ci+1} = {A,B}.

Proof. We first prove the result for LNHult (H ′). We can apply lemma 5 to H ′ and lemma
3 to H ′. We obtain the first part of the union. Now, let H ′′ ⊆ H ′ be the convex hull of
e1, · · · , ey (that is excluding e0). Each point δ in H ′ \H ′′ has a trajectory which ends with
Aω, as dom(uδ) = dom(v1), and thus sign_dom(uδ) = sign_dom(v1) by construction of H
(and H ′ ⊆ H). Thus the points with trajectory ending with Bω are in H ′′, and applying
lemma 3, we know that their ultimate trajectory has at most y − 1 switches. Applying
lemma 5 to H ′′, we obtain the second hand of the union. Now, LNHult (H ′) ⊆ LNHult (H), and
LNHult (H) ⊆ C∗1C∗2 . . . C∗yAω ∪ C∗1C∗2 . . . C∗y−1B

ω by Corollary 4. J

However, we cannot immediately conclude that L(H) is regular. Though NH is finite
and computable, and there are a finite number of prefixes w of size NH , we need to know
which subset of LNHult (H) can appear after a given w ∈ {A,B}NH . We compute this next.

5 Regularity of the Language

Let {e0, · · · , ez} = P the extremal points of H. Let up the function associated with each
ep ∈ P . We denote y = Z(H) = Z((up)p≤z). We will show the regularity of L(H) using an
induction on Z(H).

For Z(H) = 0, the regularity of L(H) is trivial as all the dominant coefficients have
the same sign. Thus, by Corollary 4, the ultimate language is LNHult (H) = Aω and then
the language is L(H) =

⋃
w∈W wAω; or the ultimate language is LNHult (H) = Bω and the

language is L(H) =
⋃
w∈W wBω, for a finite set of W ⊆ {A,B}NH .

For w ∈ {A,B}NH , consider Hw = {δ ∈ H | ρδ = wv}, i.e., the language of words which
begin with the prefix w. It is easy to see that Hw ⊆ H is a polytope. Hence Z(Hw) ≤ Z(H).
Observe that L(H) =

⋃
w∈{A,B}NH L(Hw). To show the regularity of L(H), we show the

regularity of L(Hw) for each of the finitely many w ∈ {A,B}NH . For each w ∈ {A,B}NH ,
we have two cases: either Z(Hw) < Z(H); then we apply the induction hypothesis and we
are done. Or else, Z(Hw) = Z(H) = y. In this case, the sketch of proof is as follows:

We show that there exists J such that for all i ≤ y and all j ≥ J , we have a point
hij in Hw with trajectory wCj1C2C3 · · ·Ci−1C

ω
i . This is shown by applying lemma 5

to each face (f0, . . . , fy) of H and then using convexity arguments and the fact that
Z(Hw) = Z(H).
Subsequently, denoting H ′ the convex hull of h0

J · · ·h
y
J , we will deduce that L(H ′) is a

regular language of the form wCJ1 C
∗
1C
∗
2C
∗
3 · · ·C∗i−1C

ω
i ,

PartitioningHw\H ′ into a finite set of polytopes, we obtain polytopes of lower switching-
dimensions, which have regular languages by induction.
We conclude since the finite union of these regular languages is a regular language,
namely L(Hw).
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We now formalize the above proof sketch in a sequence of lemmas whose proofs are
relegated to the appendix. For all faces F ofH, applying Lemma 5 gives for all j ∈ N, a point
gj(F ) of the convex hull of F with trajectory wjCj1C2C3 · · ·Cωy , for some wj ∈ {A,B}NH .
We now prove that (gj) converges towards fy, the point of F with lowest dominant factor.

I Lemma 7. For every face F = (f0, . . . , fy) of H, (gj(F ))j∈N converges towards fy as j
tends to infinity.

For all j, we consider F (y, j) the convex hull of {gj(F ) | F is a face of H}. Every point
of F (y, j) has trajectory w′Cj1C2C3 · · ·Cωy for some w′ ∈ {A,B}NH . We then show by
convexity that H2 intersects F (y, j), i.e., it has a point with trajectory w′Cj1C2C3 . . . C

ω
y .

I Lemma 8. For w ∈ {A,B}NH with Z(Hw) = Z(H), there exists J s.t. for all j > J ,
F (y, j) ∩Hw 6= ∅.

Similarly, for all i ≤ y we can define a polytope F (i, j). All the points in F (i, j) have
trajectory w′Cj1C2C3 · · ·Cωi for some w′ ∈ {A,B}NH . We can find a Ji and a point hij ∈ Hw

with trajectory wCj1C2C3 · · ·Cωi for all i ≤ y and all j > Ji. Now, as the number of i ≤ y is
bounded, one can find such a J uniform over all i ≤ y (by taking maximum over all i).

Consider F (J) the convex hull of F (0, J), . . . , F (y, J). By convexity, all the points in
F (J) have their n-th letters of trajectory as C1 for all n ∈ [NH + 1 · · ·NH + J ], since
this is true for all points of F (i, J). Hence, the language of Hw ∩ F (J) is included into
wCJ1 C

∗
1C
∗
2 · · ·Cωy ∪wCJ1 C∗1C∗2 · · ·Cωy−1, because of the bound on the number of alternations

after NH of trajectories from points of H (Lemma 3). We show now that we have equality.

I Lemma 9. The language of the convex hull of {h0
J , . . . , h

y
J} is exactly

wCJ1 C
∗
1C
∗
2C
∗
3 · · ·C∗y−1C

ω
y ∪ wCJ1 C∗1C∗2C∗3 · · ·C∗y−2C

ω
y−1.

Hence the language of Hw ∩ F (J) is wCi1C∗1 · · ·Cωy ∪ wCi1C∗1 · · ·Cωy−1.
Next, we note that the set Hw \ F (J) may not be convex. However, one can partition

Hw \ F (J) into a finite number of convex polytopes. Now, let G be a convex polytope in
Hw \ F (J). We want to show that Z(G) < Z(Hw) = Z(H) = y. Indeed, else, one could
apply Lemma 8 to Gw = G and for some J ′ obtain F (i, j) ∩ G 6= ∅ for any j > J ′, which
contradicts G being a convex set in Hw \ F (J).

Hence one can compute the language of every G inductively, and each of them is regular.
Finally, this leads to the regularity of L(Hw) by finite union, and to the regularity of L(H),
and again by finite union to the regularity of L(Init). This concludes our proof of the main
regularity result, i.e., Theorem 4.

6 Irregularity of the symbolic dynamics

In this section, we will prove that symbolic dynamics of uPA can produce irregular languages
even when eigenvalues of the transition matrix are distinct roots of real numbers. We
prove this by constructing such a uPA and choosing the set of initial distributions carefully.
Consider a uPA A1 with 7 states q1, . . . q7, Goal = {q7}, and the following transition matrix:

M1 =



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1

512
8r+3
512

3+3r
64

13+16r
128

9+2r
32

1+4r
16

1−r
2


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where r = cos(π/8) =
√√

2+2
2 . Eigenvalues of M1 are 1, 1

2e
±iπ/2, 1

2
√

2e
±i3π/4 and 1

4e
±i7π/8,

which are distinct roots of real numbers. We choose γ =
∑
q∈Goal δstat(q) = δstat(q7) =

512
65(17+8cos(π8 )) (for any other choice of γ, the language is regular by Lemma 11).

Let δ be the initial distribution and Mn
1 δ be the distribution after n steps of M1. We

consider a basis of eigenvectors such that the eigenvector corresponding to eigenvalue 1 is
the stationary distribution and the remaining eigenvectors are normalized such that the 7th
component (corresponding to the Goal state) of each of them is 1. This is possible as the
7th component of each eigenvector of M1 is non-zero. Now, by eigenvalue decomposition:

Mn
1 δ(7) = µ0+ µ1

2n (eniπ/2+e−niπ/2)+ µ2

(2
√

2)n
(
en3iπ/4 + e−n3iπ/4

)
+ µ3

4n (en7iπ/8+e−n7iπ/8)

where µ0 = γ and δ written in the eigenvector basis is (1, µ1, µ1, µ2, µ2, µ3, µ3).
Consider the initial set of distributions Init to be the line segment (P1, P2) where P1 =

(1, a, a, b, b, c, c) and P2 = (1, 0, 0, b, b, c, c) in the eigenvector basis, where a = cos(3π/8)
246
√

2 ,
b = 1

220 , c = 1
211cos(3π/8) . These values are chosen so that µ0 dominates over the other terms

in the above equation, which ensures that P1 and P2 correspond to valid distributions in
the standard basis. Note that Init is the set of convex combinations of distributions P1 and
P2. Now, we can show our main theorem of this section, whose details are in the appendix:

I Theorem 10. L(Init,A1) is not regular.

Proof sketch. Let L = L(Init,A1). For x, y, z, k ∈ N, we define Lkx,y,z = {w ∈ Σω |
∃w′ ∈ L, ∀i ∈ N(w′k(i−1)+x = w3(i−1)+1, w

′
k(i−1)+y = w3(i−1)+2, w

′
k(i−1)+z = w3(i−1)+3}.

That is, for every a1a2a3 . . . ∈ L, axayazak+xak+yak+z . . . ∈ Lkx,y,z where x, y, z ≤ k.
It is easy to see that if Lkx,y,z is non-regular, so is L. Now we can show that L16

2,3,4 =
{(ABB)2(AAB)y+g(µ1,µ2,µ3)(BAB)y(BAA)w : y ≥ 0}. As the range of y is [1,∞) and
g(µ1, µ2, µ3) is a bounded function, hence L16

2,3,4 is not regular. Thus, L is not regular which
completes the proof. J

7 Conclusion

Though unary Probabilistic Automata (or Markov Chains) are a simple formalism, there
are still many basic problems, whose decidability is open and thought to be very hard.
Indeed, it is surprising yet significant that even after assuming strong hypotheses, their
behaviors cannot be described easily. In this paper, we proposed a class of unary probabilistic
automata, for which all properties of some logic, e.g. LTLI are decidable even considering
an infinite set of initial distributions. This allows for instance to check for the robustness
of the behavior wrt. some property (e.g. positivity) for behaviors around a given initial
distribution. Further, while we proved our results with respect to a single hyperplane (above
is A, below is B), we can generalize these to more general settings as well. Finally, we showed
that relaxing the assumptions immediately leads to non-regularity.

Acknowledgement: We would like to thank Manindra Agrawal and P.S. Thiagarajan
for very fruitful discussions.
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Appendix

We recall that γstat =
∑
q∈Goal δstat(q).

I Lemma 11. For γ 6= γstat, we have LInit(A) is regular.

Proof. For all distributions δ, we have that Mnδ is converging (uniformly over all initial
distributions [1]) towards δstat as n tends to infinity. Hence for all γ 6=

∑
q∈Goal δstat(q),

there exists a N (independent of δ) such that either for all n ≥ N, δ ∈ Init, Mnδ will
be strictly above γ, or for all n ≥ N, δ ∈ Init, Mnδ will be strictly below γ. This gives
LInit(A) = S1.A

ω + S2.B
ω where S1 and S2 are finite sets of finite words of length < N .

Hence LInit(A) is regular. J

I Lemma 12. Given a matrix M with distinct eigenvalues (p0, p1, . . . , pk), we have ρδ(n) =

A iff
k∑
i=0

ai(δ)pni ≥ γ for some constants ai(δ)i≤k independent of n.

Proof. As the eigenvalues are distinct the eigenvectors (vi)i≤k form a basis. Let δ = αivi. By

definition ρδ(n) = A iff
∑

q∈Goal
[Mnδ](q) ≥ γ. This happens iff (

∑
q∈Goal

k∑
i=0

αiM
nvi)eq ≥ γ iff

(
∑
q∈Goal

k∑
i=0

αivip
n
i )eq ≥ γ iff

k∑
i=0

pni
∑
q∈Goal αivieq ≥ γ. Now fixing ai(δ) =

∑
q∈Goal αivieq,

we have ρδ(n) = A iff
k∑
i=0

ai(δ)pni ≥ γ. Hence Proved. J

Proofs of Section 4
Let u0, · · · , uz be z + 1 functions of type k.

I Lemma 3. There exists a Nmax ∈ N such that for all λi ∈ [0, 1] with
∑
i λi = 1, denoting

u(x) =
∑z
i=0 λiu

i(x), u(x) has at most Z(u0, · · · , uz) zeros after Nmax. Further, if u(x) has
exactly Z(u0, · · · , uz) zeros after Nmax, then its sign changes exactly Z(u0, · · · , uz) times
(that is, its zeros are not local maximum/minimums).

Basically, we want to show that u(x) behaves like a polynomial of degree Z(u0, · · · , uz)
(because it has Z(u0, · · · , uz) dominating factors). Define `(i) = dom(ui). We actually
prove that the coefficients aijpxj of ui for all j > `(i) play a negligible role wrt ai`(i)px`(i). To
do so, we use derivatives to study the sign of u(x), which is a linear combination of z + 1
functions, ui for all 0 ≤ i ≤ z. Dividing u(x) by a well chosen positive coefficient (of the
form px) before differentiation allows us to obtain a linear combination of z functions. An
induction allows us to conclude.

Proof. For all r ∈ N, we introduce a small constant ε(r) > 0 depending on the number r
of functions considered. We start by defining m(r, q0, . . . , qk) > 0, the min over all 0 ≤ r ≤

s ≤ z and 0 ≤ j ≤ k with j 6= `(r) of |
log(

q`(s)
q`(r)

)

log(
qj
q`(r)

)
|. The min exists and it is strictly positive

because it is among a finite number of values, all strictly positive. We now define recursively
ε : {0, . . . , z} × Rz+1

>0 → R>0:
ε(z, q0, . . . , qk) = 1

2k and
for all 0 ≤ r < z, ε(r, q0, . . . , qk) = m(r,q0,...,qk)

(1+3z)2 ε(r + 1, q0, . . . , qk).
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It is now easy to show by induction that for all q /∈ {p0, . . . , pk}, for all r, ε(r, p0
q , . . . ,

pk
q ) =

ε(r, p0, . . . , pk). We then define ε(r) = ε(r, p0, . . . , pk) for all 0 ≤ r ≤ z. We can also show
by induction that for all r, ε(r) ≤ 1

2k .
We will use the following technical lemma, which we prove later.

I Lemma 13. Let I be an interval of R≥0. Let q0 > · · · > qk > 0 be positive reals. Let
vi(x) := bi0q

x
0 + bi1q

x
1 + · · · + bikq

x
k be a function of type k for all i ∈ {r, . . . , z}, 0 ≤ r ≤ z,

s.t.,
for all i ∈ {r, . . . , z}, all j 6= `(i) and all x ∈ I, |bijqxj | ≤ |ε(z, q0, · · · , qk)bi`(i)qx`(i)| (if
this holds, we say that |bijqxj | is negligeable wrt |bi`(i)qx`(i)| and call this the negligibility
hypothesis)

Then for all λr ≥ 0, . . . , λz ≥ 0 with
∑z
i=r λi = 1, the function v : x 7→

∑z
i=r λiv

i(x) has
at most Z(br`(r)px`(r), · · · , bz`(z)px`(z)) zeros in I. Further, if v(x) has exactly Z(br`(r)px`(r), · · · , bz`(z)px`(z))
zeros in I, then its sign changes exactly Z(br`(r)px`(r), · · · , bz`(z)px`(z)) times (that is, its zeros
in I are not local maximum or minimum).

Notice that in Lemma 13, `(i) is the dominating factor for ui. That is, in the case where
I is bounded, then it may not be the case that `(i) is the dominating factor of vi, if for
instance a constant bij is extremely big.

Assume Lemma 13 has been proved. We then apply Lemma 13 with r = 0, vi = ui for
all i ≤ z and I = [Nmax,∞), with Nmax chosen such that the negligibility hypothesis is
verified, which is possible as `(i) is the dominating factor of u(i) for all i. This implies that
u has Z(br`(r)px`(r), · · · , bz`(z)px`(z)) = Z(u0, . . . , uz) many zeros, since these are the dominant
coefficients of the ui. Thus, we obtain the statement of Lemma 3: for all λi ∈ [0, 1] with∑
i λi = 1, denoting u(x) =

∑z
i=0 λiu

i(x), u(x) has at most Z(u0, · · · , uz) zeros after Nmax.
Further, if u(x) has exactly Z(u0, · · · , uz) zeros after Nmax, then its sign changes exactly
Z(u0, · · · , uz) times (that is, its zeros are not local maximum/minimums). This completes
the proof of Lemma 3. J

It now remains to prove the technical lemma, which we do by induction on r:

Proof of Lemma 13. For r = z, the lemma is trivial as one has a unique function vz(x) :=
bzzq

x
z+bz1qx1 +· · ·+bzkqxk . Let ` = `(z). For all x ∈ I, we have

∑
i 6=` |bzi pxi | ≤ kε(z, q0, . . . , qk)|bz`px` | ≤

k 1
2k |b

z
`p
x
` | ≤ 1

2 |b
z
`p
x
` |. Hence the sign of vz(x) is the sign of bz` for all x ∈ I. That is, vz has

no zero in I. The further statement is thus trivially verified in this case.

Let 0 ≤ r ≤ z. Assume that the lemma is true for all instances with functions vr+1, . . . , vz

is true. Let us prove that the lemma is true for all instances with functions vr, . . . , vz.
Let vi(x) := bi0q

x
0 + bi1q

x
1 + · · · + bikq

x
k , for i ∈ {r, . . . , z} such that 1 ≥ q0 > q1 > . . . >

qk > 0, |bijqxj | ≤ |ε(r, q0, · · · , qk)bi`(i)qx`(i)| for all j 6= `(i) and x ∈ I. This hypothesis ensures
that for all i, (1− kε(r, q0, · · · , qk))|bi`(i)|qx`(i) ≤ |vi(x)| ≤ (1 + kε(r, q0, · · · , qk))|bi`(i)|qx`(i). As
we have ε(r, q0, . . . , qk) ≤ 1

2k for all r, it gives

1
2b
i
`(i)q

x
`(i) ≤ |v

i(x)| ≤ 3
2b
i
`(i)q

x
`(i) (1)

Let λ1 ≥ 0, . . . , λz ≥ 0 with
∑
i≤z λi = 1. Take the maximal xy ∈ I such that v(xy) =∑

r≤i≤z λiv
i(xy) = 0 (if there is no such zero, then we are done). We can assume without

loss of generality that `(r) 6= · · · 6= `(z), else it is easy to merge several ui with the same `(i)
together. We have |λrvr(xy)| = |

∑
i>r λiv

i(xy)| because xy is a zero of v. Taking s > r with
|λsvs(xy)| maximal, we have |

∑
i>r λiv

i(xy)| ≤ zλs|vs(xy)|. Thus |λrvr(xy)| ≤ zλs|vs(xy)|.
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We let I ′ = I ∩ [0, xy]. Using (1) for vr and for vs at xy ∈ I, we have λr|br`(r)|q
xy
`(r) ≤

λs3z|bs`(s)|q
xy
`(s). Now, because q`(r) > q`(s), we have for all x ∈ I ′: λr|br`(r)|qx`(r) ≤ λs3z|bs`(s)|qx`(s).

By applying the hypothesis of the negligibility, we thus get for all x ∈ I ′ and all j 6= `(r),
λr|brj |qxj ≤ λs3zε(r, q0, . . . , qk)|bs`(s)|qx`(s). That is, the terms λr

λs
brjq

x
j , with j 6= `(r) are small

wrt b0`(s)qx`(s) for x ∈ I ′.
Let q = q`(r) and consider the function v′(x) = v(x)

qx . Functions v′ and v have the same
zeros. We can derive v′, which will cancel out every term using qx: For all r ≤ i ≤ z, we
define functions f i(x) := ci0( q0

q )x + ci1( q1
q )x + · · ·+ cik( qkq )x with:

for i 6= s, f i is the derivative of vi, that is cij = log( qjq )bij for j 6= `(r), and ci`(r) = 0.
csj = log( qjq )(bsj + λr

λs
brj) for j 6= `(r), and cs`(r) = 0.

It is easy to check that f(x) =
∑z
i=1 λifi(x) is the derivative of v′. We now prove the in-

equalities involving ε for f i(x) for all x ∈ I ′. We do it for the most complex term, ie csj with
j 6= `(s), `(r). We have |csj(

qj
q )x| = | log( qjq )||(bsj + λr

λs
brj)|(

qj
q )x ≤ | log( qjq )|ε(r, q0, . . . , qk)(1 +

3z)|bs`(s)|(
q`(s)
q )x ≤ | log(

qj
q )

log(
q`(s)
q )
|ε(r, q0, . . . , qk)(1+3z)2|cs`(s)|(

q`(s)
q )x = | log(

qj
q )

log(
q`(s)
q )
|m(r, q0, . . . , qk)ε(r+

1, q0, . . . , qk)|cs`(s)|(
q`(s)
q )x ≤ ε(r + 1, q0, . . . , qk)|cs`(s)|(

q`(s)
q )x by definition of m(r).

Recalling that ε(r + 1, q0
q , . . . ,

qk
q ) = ε(r + 1, q0, . . . , qk), we conclude |csj |(

qj
q )x ≤ ε(r +

1, q0
q , . . . ,

qk
q )|cs`(s)|(

q`(s)
q )x for all x ∈ I ′, so we can apply the lemma to fr+1, . . . , fz. Thus

function f has at most Z(cr+1
`(r+1)q

x
`(r+1), . . . , c

z
`(z)q

x
`(z)) zeros in I ′. It is easy to see that ci`(i)

has the opposite sign of bi`(i) for all i, and thus we obtain Z(cr+1
`(r+1)q

x
`(r+1), . . . , c

z
`(z)q

x
`(z)) =

Z(br+1
`(r+1)q

x
`(r+1), . . . , b

z
`(z)q

x
`(z)).

Now, consider v′. It has the same sign and zeros as v. Hence the last zero of v′ in i is xy.
Because its derivative is f , v′ (and thus v) has at most 1 + Z(br+1

`(r+1)q
x
`(r+1), . . . , b

z
`(z)q

x
`(z))

zeros in I ′. If Z(br`(r)qx`(r), · · · , bz`(z)qx`(z)) = 1 + Z(br+1
`(r+1)q

x
`(r+1), . . . , b

z
`(z)q

x
`(z)), (or if v has

at most Z(br+1
`(r+1)q

x
`(r+1), . . . , b

z
`(z) zeros), the induction proof is finished.

Else, we proceed by contradiction. It means that the sign of br`(r) and of br+1
`(r+1) is the

same. It also means that f has exactly Z(br+1
`(r+1)q

x
`(r+1), . . . , b

z
`(z)q

x
`(z)) zeros and switches

sign every time. Without loss of generality, assume that br+1
`(r+1) > 0. By induction, it is easy

to see that the sign of f(xy) is the sign of cr+1
`(r+1), that is strictly negative.

In the same way, as `(r) is the dominating factor of v(x) in I, just after xy (remember
that v(xy) = v′(xy) = 0), the sign of v is b0`(0) > 0. This contradicts the continuity of v and
the fact that v(xy) = 0 and that its derivative is negative.

For the second statement, assume that v has exactly α := Z(br`(r)qx`(r), . . . , bz`(z)qxz ) zeros
in I. We know by the above that the derivative has exactly α − 1 zeros y1, . . . , yα−1 in I ′.
For all i ∈ {1, α− 1} there is one zero xi of v between two consecutive zeros yi, yi+1 of the
derivative. Now, if by contradiction v does not change sign at one of its zeros, let say xi, it
means that xi = yi. In particular, it means that in (yi, yi+1], there is no zero of v, which
contradicts the fact that v has exactly α zeros in I ′. It is also the case if the derivative is
null at xy. Last, v being continuous, it can not change sign after xy as it has no zero other
than xy (by definition of xy). J

I Lemma 5. For all n1, n2, . . . , ny ∈ N there exist λi ∈ [0, 1] with
∑
i λi = 1, such that

denoting u(x) =
∑y
i=1 λiv

i(x), L(u) = wAn1Bn2 . . . BnyAω (for y even) for some prefix
w ∈ {A,B}NH of size |w| = NH .

Proof. Let Nmax < n1 < · · · < ny be integers. We define inductively x0 = Nmax + 1/2 and
xj := xj−1 + nj for all 1 ≤ j ≤ y if nj 6= 0 and xj := xj−1 + 1

2y if nj = 0.
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We build inductively a function vji (x), convex combination of {vi, vi+1, . . . , vi+j}, such
that vji (xk) = 0 for all k ∈ {1, . . . , j}. Further, if i is odd (resp. even), we have vji (x) > 0
(resp. vji (x) < 0) for all x > xj . The initialization is trivial: we have that ∀x > Nmax, v

0
i (x)

is positive (resp. negative) when i is odd (resp. even), by choice of Nmax.
Induction step: Let 0 < j < y. Assume that we have built vj−1

i (x) for all i. The first
thing to remark is that for all i, any convex combination of vj−1

i (x) and vj−1
i+1 (x) will have a

zero at x1, . . . , xj−1 as both term are zero there. It remains to choose one which also have a
zero at xj . By induction, ∀x > xj−1, v

j−1
i (x) is positive (resp. negative) when i is odd (resp.

even). Thus it exists λji ∈ (0, 1) such that λjiv
j
i (xj) + (1− λji )v

j
i+1(xj) = 0. We thus define

vji (x) = λjiv
j
i (x) + (1− λji )v

j
i+1(x) and it has the required j zeros, which are all after Nmax.

As it is a linear combination of v1 · · · vi+j , it has exactly j zeros after Nmax (by lemma 3),
and thus ∀x > Nj , v

i
j(x) is positive (negative) if i is odd (even) (as it has no zero after xj

and we know its asymptotic behavior).
Then vy1 has {x1, . . . , xy} as zeros, and by lemma 3, it switches sign each time. Hence

the language of v1
y is wAn1Bn2 . . . Aω (or wBn1An2 . . . Aω if y odd) for some prefix w of size

|w| = Nmax. J

Proofs of section 5
Let i ≤ y = Z(H). A i-subface of H is a subset F = (f0, . . . , f i) of the set P of extremal
points of H such that Z(F ) = i.

I Lemma 7. For every i ≤ y and every i-subface Fi = (f0, . . . , f i) of H, (gij(F ))j∈N
converges towards f i as j tends to infinity.

Proof. For i = 0, the result is trivial. Let 0 < i ≤ y. By contradiction, assume that there
exists a dimension d (as there is a finite number of dimensions) and an infinite set J of
indices j ∈ N such that gij is bounded away from f i on dimension d. Let b be this bound.
Let H ′ be the convex polytope made of points of the convex hull of Fi at distance at least b
from f i on dimension d (gy is an extremal point of H, hence there is only one direction of
being at distance at least b on dimension d). Applying lemma 3 to H ′, we obtain a bound
NH′ such that the number of switches after NH′ (in general, NH′ > NH) of any point of
H ′ is at most i − 1, as Z(H ′) < Z(Fi) = i. Now, as J is infinite, one can find a j ∈ J

with j > NH′ + 1. We have that the trajectory of gij ∈ H ′ is w′Cj1C2C3 · · ·Cωi for some
w′ ∈ {A,B}NH , which switches signs i times after NH′ , a contradiction. J

In the same way, for all r < i, we can prove that denoting di,rj the distance of gij to the
convex hull of (f0, . . . , fr), we have di,r+1

j /di,rj converges towards 0 as j tends to infinity.
Let D(e, f0, . . . , fr+1) be the distance from e to the convex hull of (f0, . . . , fr+1) divided
by the distance from e to the convex hull of (f0, . . . , fr). We thus want to show that
D(gif , f0, . . . , fr+1) tends towards 0.

First, for r = i− 1, this is trivial as di,r+1
j = 0 for all i, j. Else, for r < i− 1, if it was not

the case, there would exist a bound b and an infinite set J of indices with di,r+1
j /di,rj > b for

all j ∈ J . Then as above, by considering H ′ the the convex polytope made of points e of
the convex hull of Fi with D(e, f0, . . . , fr+1) > b, we have Z(H ′) < Z(Fi) = i and the same
contradiction as above applies.

I Lemma 8. Let a convex H ′ ⊆ H and w ∈ {A,B}NH with Z(H ′w) = Z(H ′). There exists
J s.t. for all j > J , F (y, j) ∩ Closure(H ′w) 6= ∅.
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Proof. Let y+ 1 points h0, . . . , hy in Closure(H ′w) such that Z(h0, . . . , hy) = y. We choose
J such that for all face F = (f0, . . . , fy) of H, for all j > J ,

gyj (F ) is closer to fy than any hi is from hy, i 6= y.
for all r and all k > r, D(gyj (F ), f0, . . . , fr) < D(hk, h1, . . . , hr)

Then we have that Closure(H ′w) intersects the convex hull of (gij(F ))F a face of H .
As gyj (F ) ∈ F (y, j) for all j, F , we have In particular F (y, j) ∩ Closure(H ′w) 6= ∅. J

Next, we prove Lemma 9 for which we first need an intermediate lemma describing the
exact language of the convex hull of two points of Hw. In the following, we will abuse
notation of a point to also define the function associated with its trajectory: g(n) ≥ 0 iff the
n-th letter of the trajectory starting from g is an A.

I Lemma 14. Let e0 · · · ey be points of Hw with Z(e0, . . . , ey) = Z(Hw). Assume that the
trajectory of e = ek is wCi11 C

i2
2 · · ·C

ik−1
k−1 C

ω
k with ij > 0 and {Cj , Cj+1} = {A,B} for all

j < k. Assume also that the trajectory of f = ek−1 is wCi11 C
i2
2 · · ·C

ik−2
k−2 C

ω
k−1. Let i′ > ik−1.

Then there is a point g on the segment (e, f) with g(Nmax +
∑k−2
j=1 ij + i′ + 1/2) = 0.

Notice that any g on (e, f) has at least k − 2 zeros, one in each (Nmax + i1 + · · · +
ij , Nmax + i1 + · · · + ij+1). The g we will build thus have trajectory wCi11 C

i2
2 · · ·Ci

′

k−1C
ω
k .

Hence, the language of [e, f) is

wCi11 C
i2
2 · · ·C

ik−1
k−1 C

∗
k−1C

ω
k

Proof. Let i > N . Let g define a point on (e, f) to be specified later. For a ∈ {e, f, g}, we
define ua as the function associated to the point a. Let x := |w|+i1 +i2 + . . .+iz−3 +i+1/2.
We have ue(x) > 0 and uf (x) < 0 (in the unlikely case where uf (x) = 0 with this x, i.e.,
uf (x) = 0 implies the letter is B and the derivative of uf is null in x, we just take x+ 1/4.
Because of the maximal number of zeros of uf , uf (x+1/4) 6= 0 if uf (x) = 0). So there exists
λ ∈ (0, 1) such that λue(x) + (1−λ)uf (x) = 0. Let g be the point λe+ (1−λ)f on segment
(e, f), and ug its associated function. We have ug = λue + (1− λ)uf by linearity. Further,
as g = λe + (1 − λ)f and both e and f have prefix wAi1Bi2Ai3 · · ·Aiz−3 , then g has also
prefix wAi1Bi2Ai3 · · ·Aiz−3 . It means that ug changes sign between |w|+ i1−1 and |w|+ i1,
. . ., between |w|+ i1 + i2 + . . .+ iz−3− 1 and |w|+ i1 + i2 + . . .+ iz−3. In particular, ug has
a zero in every of these z − 2 intervals. Thus ug has z − 1 zeros. By lemma 3, it switches
signs exactly at these zeros, and never elsewhere in [Nmax,+∞). Thus the trajectory of g is
wAi1Bi2Ai3 · · ·Aiz−2BiAω. Further, as g is on the segment [e, f ], both e, f ∈ Hw and Hw

is convex, then g ∈ Hw. J

We can now finish the proof of lemma 9.

I Lemma 9. Let e0 · · · ey be points of Hw with Z(e0, . . . , ey) = Z(Hw). Let J ∈ N. Assume
that the trajectory of ei is wCJ1 C2C3 · · ·Cωi with {Cj , Cj+1} = {A,B} for all j < i (that is
ei has the maximum number of alternance in its subspace). Then the language of the convex
hull of {e0, . . . , ey} is exactly wCi1C∗1C∗2C∗3 · · ·C∗y−1C

ω
y ∪ wCi1C∗1C∗2C∗3 · · ·C∗y−2C

ω
y−1.

Proof. We first consider the case wCi1C∗1C∗2C∗3 · · ·C∗k−1C
ω
k . Then, we consider the other

case of wCi1C∗1C∗2C∗3 · · ·C∗k−2C
ω
k−1 in a second step.

Let x be a point in the interior of the convex hull of e1 · · · ez. Then the trajectory of x
is wCi1u for some infinite word u as all the point e1 · · · ez are of this type and by linearity of
M i for all i. Now, by lemma 3, the number of alternation after w is at most z−1, hence the
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trajectory of x is of the form wCi+i11 Ci22 C
i3
3 · · ·C

ik−1
k−1 · · ·Cωk with ij ∈ N for all j. We will

show that every of these trajectories is reached for a point in the convex hull of e1 · · · ez.
Let (ij)j≤k be a family of integers. At first, we assume that ij 6= 0 for all j. For all

j ∈ {1, . . . , z − 1} let xj := Nmax + i + j. Also, for all j ∈ {1, . . . , z − 1}, we define
yj := Nmax + i+ i1 + . . .+ ij + 1/2.

We will prove that there exists a point f in the interior of the convex hull of e1, · · · , ez
such that f(yj) = 0 for all j ∈ {1, . . . , z − 1}. Then Lemma 3 will imply that the language
of f is wCi+i11 Ci22 C

i3
3 · · ·C

iz−1
k−1 · · ·Cωz .

We build f by induction. Applying lemma 14 for all j ∈ {1, . . . , z − 2} to ej , ej+1, we
obtain a point e1

j in (ej , ej+1) such that e1
j (yz−1) = 0. As e1

j is in (ej , ej+1), by linearity, the
prefix of its trajectory is wCi1C2 · · ·Cj−1Cj (and it ends up with Cωj+1), which implies that
it has additionaly j− 1 zeros in (Nmax + i,Nmax + i+ j+ 1), with Nmax + i+ j+ 1 ≤ yz−1.

Thus, the sign of e1
j (x) is constant in x ∈ [xj−1 + 1, yz−1), depending on the partity of

j. In particular, yz−2 ∈ [xj−1 + 1, yz−1) for all j ≤ z − 2.
We now consider points (e2

j )j≤z−3 in the convex hull of (e1
j )j≤z−2. Thus any of these

points have e2
j (yz−1) = 0 by linearity. Let j ∈ {1, . . . , z − 3}. We chose e2

j in the segment
(e1
j , e

1
j+1) such that e2

j (yz−2) = 0. It is possible as the sign of e1
j (yz−2) > 0 and the sign of

e1
j+1(yz−2) < 0 (or vice versa, depending on the parity of j). We have that e2

j has j + 1
zeros: yz−1, yz−2 and one zero in every of [xk, xk+1) for all k < j.

By induction, we get f := ez−1
1 such that f(yi) = 0 for 1 ≤ i ≤ z − 1 and it switches

sign between each zeros, hence its trajectory is wCi+i11 Ci22 · · ·C
iz−1
z−1 C

ω
z . Hence the case for

ij > 0 for all j is solved.

Consider now the case where some ij = 0. First, if i1 = 0, then the above procedure
works. Now, for ij = 0 for j 6= 1, it means that the desired trajectory is wCi+i11 Ci22 · · ·C

ij−1
j−1

C
ij+1
j+1 · · ·C

iz−1
z−1 C

ω
z = wCi+i11 Ci22 · · ·C

ij−2
j−2 C

ij−1+ij+1
j−1 C

ij+2
j+2 · · ·C

iz−1
z−1 C

ω
z as Cj−1 = Cj+1, hence

with 2 less switches. It suffices to start with the above procedure, but with z′ = z − 2 and
points e1 · · · ez′ = ez−2. For instance, take e1, e2. Their trajectories are respectively wCω1
and wCi1Cω2 . Applying lemma 14, we get the existence of a point f1 in the convex hull of
e1, e2 with a zero in y1 = Nmax + i+ i1 + 1/2. Its trajectory is wCi+i11 Cω2 .

Last, for the case of wCi1C∗1C∗2C∗3 · · ·C∗k−2C
ω
k−1, it suffices to proceed in the same way in

the convex hull of (e0, . . . , ey−1). J

Proofs of Section 6

In this section, we will prove Theorem 10, i.e., our non-regularity result. To do so we
consider the uPA A1 and associated Markov chain M1 from Section 6. We construct a
special language L16

2,3,4 from A1 and prove it irregular in Lemma 16, then we prove that
irregularity of L16

2,3,4 implies the irregularity of L(Init,A1) in Lemma 17.

I Lemma 15. Consider the eigenvector of M1 for eigenvalue 1, namely w1, to be stationary
distribution and others normalized by their 7th component i.e wi(7) = 1 for all i > 1
(this is possible as none of the 7th components are 0, see Figure 2 for w2, . . . , w7). This
forms a basis which is the so-called eigenvector basis. Then δ in the eigenvector basis is
(1, µ1, µ1, µ2, µ2, µ3, µ3).

Proof. Considering δ in the eigenvector basis to be α and wi as the eigenvectors. δ =
7∑
i=1

αiwi. α0 is 1 as δ is a distribution and w1 = δstat is the stationary distribution. Then,
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δ = δstat +
7∑
i=2

αiwi, Mn
1 δ = δstat +

7∑
i=2

αiλ
n
i wi. Finally, Mn

1 δ(7) = δstat(7) +
7∑
i=2

αiλ
n
i wi(7).

But as we have normalized w.r.t 7th component we have wi(7) is 1 for all i ∈ [2, 7].

Hence, Mn
1 δ(7) = δstat(7) +

7∑
i=2

αiλ
n
i . Now, comparing u(n) to Mnδ we get that δ in the

eigenvector basis is (1, µ1, µ1, µ2, µ2, µ3, µ3). J

Consider an infinite word w = (wi)∞i=1 over a finite alphabet Σ. For a given language
L ⊆ Σω, we define for x, k ∈ N, x ≤ k,

Lkx =
{
w ∈ Σω | ∃w′ ∈ L∀i ∈ N

(
w′k(i−1)+x = wi

)}
Similarly we define Lkxyz for x, y, z, k ∈ N

Lkxyz =
{
w ∈ Σω | ∃w′ ∈ L ∀i ∈ N

(
w′k(i−1)+x = w3(i−1)+1, w

′
k(i−1)+y = w3(i−1)+2, w

′
k(i−1)+z = w3(i−1)+3

)}
Thus, for every a1a2a3 . . . ∈ L, we have axak+xa2k+x. . . . ∈ Lkx where x ≤ k and further,

axayazak+xak+yak+za2k+xa2k+ya2k+z . . . ∈ Lkx,y,z where x, y, z ≤ k. Let us start by con-
sidering these languages for Lδ(A1) for an arbitrary single point initial distribution δ. To
simplify notation, we will henceforth denote Lδ = Lδ(A1). Note that these languages will
be singleton sets. We will then vary δ over Init to obtain the required irregular language.

Let v(m) = u(m) − γ. Then the mth letter is A if v(m) > 0 and mth letter is B if
v(m) ≤ 0. Now, for k = 16 consider Lδ,16

2 , Lδ,16
3 , Lδ,16

4 and Lδ,16
2,3,4 (for getting Lki we need to

put m = kn+ i and for each i = 2, 3, 4 one term of v(m) vanishes as angle becomes π
2 ).

Thus, for Lδ,16
2 , m = 16n+ 2 hence

v(m) = µ1

(
1
4

)(
1
2

)16n (
eiπ + e−iπ

)
+ µ2

(
1
8

)(
1

2
√

2

)16n (
eiπ/2 + e−iπ/2

)
+ µ3

(
1
16

)(
1
4

)16n (
eiπ/4 + e−iπ/4

)
v(m) = µ3

(
1

8
√

2

)(
1
4

)16n
− µ1

(
1
2

)(
1
2

)16n
(2)

which will be negative eventually (as 1/4 < 1/2) but positive initially. Let n2 be the
point at which it shifts from positive to negative. That is, for n ∈ [0, n2] v(m) ≥ 0 while
for n ∈ (n2,∞) v(m) < 0. Now, we can compute n2 as a function of µ1, µ3 i.e. n2 =⌊

1
16 log2

(
µ3

4
√

2µ1

)⌋
iff 1

16 log2

(
µ3

4
√

2µ1

)
is not an integer and 1

16 log2

(
µ3

4
√

2µ1

)
− 1 otherwise.

Note that n2 can take any integer value by choosing µ1 and µ3 appropriately.
Similarly, for Lδ,16

3 , we have m = 16n+ 3 hence

v(m) = µ1

(
1
8

)(
1
2

)16n (
eiπ/2 + e−iπ/2

)
+ µ2

(
1

16
√

2

)(
1

2
√

2

)16n (
eiπ/4 + e−iπ/4

)
+ µ3

(
1
64

)(
1
4

)16n (
e5iπ/8 + e−5iπ/8

)
v(m) = µ2

(
1
16

)(
1

2
√

2

)16n
− µ3

(
cos(3π/8)

32

)(
1
4

)16n
(3)

which will be positive eventually (as 1/2
√

2 > 1/4) but negative initially. Again, we can
compute n3 such that for n ∈ [0, n3] v(m) ≤ 0 while for n ∈ (n3,∞) v(m) > 0. Namely, n3 =⌊

1
8 log2

(
cos(3π/8)µ3

2µ2

)⌋
. Again, n3 can take any value by choosing µ2 and µ3 appropriately.
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Finally, for Lδ,16
4 , m = 16n+ 4 hence

v(m) = µ1

(
1
16

)(
1
2

)16n (
e0 + e0)+ µ2

(
1
64

)(
1

2
√

2

)16n (
eiπ + e−iπ

)
+ µ3

(
1

256

)(
1
4

)16n (
eiπ/2 + e−iπ/2

)
v(m) = µ1

(
1
8

)(
1
2

)16n
− µ2

(
1
32

)(
1

2
√

2

)16n
(4)

which will be positive eventually (as 1/2 > 1/2
√

2) but negative initially. Thus, we have for
n ∈ [0, n4] v(m) ≤ 0 while for n ∈ (n4,∞) v(m) > 0, where n4 =

⌊
1
8 log2

(
µ2
4µ1

)⌋
. Again, n4

can take any value by choosing µ1 and µ2 appropriately.

Hence for k = 16, Lδ,16
2 = {An2+1Bω} similarly Lδ,16

3 = {Bn3+1Aω} and Lδ,16
4 =

{Bn4+1Aω}. Thus for n3 < n2 < n4 (which we ensure later by varying δ over the ap-
propriate Init), we obtain Lδ,16

2,3,4 = (ABB)n3+1(AAB)n2−n3(BAB)n4−n2(BAA)ω. Now as
n2, n3 and n4 are only in terms of µ1, µ2 and µ3 we can define

g(µ1, µ2, µ3) = 2n2 − n3 − n4 (5)

If we ignore floor functions in the definitions of n2, n3, n4 we get g(µ1, µ2, µ3) as a constant(≈
.236). And introducing 4 floor functions can only change the value by atmost 4. Hence −5 ≤
g(µ1, µ2, µ3) ≤ 5. Substituting in Lδ,16

2,3,4 we get Lδ,16
2,3,4 = (ABB)n3+1(AAB)n4−n2+g(µ1,µ2,µ3)

(BAB)n4−n2(BAA)ω.
We consider the initial set of distributions Init to be the line segment (P1, P2) where

P1 = (1, a, a, b, b, c, c) and P2 = (1, 0, 0, b, b, c, c) in the eigenvector basis, where a =
cos(3π/8)

246
√

2 , b = 1
220 , c = 1

211cos(3π/8) . These values are chosen so that µ0 dominates over
the other terms in the above equation, which ensures that P1 and P2 correspond valid
distributions in the standard basis. Note that the distributions in Init are just convex
combinations of distributions at P1 and P2. Finally, let us now denote L = LInit(A1) =⋃
δ∈Init Lδ(A1) =

⋃
δ∈Init L

δ similarly L16
2,3,4 =

⋃
δ∈Init L

δ,16
2,3,4.

Now, since n3 only depends on µ2 and µ3 which are constant for Init, we obtain n3 =
1. Further, for all initial distributions from Init, we observe that n4 − n2 ∈ [1,∞). By
varying δ over all Init and substituting n4 − n2 = `, and by equation 5, we have L16

2,3,4 =
{(ABB)2(AAB)`+g(µ1,µ2,µ3)(BAB)`(BAA)ω : ` ≥ 1}. Finally, we have

I Lemma 16. L16
2,3,4 ⊆ {A,B}ω is not regular language.

Proof. Let us assume L16
2,3,4 is regular then by Myhill-Nerode Theorem we have L′16

2,3,4 =
{(AAB)`+g(µ1,µ2,µ3)(BAB)`(BAA)ω : ` ≥ 1} is also regular. Consider the homomorphism
φ : {A,B,C} → Σ∗ where φ(A) = AAB, φ(B) = BAB and φ(C) = BAA. As regular
languages are closed under inverse homomorphism consider L′16

2,3,4 under inverse of φ. This
gives L′′16

2,3,4 = {(A)`+g(µ1,µ2,µ3)(B)`(C)ω : ` ≥ 1}. As −5 ≤ g(µ1, µ2, µ3) ≤ 5, the difference
between number of A′s and B′s in this language can be atmost 5. We now show this lan-
guage to be irregular by the pumping lemma:
Let p be the pumping length. Let w ∈ L be given by w = (AAB)p+g(µ1,µ2,µ3)(BAB)p(BAA)ω.
By the pumping lemma, there must be some decomposition w = xyz with |xy| ≤ p and
|y| ≥ 1 such that xyiz ∈ L for every i ≥ 0. Using |xy| ≤ p, we know y only consists
of instances of A. Moreover, because |y| ≥ 1, it contains at least one instance of A. We
now pump y up: xy11z has difference between number of A’s and number of B’s is more
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w2 = (−0.0039i, −0.0078 − 0.0405i, −0.0811 − 0.1647i, −0.3294 − 0.2717i, −0.5434 − 0.0190i, −0.0380 + 0.5i, 1)
w3 = (0.0039i, −0.0078 + 0.0405i, −0.0811 + 0.1647i, −0.3294 − 0.2717i, −0.5434 + 0.0190i, −0.0380 + 0.51, 1)

w4 = (−0.0039 − 0.0039i, −0.0405 − 0.0249i, −0.1491 − 0.0492i, −0.2343 − 0.0373i, −0.2839 − 0.1345i, −0.2880 + 0.25i, 1)
w5 = (−0.0039 + 0.0039i, −0.0405 + 0.0249i, −0.1491 + 0.0492i, −0.2343 − 0.0373i, −0.2839 + 0.1345i, −0.2880 − 0.25i, 1)
w6 = (−0.0072 − 0.0029i, −0.0529 − 0.0089i, −0.1514 − 0.0239i, −0.2788 − 0.0119i, −0.2404 − 0.0478i, −0.2690 − 0.0956i, 1)
w7 = (−0.0072 + 0.0029i, −0.0529 + 0.0089i, −0.1514 + 0.0239i, −0.2788 − 0.0119i, −0.2404 + 0.0478i, −0.2690 − 0.0956i, 1)

Figure 2 Eigenvectors of M1

than 5. Therefore xy11z is not in L′′16
2,3,4. We have reached a contradiction. Therefore, the

assumption that L′16
2,3,4 is regular must be incorrect. Hence L16

2,3,4 is irregular. J

Finally, we have the following lemma which completes the proof of Theorem 10.

I Lemma 17. For all k > 4, if Lk2,3,4 is not regular then L = L(Init,A1) is not regular.

Proof. Contrapositive : If L is regular then so is Lk2,3,4. Let the Büchi Automaton of L be
(Q,Σ,∆, I, F ). Consider a Büchi Automaton (Q′,Σ,∆′, I ′, F ′) where Q′ = Q× {1, . . . , k},
∆′((q, 1), ε) =

⋃
i{(p, 2)|p ∈ ∆(q, ai)}

∆′((q, 2), a) = {(p, 3)|p ∈ ∆(q, a)}
∆′((q, 3), a) = {(p, 4)|p ∈ ∆(q, a)}
∆′((q, 4), a) = {(p, 5)|p ∈ ∆(q, a)}
∆′((q, j), ε) =

⋃
i{(p, j + 1)|p ∈ ∆(q, ai)} for j > 4, j < k

∆′((q, k), ε) =
⋃
i{(p, 1)|p ∈ ∆(q, ai)}

I ′ = {(s, 1)|s ∈ I}, F ′ = {(s, j)|s ∈ I} and 0 < j ≤ k
This Büchi automaton accepts exactly Lk2,3,4 as only mth characters (where m mod k =
2, 3, 4) are picked from L. Hence if Lk2,3,4 is not regular then L = L(Init,A1) is also
irregular. J
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