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Abstract
The quantitative verification of Probabilistic Automata (PA) is undecidable in general. Unary
PA are a simpler model where the choice of action is fixed. Still, the quantitative verification
problem is open and known to be as hard as Skolem’s problem, a problem on linear recurrence
sequences, whose decidability is open for at least 40 years. In this paper, we approach this
problem by studying the languages generated by unary PAs (as defined below), whose regularity
would entail the decidability of quantitative verification.

Given an initial distribution, we represent the trajectory of a unary PA over time as an
infinite word over a finite alphabet, where the nth letter represents a probability range after
n steps. We extend this to a language of trajectories (a set of words), one trajectory for each
initial distribution from a (possibly infinite) set. We show that if the eigenvalues of the transition
matrix associated with the unary PA are all distinct positive real numbers, then the language
is effectively regular. Further, we show that this result is at the boundary of regularity, as non-
regular languages can be generated when the restrictions are even slightly relaxed. The regular
representation of the language allows us to reason about more general properties, e.g., robustness
of a regular property in a neighbourhood around a given distribution.
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1 Introduction

Markov decision processes (MDPs for short) are a standard model for describing probabilistic
systems with nondeterminism. The system or controller has a strategy according to which
it chooses an action at every step, which is then performed according to a probability
distribution defined over the set of possible resultant states. The usual question is whether
some property (e.g. reaching a set of Goal states) can be achieved with probability at least
some threshold γ.

In many interesting settings, the controller cannot observe the state in which it operates
or only has partial information regarding the state (Partially Observable MDPs, POMDPs).
Probabilistic automata (PAs for short) [21, 20] form the subclass of POMDPs where the
controller cannot observe anything. The problem of whether there is a strategy to reach Goal
with probability at least a threshold γ (also called a cut-point) is already undecidable [5].
Even approximating this probability has been shown undecidable in PAs [13]. In fact,
deciding whether there exists a sequence of strategies with probability arbitrarily close to
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γ = 1 is already undecidable [9], and only very restricted subclasses are known to ensure
decidability [8, 7].

A line of work, which we follow, is to consider unary PAs [6, 22], where the alphabet has
a single letter. That is, there is a unique strategy, and the model is essentially a Markov
chain. Surprisingly, the ‘simple’ problem of whether there exists a finite number of steps
after which the probability to be in Goal is higher than the threshold γ ∈ (0, 1) is open
and has recently been shown [3] to be as hard as the so-called Skolem’s problem, which is a
long-standing open problem on linear recurrence sequences [14, 12, 16]. One way to tackle
the problem is to approximate it, asking whether for all ε there exists a number of steps
nε after which the probability to be in Goal is at least γ − ε. The decidability and precise
complexity of this problem has been explored in [6]. A more general approximation scheme,
valid for much more general questions which can be expressed in some LTL logic, has also
been tackled by generating a regular language of approximated behaviors [1].

In this paper, we study classes for which the language of exact behaviors is (ω-)regular,
allowing for the exact resolution of any regular question (e. g. checking any LTLI formula
[1, 2]). We define the trajectory from a given initial distribution as an (infinite) word over
the alphabet {A,B}. The nth letter of a trajectory being A (for Above, respectively, B for
Below) represents that after n steps the probability to be in Goal is greater than or equal to
(respectively lesser than) the threshold γ. Further, we consider the language of a unary PA
as the set of trajectories (words) ranging over a (possibly infinite) set of initial distributions.
Thus, we can answer questions such as: does there exist a trajectory from the set of initial
distributions satisfying a regular property or do all trajectories satisfy it. We can also tackle
more complicated questions such as robustness wrt. a given initial distribution δinit: does a
regular property hold for all initial distributions “around” δinit.

As motivation, consider a population of yeast under osmotic stress [15]. The stress
level of the population can be studied through a protein which can be marked (by a
chemical reagent). For the sake of illustration, consider the following simplistic model
of a Markov Chain Myeast with the protein being in 3 different discrete states (namely
the concentration of the protein being high (state 1), medium (state 2) and low (state
3)). The transition matrix, also denoted Myeast, gives the proportion of yeast moving
from one protein concentration level to another one, in one time step (say, 15 seconds).

Myeast =

0.8 0.1 0.2
0.1 0.8 0.1
0.1 0.1 0.7


For instance, 20% of the yeast with low protein con-
centration will have high protein concentration at the
next time step. The marker can be observed optically
when the concentration of the protein is high. We know
that the original proportion of yeast in state 1 is 1/3
(by counting the marked yeast population), but we are
unsure of the mix between low and medium. The initial set of distributions is thus
Inityeast = {(1/3, x, 2/3 − x) | 0 ≤ x ≤ 2/3}. The language of Myeast will tell us how
the population evolves wrt the number of marked yeast being above or below the threshold
γyeast = 5/12, depending on the initial distribution in Inityeast. Now, suppose an experiment
with yeasts reveals that there are at first less than 5/12 of marked yeast (i.e. with high
concentration of proteins), then more than 5/12 of marked yeast, and eventually less than
5/12 of marked yeasts. That is, the trajectory is B for a while, then A for a while, then it
stabilises at B. Let us call this property as (Pyeast) (note that this is a regular property).
We are interested in checking whether our simplistic model exhibits at least one trajectory
with the property (Pyeast), and if yes, the range of initial values generating trajectories with
this property.
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Property of eigenvalues of Markov chain Regular language Ultimately periodic traj.

Distinct, positive real numbers X (Thm.4) X (from below)
Distinct, roots of real numbers × (Thm.10) X (Prop.1)
Distinct × (from above) × ([2], Thm.3)

Table 1 A summary of the results in this paper.

Our contributions as depicted in table 1 are the following: if the eigenvalues of the
transition (row-stochastic) matrix associated with the unary PA are distinct roots of real
numbers, then any trajectory from a given initial distribution is ultimately periodic. This is
tight, in the sense that, there are examples of trajectories which are not ultimately periodic
even for unary PAs with 3 states [2, 22] (with some eigenvalue not root of any real number).
Our main result is that if, further, the eigenvalues are distinct positive real numbers, then the
language generated by a unary PA starting from a convex polytope of initial distributions is
effectively regular. Surprisingly, this result is also tight: there exist unary PA with eigenvalues
being distinct roots of real numbers (starting from a convex initial set) which generate a
non-regular language, as we show in Section 6. Due to space constraints, we only present the
main ideas in this paper. Full proofs and details can be found in the technical report at [4].

The proof of our main regularity result is surprisingly hard to obtain. First, for each
trajectory ρ, one obtains easily a number of steps nρ after which the trajectory is constant.
However, there is in general no bound on nρ uniform over all ρ in the language. Thus, while
every trajectory is simple to describe, the language turns out to be in general much more
complex. We prove that the language does have a representation as a finite union of languages
of the form wAiA∗B∗A∗B∗A∗ · · ·B∗Aω with a bounded number of alternations. Our method
computes effectively the language ofMyeast, asMyeast has positive real eigenvalues, answering
the question whether there exists an initial trajectory s.t. property (Pyeast) holds.

2 Preliminaries and definitions

I Definition 1. A Probabilistic Automaton (PA) A is a tuple (Q,Σ, (Mσ)σ∈Σ, Goal), where
Q is a finite set of states, Σ is a finite alphabet, Goal ⊆ Q, and Mσ is the |Q|× |Q| transition
stochastic matrix for each letter σ ∈ Σ. The PA is called unary PA (uPA for short) if |Σ| = 1.

For a unary PA A on alphabet {σ}, there is a unique transition matrix M = Mσ of
Q×Q with value in [0, 1]. For all x ∈ Q, we have

∑
y∈QM(x, y) = 1. In other words, M is

the Markov chain on set of states Q associated with A.
A distribution δ over Q is a function δ : Q→ [0, 1] such that

∑
q∈Q δ(q) = 1. Given M as-

sociated with a uPA, we denote byMδ the distribution given byMδ(q) =
∑
q′∈Q δ(q′)M(q′, q)

for all q ∈ Q. Notice that, considering δ and Mδ as row-vectors, this corresponds to per-
forming the matrix multiplication. That is, we consider M as a transformer of probabilities,
as in [11, 1]: (Mδ)(q) represents exactly the probability to be in q after applying M once,
knowing that the initial distribution is δ. Inductively, (Mnδ)(q) represents the probability to
be in q after applying n times M , knowing that the initial distribution is δ. We now review
literature relating several problems on uPA with the Skolem’s problem, named after the
Skolem-Mahler-Lech Theorem [12],[14].

2.1 Relation with the Skolem problem
We start by defining three basic problems which have been studied extensively in different
contexts. Given an initial distribution δ0 and a uPA A with Matrix M , target states Goal
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and threshold γ:
Existence problem: does there exist n ∈ N such that the probability to be in Goal after
n iterations of M from δ0 is γ (i.e.,

∑
q∈Goal(Mnδ0)(q) = γ) ?

Positivity problem: for all n ∈ N is the probability to be in Goal after n iterations of M
from δ0 at least γ (i.e.,

∑
q∈Goal(Mnδ0)(q) ≥ γ)?

Ultimate Positivity problem: does there exist n ∈ N s.t., for all m ≥ n, the probability
to be in Goal after m iterations of M from δ0 is at least γ (i.e.,

∑
q∈Goal(Mmδ0)(q) ≥ γ)?

Note that all these problems are defined from a fix initial distribution δ0. These problems
for PAs are specific instances of problems over general recurrence sequences, that have been
extensively studied [16, 10]. It turns out that the existence for the special PA case is as hard
as the existence (Skolem) problem over general recurrence sequences as shown in [3].
I Theorem 1. [3, 10] For general unary PAs, the existence and positivity are as hard as
the Skolem’s problem.

The positivity result comes from the interreducibility of Skolem’s problem and the
positivity problem for general recurrence sequences [10]. The decidability of Skolem has
been open for 40 years, and it has been shown that solving positivity, ultimate positivity or
existence for general uPAs even for a small number of states (<50, depending on the problem
considered) would entail major breakthroughs in diophantine approximations [18].

2.2 Simple unary PAs
In order to obtain decidability, we will consider restrictions over the matrix M associated
with the uPA. The first restriction, fairly standard, is that M has distinct eigenvalues, which
makes M diagonalizable.
I Definition 2. A stochastic matrix is simple if all its eigenvalues are distinct. A uPA is
simple if its associated transition matrix is.

Some decidability results [19, 17] have been proved in the case of distinct eigenvalues for
variants of the Skolem, which implies the following for simple uPAs:
I Theorem 2. For simple unary PAs, ultimate positivity is decidable [19].

For simple unary PAs with at most 9 states, positivity is decidable [17].
We will consider the simple uPA restriction. Notice that the decidability restrictions in

Theorem 2 for these two closely related problems have led to two different papers [17],[19] in
the same conference, using different techniques. As we want to answer in a uniform way any
regular question (subsuming among others the above three problems and regular properties
such as (Pyeast)) for uPAs of all sizes, we will later impose more restrictions. We start
with the simple well-known observation that a simple unary PA has a unique stationary
distribution.

I Lemma 1. Let M be a simple stochastic matrix. Then there exists a unique distribution
δstat such that Mδstat = δstat.

Proof. We give a sketch of proof here. We will later get an analytical explanation of this
result. We have Mδ = δ iff (M −Id)δ = 0. AsM is diagonalizable and 1 is a eigenvalue of M
of multiplicity 1, we have Ker(M − Id) is of dimension 1. The intersection of distributions
and of Ker(M − Id) is of dimension 0, that is, it is a single point. J

As usual with PAs, we consider the probability to be in the set of states Goal, that
is
∑
q∈Goal(Mnδ)(q). We consider only one threshold γ, for simplicity. In fact, the case
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of multiple thresholds reduces to this case, since the behavior is non-trivial for only one
threshold, namely γstat =

∑
q∈Goal δstat(q) (see [4] for details).

2.3 Trajectories and ultimate periodicity
We want to know whether the nth distribution Mnδ of the trajectory starting in distribution
δ ∈ Init is above the hyperplane defined by

∑
q∈Goal xq = γ, i.e., whether

∑
q∈Goal[Mnδ](q) ≥

γ. We will write ρδ(n) = A (Above) for
∑
q∈Goal[Mnδ](q) ≥ γ, and ρδ(n) = B (Below) else.

I Definition 3. The trajectory ρδ = ρ0ρ1 · · · ∈ {A,B}ω from a distribution δ is the infinite
word with ρn = ρδ(n) for all n ∈ N.

We write the eigenvalues of M as p0, . . . , pk with ||pi|| ≥ ||pj || for all i < j. Notice that
k + 1 = |Q| the number of states (as the uPA is simple). It is a standard result that all
eigenvalues of Markov chains have modulus at most 1, and at least one eigenvalue is 1. We fix
p0 = 1. Now, as M is simple, it is also diagonalizable. Thus, there exists ai(δ) ∈ C (see [4]
for further details) such that:

(1) ρδ(n) = A iff
k∑
i=0

ai(δ)pni ≥ γ

In the following, we denote uδ(n) =
∑k
i=0 ai(δ)pni for all n ∈ N. If ρδ is (effectively)

ultimately periodic (i.e, of the form uvω), every (omega) regular property, such as existence,
positivity and ultimate positivity is decidable (and are in fact easy to check). Unfortunately,
this is not always the case, even for small simple unary PAs.
I Theorem 3. [2] There exists an initial distribution δ0 and simple unary PA A with 3
states, and coefficients and threshold in Q, such that ρδ0 is not ultimately periodic.

Proof Sketch. The unary PA is given by: Goal = {1} is the first state, γ = 1
3 and the

associated matrix M0 and initial distribution δ0 are:

M0 =

0.6 0.1 0.3
0.3 0.6 0.1
0.1 0.3 0.6

 and δ0 =

 1
4
1
4
1
2


The reason the trajectory is not ultimately periodic follows from the fact that the

eigenvalues of M0 are 1, r0e
iθ0 and r0e

−iθ0 with r0 =
√

19/10 and θ0 = cos−1(4/
√

19). J

An easy way to obtain ultimately periodic trajectories is to restrict to eigenvalues v which
are roots of real numbers, that is, there exists n ∈ N \ {0} with vn ∈ R.
I Proposition 1. Let A be a simple unary PA with eigenvalues (pi)i≤m all roots of real
numbers. Then ρδ is ultimately periodic for all distributions δ. The (ultimate) period of ρδ
can be chosen as any m ∈ N \ {0} such that pmi is a positive real number for all i ≤ m.

Now, for a finite state (Büchi) automaton B over the alphabet {A,B}, the membership
problem, of whether a given single trajectory ρδ ∈ L(B), is decidable. As it is easy to obtain
a (small) automaton B for each of the existence, positivity and ultimate positivity problem
such that this problem is true iff ρδ ∈ L(B), we obtain:
I Proposition 2. Let A be a simple unary PA with eigenvalues all roots of real numbers.
Let δ0 be a distribution. Then the existence, positivity and ultimate positivity problems
from initial distribution δ0 are decidable.
Note that Propositions 1 and 2 hold even when the matrix associated with the PA is
diagonalizable, but not necessarily simple.
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3 Language of a unary PA

Using automata-based methods allows us to consider more complex problems, where the
initial distribution is not fixed. We define the set Init of initial distributions as a convex
polytope, that is the convex hull of a finite number of distributions.
I Definition 4. The language of a unary PA A wrt. the set of initial distributions Init is
L(Init,A) = {ρδ | δ ∈ Init} ⊆ {A,B}ω.
Note that A and B, and the language, depend on the threshold γ. As we assumed this
threshold value to be fixed, the language only depends on A and Init. As A is often clear
from the context, we will often write L(Init) instead of L(Init,A). For the yeast example
M = Myeast, we have eigenvalues 1; 0.7; 0.6:

M ·

5/12
1/3
1/4

 = 1

5/12
1/3
1/4

 ; M ·

 5/12
−5/12

0

 = 0.7

 5/12
−5/12

0

 ; M ·

 5/12
0

−5/12

 = 0.6

 5/12
0

−5/12


We can decompose two initial distributions δ1, δ2 ∈ Inityeast on the eigenvector basis:

 1/3
1/4
5/12

 =

5/12
1/3
1/4

+ 1
5

 5/12
−5/12

0

− 2
5

 5/12
0

−5/12

 ;

1/3
1/3
1/3

 =

5/12
1/3
1/4

− 1
5

 5/12
0

−5/12


Projecting on the first component, we have ρδ1(n) = A iff 1

120.7n − 1
60.6n ≥ 0, that is

ρδ1 = B4Aω. Also, ρδ2(n) = A iff − 1
120.6n ≥ 0, that is ρδ2 = Bω. With the techniques

developed in the following, we can prove more generally that, for all n ∈ N, we can find an ε
s.t., δ = (1/3 1/3−ε 1/3+ε)T has trajectory ρδ = BnAω, and that L(Inityeast) = B∗Aω∪Bω.
Thus, property (Pyeast), from Introduction, does not hold for every initial distribution.

In general, if L(Init,A) is regular, then any regular question will be decidable. For
instance, if L(Init,A) is regular, then it is decidable whether there exists δ0 ∈ Init such that
the existence problem is true for A, δ0. One can also ask whether for a given convex polytope
Q, some property (such as positivity) expressed e.g. with LTLI [1] is true. Taking δ in the
interior of Q, this corresponds to checking the robustness of the property around δ.

Clearly, simple PA A does not ensure the regularity of L(Init,A) because of Theorem 3
(by choosing Init = {δ0} which is a convex polytope). Surprisingly, restricting eigenvalues to
be distinct and roots of real numbers does not ensure regularity either (see Section 6). In
the following, we thus take a stronger restriction: we assume that the eigenvalues of M are
distinct and positive real numbers. That is, p0 = 1 > p1 > · · · > pk ≥ 0 with k + 1 = |Q| the
number of states. From Proposition 1, we obtain as corollary that for all δ0, we have either
ρδ0 = wAω or ρδ0 = wBω for w a finite word of {A,B}∗:

I Corollary 2. Let M be a simple (or just diagonalizable) stochastic matrix with positive real
eigenvalues. Then every trajectory ρδ0 is ultimately constant.

However, the language L(Inityeast,Myeast) shows that L(Init,A) is not always of the simple
form

⋃
w∈WA

wAω ∪
⋃
w∈WB

wBω, for WA,WB two finite sets of finite words over {A,B}∗.
Nevertheless, in the next two sections, we succeed in proving the regularity of L(Init,A),
which is our main result:
I Theorem 4. Let A be a unary PA with distinct positive real eigenvalues, and Init be a
convex polytope of (initial) distributions. Then, L(Init,A) is effectively regular.
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p = (1/3, 0, 2/3)

q = (1/3, 1/3, 1/3) a1(q) = 0

r = (1/3, 5/12, 1/4)
a2(r) = 0

s = (1/3, 1/3, 0)

e a1(e) > 0

f
a1(f) < 0

g

a1(g) = 0

h

a1(h) = 0 t

a1(t) = 0

Figure 1 Breaking into convex polytopes with constant signs

Note that the hypotheses of Theorem 4 are decidable for A with rational coefficients.
Indeed, it suffices to use linear algebra to compute the eigenvalues and vectors, and check
whether their complex part is null. Further the proof carries through even when the matrix
of A is diagonalizable (though we tackle just the simple case here). We also show that this
result is tight, i.e., relaxing the hypothesis any further leads to non-regularity (see Section 6).

3.1 Partition of the set Init of initial distributions

Recall that we write uδ(n) :=
∑k
i=0 ai(δ)pni , where ai(δ) are given by Equation (1) from the

previous section. Because the eigenvalues are real numbers, ai(δ) is a real number for every i
and δ. Notice that ai is a linear function in δ, that is, ai(αδ1 +βδ2) = αai(δ1) +βai(δ2). The
trajectory ρδ depends crucially on the sign of a0(δ), and if a0(δ) = 0, on the sign of a1(δ),
etc. First, let Li = {δ | a0(δ) = · · · = ai(δ) = 0}. This is a vector space (i.e., it is in Rk
and contains the space of distributions over Q), as for any ν1, ν2 ∈ Rk, we have ν1, ν2 ∈ Li
implies that any linear combination αδ1 + βδ2 ∈ Li (since ai(ν) is linear in ν, and the kernel
of a linear function is a vector space).

We will divide the space of distributions into a finite set H of convex polytopes H ∈ H
to keep the sign of each ai constant on each polytope. Each H ∈ H satisfies that for all
e, f ∈ H, for all i ≤ k, we have ai(e), ai(f) do not have different signs (either one is 0, or
both are positive or both are negative). This can be done since ai(ν) is continuous (as it is
linear). This is pictorially represented in the left of Figure 1. For instance, we divide Inityeast
into three polytopes: {(1/3, y, 2/3− y) | y ≤ 1/3} and {(1/3, y, 2/3− y) | 1/3 ≤ y ≤ 5/12}
and {(1/3, y, 2/3 − y) | y ≥ 5/12} as for δ = (1/3, 1/3, 1/3) we have a0(δ) = 1, a1(δ) = 0
(and a2(δ) = −1/5) and for δ = (1/3, 5/12, 1/4) we have a0(δ) = 1, a1(δ) = −1/5, a2(δ) = 0.

In general, we can assume that each of H ∈ H is the convex hull of k + 2 points (else
we divide further: this can be done as the space has dimension k + 1). Consider the right
part of Figure 1. Let Init be the convex hull of points e, f, g, h (in three dimensions) and
a0(x) = 0 and a2(x) > 0 for all x ∈ {e, f, g, h, t}. Hence the sign of each trajectory ultimately
depends upon a1(x). In the example, a1(g) = a1(h) = 0 while a1(e) > 0 > a1(f). Then there
is a point t between e and f for which a1(t) = 0 (in fact, t = |a1(f)|/(|a1(e)|+ |a1(f)|)e+
|a1(e)|/(|a1(e)|+ |a1(f)|)f). We have L1 ∩ Init is the convex hull of h, g, t. We break Init
into two convex polytopes, the convex hull of h, g, t, e and the convex hull of h, g, t, f .

Let H ∈ H. We let P be the finite set of (at most k + 2) extremities of H. In particular,
H is the convex hull of P . Now it suffices to show that the language L(H) (taking H as the
initial set of distributions) of each of these convex polytopes H is regular to prove that the
language L(Init) =

⋃
H∈H L(H) is regular.
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3.2 High level description of the proof
The proof of the regularity of the language L(H) starting from the convex polytope H is
performed as follows. We first prove that there exists a Nmax such that the ultimate language
(after Nmax steps) of H is effectively regular using analytical techniques.
I Definition 5. Given Nmax, the ultimate language from a convex polytope H is defined as
LNmaxult (H) = {v | ∃w ∈ {A,B}Nmax , wv ∈ L(H)}.

In the next section (Corollary 6), we show that this ultimate language LNmaxult (H) is
regular, of the form A∗B∗ · · ·B∗Aω ∪ A∗B∗ · · ·A∗Bω with a bounded number of switches
between A and B’s. However, while for each prefix w ∈ {A,B}Nmax , the set Hw of initial
distributions in H whose trajectory starts with w is a convex polytope; the language L(Hw)
from Hw can be complex to represent. It is not in general wLNmaxult (H), but a strict subset.

In Section 5 (Lemma 9), we prove that the language L(H ′) associated with some carefully
defined convex polytope H ′ ⊆ H is a regular language, of the form

⋃
w∈W wAiA∗B∗ · · ·

B∗Aω ∪ wAiA∗B∗ · · ·A∗Bω for a finite set W . Further, removing H ′ from H gives rise to
a finite number of convex polytopes with a smaller number of “sign-changes”, as formally
defined in the next section. Hence we can apply the arguments inductively (requiring
potentially to change the Nmax considered). Finally, the union of these languages gives the
desired regularity characterization for L(H).

4 Ultimate Language

4.1 Limited number of switches.
We first show that the ultimate language LNmaxult (H) is included into A∗B∗A∗ · · ·A∗Bω ∪
A∗B∗A∗ · · ·B∗Aω for some Nmax ∈ N, with a limited number of switches between A and B
depending on properties of the set P of extremities of H.

We start by considering the generalisation of a sequence uδ to a function over positive
reals, and we will abuse the notation uδ to denote both the sequence and the real function.
I Definition 6. A function of type k ∈ N is a function of the form u : R>0 → R, with

u(x) =
k∑
j=0

αjp
x
j , where p0 > · · · > pk > 0.

Now, let u : R≥0 → R be a continuous function. We can associate with function u the
(infinite) word L(u) ∈ {A,B}ω, L(u) = (a0a1 . . .), where for all n ∈ N, an is defined as
an = A if u(n) ≥ 0 and an = B otherwise. We have easily that ρδ = L(uδ). Knowing the
zeros of uδ and its sign before and after the zeros, defines uniquely the trajectory ρδ.

For example, let u be such that it has four zeros: u(N−0.04) = u(N+10.3) = u(N+20) =
u(N + 35) = 0 for some integer N . Assume that u(0) < 0, u(N + 1) > 0, u(N + 11) <
0, u(N + 30) < 0 and u(N + 40) > 0. Thus, by continuity of u, u is strictly negative on
[0, N − 1], strictly positive on [N,N + 10], non-positive on [N + 11, N + 34] and non-negative
on [N + 35,∞). Thus the associated trajectory ρδ = BNA11B24Aω.

Hence, it is important to analyze the zeros of functions uδ. If the number of zeros is
bounded, then the number of alternations between A’s and B’s in any trajectory ρδ from
δ ∈ H will be bounded. In fact, it is a standard result (which we do not use hence do
not reprove here) that every type k function u has at most k zeros. We now show a more
precise bound on the number of zeros. Namely, for the convex hull H ′ of a finite set P ′ of
distributions in H, the number of alternations between A’s and B’s in H ′ is limited by the
number of alternations of the sign of the dominant coefficients of the distributions in P ′.
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Let z ∈ N. For i ∈ {0, . . . , z}, let ui(x) := ai0p
x
0 + ai1p

x
1 + · · ·+ aikp

x
k, with p0 > p1 > p2 >

. . . > pk > 0, representing for instance the functions associated with the z + 1 extremities
of H ′. We denote dom(ui) the dominant coefficient of ui, that is the smallest integer
j with aij 6= 0. We reorder (ui)i∈{0,...,z} such that dom(ui) ≤ dom(ui+1) for all i < z.
We denote sign_dom(ui) ∈ {+1,−1} as the sign of dom(ui). We will assume, as for H,
that for all i, i′, j, aij and ai

′

j have the same sign. We let Z(u0, · · · , uz) = |{i ≤ z − 1 |
sign_dom(ui) 6= sign_dom(ui+1)}|. That is, Z(u0, · · · , uz) is the number of switches of sign
between the dominant terms of ui and ui+1. We have 0 ≤ Z(u0, · · · , uz) ≤ z. Notice that
as for dom(ui) = dom(uj), we have sign_dom(ui) = sign_dom(uj), Z(u0, · · · , uz) does not
depend upon the choice in the ordering of (ui)i∈{0,...,z}. We can now give a bound on the
number of zeros of functions which are convex combinations of u0 · · ·uz.

I Lemma 3. Let u0 · · ·uz be z + 1 type k functions. There exists a Nmax ∈ N such that for
all λi ∈ [0, 1] with

∑
i λi = 1, denoting u(x) =

∑z
i=0 λiu

i(x), u(x) has at most Z(u0, · · · , uz)
zeros after Nmax. Further, if u(x) has exactly Z(u0, · · · , uz) zeros after Nmax, then its sign
changes exactly Z(u0, · · · , uz) times (that is, no zero is a local maximum/minimum).

In other words, we show that u(x) behaves like a polynomial of degree Z(u0, · · · , uz) (as it
has Z(u0, · · · , uz) dominating terms), although it has degree k > Z(u0, · · · , uz). In fact, we
prove that for ` = dom(ui), the coefficients aijpxj for all j > ` play a negligible role wrt. ai`px` .

Let H ∈ H, and P its finite set of extremal points. We can apply Lemma 3 to u0, . . . , uz,
the functions associated with the points of P (in decreasing order of dominating coefficient),
and obtain a Nmax. Now, since P is finite, the trajectories from P are ultimately constant,
hence there exists Ny such that for all i ≤ y, the trajectory of ui is wAω or wBω for some
w ∈ {A,B}Ny . We define NH to be the maximum of Ny and Nmax. With this bound on the
number of zeros, we deduce the following inclusion for the ultimate language LNHult (H):

I Corollary 4. Let y = Z(u0, . . . , uz). The ultimate language LNHult (H) ⊆ C∗1 · · ·C∗y−1C
ω
y ∪

C∗1 · · ·C∗y−1C
ω
y−1 for {Ci, Ci+1} = {A,B} for all i < y; and Cy = A iff sign_dom(u0) is

positive.

We can have 4 different sequences for C∗1 · · ·C∗y−1C
ω
y with {Ci, Ci+1} = {A,B}, depending

on the first and last letters C1, Cy (or equivalently, Cy and parity of y which determines C1).
The proof of our main result on regularity of L(H) will proceed by induction over the

switching-dimension Z(H) of H which we define as Z(H) = Z(u0, . . . , uz). Notice that
we could define the switching dimension for any convex set (not necessarily a polytope)
whenever the sign of ai(δ) does not change within the convex set. Finally, we also define
sign_dom(H) = sign_dom(u0).

4.2 Characterization of the Ultimate Language.
We now show that the ultimate language of H is exactly LNHult (H) = A∗B∗A∗ · · ·A∗Bω ∪
A∗B∗A∗ · · ·B∗Aω, with at most Z(H) switches of signs. We will state the associated technical
Lemma 5 in the more general settings of “faces” as defined below, as it will be useful in the
next section. Let P be the finite set of extremal points of a H. We call (f0, . . . , fy) ⊆ P

a face of H if Z(v0, . . . , vy) = y = Z(H) for the functions (v0, . . . , vy) associated with the
extremal points (f0, . . . , fy). Notice that denoting H ′ the convex hull of F , we can choose
NH′ = NH (which is not the case for H ′ an arbitrary polytope included into H).

I Lemma 5. Given a face (f0, . . . , fy) ⊆ P of H with associated functions vi, we have,
for all n1, n2, . . . , ny ∈ N there exist λi ∈ [0, 1] with

∑
i λi = 1, such that denoting ṽ(x) =∑y

i=1 λiv
i(x), L(ṽ) = wAn1Bn2 . . . BnyAω (for y even) for some prefix w ∈ {A,B}NH .
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That is, for all n1, · · ·ny, one can find a prefix w of size NH and a point δ in the convex hull
of e1, · · · ey, such that ρδ = wAn1Bn2 · · ·BnyAω (assuming the correct parity of y). Let H ′
be the convex hull of f0, . . . , fy. Hence Z(H ′) = Z(H). Then, the ultimate language of H ′
(i.e., the language after prefixes of size NH associated with y) contains A∗B∗ . . . B∗Aω with
y switches between A and B, which is the converse of Corollary 4. We can thus deduce the
following about the ultimate language:

I Corollary 6. LNHult (H) = LNHult (H ′) = C∗1C
∗
2 . . . C

∗
yA

ω ∪ C∗1C∗2 . . . C∗y−1B
ω with

{Ci, Ci+1} = {A,B}.

Proof. We first prove the result for LNHult (H ′). We can apply lemma 5 to H ′ and lemma
3 to H ′. We obtain the first part of the union. Now, let H ′′ ⊆ H ′ be the convex hull of
e1, · · · , ey (that is excluding e0). Each point δ in H ′ \H ′′ has a trajectory which ends with
Aω, as dom(uδ) = dom(v1), and thus sign_dom(uδ) = sign_dom(v1) by construction of H
(and H ′ ⊆ H). Thus the points with trajectory ending with Bω are in H ′′, and applying
lemma 3, we know that their ultimate trajectory has at most y − 1 switches. Applying
lemma 5 to H ′′, we obtain the second hand of the union. Now, LNHult (H ′) ⊆ LNHult (H), and
LNHult (H) ⊆ C∗1C∗2 . . . C∗yAω ∪ C∗1C∗2 . . . C∗y−1B

ω by Corollary 4. J

However, we cannot immediately conclude that L(H) is regular. Though NH is finite,
computable and there are a finite number of prefixes w of size NH , we need to show that
the subset of LNHult (H) appearing after a given w ∈ {A,B}NH is (effectively) regular. This is
what we do formally in the following section.

5 Regularity of the Language

Let {e0, · · · , ez} = P the extremal points of H. Let up the function associated with each
ep ∈ P . We denote y = Z(H) = Z((up)p≤z). We will show the regularity of L(H) using an
induction on Z(H).

For Z(H) = 0, the regularity of L(H) is trivial as all the dominant coefficients have
the same sign. Thus, by Corollary 4, the ultimate language is LNHult (H) = Aω and then
the language is L(H) =

⋃
w∈W wAω; or the ultimate language is LNHult (H) = Bω and the

language is L(H) =
⋃
w∈W wBω, for a finite set of W ⊆ {A,B}NH .

For w ∈ {A,B}NH , consider Hw = {δ ∈ H | ρδ = wv}, i.e., the language of words which
begin with the prefix w. It is easy to see that Hw ⊆ H is a polytope. Hence Z(Hw) ≤ Z(H).
Observe that L(H) =

⋃
w∈{A,B}NH L(Hw). To show the regularity of L(H), we show the

regularity of L(Hw) for each of the finitely many w ∈ {A,B}NH . For each w ∈ {A,B}NH ,
we have two cases: either Z(Hw) < Z(H); then we apply the induction hypothesis and we
are done. Or else, Z(Hw) = Z(H) = y. In this case, the sketch of proof is as follows:

We show that there exists J such that for all i ≤ y and all j ≥ J , we have a point hij in Hw

with trajectory wCj1C2C3 · · ·Ci−1C
ω
i . This is shown by applying lemma 5 to each face

(f0, . . . , fy) of H and then using convexity arguments and the fact that Z(Hw) = Z(H).
Subsequently, denoting H ′ the convex hull of h0

J · · ·h
y
J , we will deduce that L(H ′) is a

regular language of the form wCJ1 C
∗
1C
∗
2C
∗
3 · · ·C∗i−1C

ω
i ,

Partitioning Hw \H ′ into a finite set of polytopes, we obtain polytopes of lower switching-
dimensions, which have regular languages by induction.
We conclude since the finite union of these regular languages is a regular language, namely
L(Hw).
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We now formalize the above proof sketch in a sequence of lemmas, whose details can be
found in [4]. For all faces F of H, applying Lemma 5 gives for all j ∈ N, a point gj(F ) of
the convex hull of F with trajectory wjCj1C2C3 · · ·Cωy , for some wj ∈ {A,B}NH . We now
prove that (gj) converges towards fy, the point of F with lowest dominant term.

I Lemma 7. For every face F = (f0, . . . , fy) of H, (gj(F ))j∈N converges towards fy as j
tends to infinity.

For all j, we consider F (y, j) the convex hull of {gj(F ) | F is a face of H}. Every point of
F (y, j) has trajectory w′Cj1C2C3 · · ·Cωy for some w′ ∈ {A,B}NH . We then show by convexity
that H2 intersects F (y, j), i.e., it has a point with trajectory w′Cj1C2C3 . . . C

ω
y .

I Lemma 8. For w ∈ {A,B}NH with Z(Hw) = Z(H), there exists J s.t. for all j > J ,
F (y, j) ∩Hw 6= ∅.

Similarly, for all i ≤ y we can define a polytope F (i, j). All the points in F (i, j) have
trajectory w′Cj1C2C3 · · ·Cωi for some w′ ∈ {A,B}NH . We can find a Ji and a point hij ∈ Hw

with trajectory wCj1C2C3 · · ·Cωi for all i ≤ y and all j > Ji. Now, as the number of i ≤ y is
bounded, one can find such a J uniform over all i ≤ y (by taking maximum over all i).

Consider F (J) the convex hull of F (0, J), . . . , F (y, J). By convexity, all the points in
F (J) have their n-th letters of trajectory as C1 for all n ∈ [NH + 1 · · ·NH + J ], since
this is true for all points of F (i, J). Hence, the language of Hw ∩ F (J) is included into
wCJ1 C

∗
1C
∗
2 · · ·Cωy ∪ wCJ1 C∗1C∗2 · · ·Cωy−1, because of the bound on the number of alternations

after NH of trajectories from points of H (Lemma 3). We show now that we have equality.

I Lemma 9. The language of the convex hull of {h0
J , . . . , h

y
J} is exactly

wCJ1 C
∗
1C
∗
2C
∗
3 · · ·C∗y−1C

ω
y ∪ wCJ1 C∗1C∗2C∗3 · · ·C∗y−2C

ω
y−1.

Hence the language of Hw ∩ F (J) is wCi1C∗1 · · ·Cωy ∪ wCi1C∗1 · · ·Cωy−1.
Next, we note that the set Hw \ F (J) may not be convex. However, one can partition

Hw \ F (J) into a finite number of convex polytopes. Now, let G be a convex polytope in
Hw \ F (J). We want to show that Z(G) < Z(Hw) = Z(H) = y. Indeed, else, one could
apply Lemma 8 to Gw = G and for some J ′ obtain F (i, j) ∩ G 6= ∅ for any j > J ′, which
contradicts G being a convex set in Hw \ F (J).

Hence one can compute the language of every G inductively, and each of them is regular.
Finally, this leads to the regularity of L(Hw) by finite union, and to the regularity of L(H),
and again by finite union to the regularity of L(Init). This concludes our proof of the main
regularity result, i.e., Theorem 4.

6 Non-regularity of the symbolic dynamics

In this section, we will prove that symbolic dynamics of uPA can produce non-regular
languages even when eigenvalues of the transition matrix are distinct roots of real numbers.
We prove this by constructing such a uPA and choosing the set of initial distributions carefully.
Consider a uPA A1 with 7 states q1, . . . q7, Goal = {q7}, and the following transition matrix:

M1 =



0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
1

512
8r+3
512

3+3r
64

13+16r
128

9+2r
32

1+4r
16

1−r
2
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where r = cos(π/8) =
√√

2+2
2 . Eigenvalues of M1 are 1, 1

2e
±iπ/2, 1

2
√

2e
±i3π/4 and 1

4e
±i7π/8,

which are distinct roots of real numbers. We choose γ =
∑
q∈Goal δstat(q) = δstat(q7) =

512
65(17+8cos(π8 )) (for any other choice of γ, the language is regular).

Let δ be the initial distribution and Mn
1 δ be the distribution after n steps of M1. We

consider a basis of eigenvectors such that the eigenvector corresponding to eigenvalue 1 is
the stationary distribution and the remaining eigenvectors are normalized such that the 7th
component (corresponding to the Goal state) of each of them is 1. This is possible as the
7th component of each eigenvector of M1 is non-zero. Now, by eigenvalue decomposition:

Mn
1 δ(7) = µ0+ µ1

2n (eniπ/2+e−niπ/2)+ µ2

(2
√

2)n
(
en3iπ/4 + e−n3iπ/4

)
+ µ3

4n (en7iπ/8+e−n7iπ/8)

where µ0 = γ and δ written in the eigenvector basis is (1, µ1, µ1, µ2, µ2, µ3, µ3).
Consider the initial set of distributions Init to be the line segment (P1, P2) where

P1 = (1, a, a, b, b, c, c) and P2 = (1, 0, 0, b, b, c, c) in the eigenvector basis, where a = cos(3π/8)
246
√

2 ,
b = 1

220 , c = 1
211cos(3π/8) . These values are chosen so that µ0 dominates over the other terms

in the above equation, which ensures that P1 and P2 correspond to valid distributions in
the standard basis. Note that Init is the set of convex combinations of distributions P1 and
P2. Now, we can show our main theorem of this section.

I Theorem 10. L(Init,A1) is not regular.

Proof sketch. Let L = L(Init,A1). For x, y, z, k ∈ N, we define Lkx,y,z = {w ∈ Σω |
∃w′ ∈ L, ∀i ∈ N, w′k(i−1)+x = w3(i−1)+1, w

′
k(i−1)+y = w3(i−1)+2, w

′
k(i−1)+z = w3(i−1)+3}.

That is, for every a1a2a3 . . . ∈ L, axayazak+xak+yak+z . . . ∈ Lkx,y,z where x, y, z ≤ k. It
is easy to see that if Lkx,y,z is non-regular, so is L. Now we can show that L16

2,3,4 =
{(ABB)2(AAB)y+g(µ1,µ2,µ3)(BAB)y(BAA)w : y ≥ 0}. As the range of y is [1,∞) and
g(µ1, µ2, µ3) is a bounded function, hence L16

2,3,4 is not regular. Thus, L is not regular which
completes the proof. J

7 Conclusion

Though unary Probabilistic Automata (or Markov Chains) are a simple formalism, there are
still many basic problems, whose decidability is open and thought to be very hard. Indeed,
it is surprising yet significant that even after assuming strong hypotheses, their behaviors
cannot be described easily. In this paper, we proposed a class of unary probabilistic automata,
for which all properties of some logic, e.g. LTLI are decidable even considering an infinite
set of initial distributions. This allows for instance to check for the robustness of the behavior
wrt. a given property (e.g. positivity) for behaviors around a given initial distribution.
Further, while we proved our results with respect to a single hyperplane (above is A, below is
B), we can generalize these to more general settings as well. Finally, we showed that relaxing
the assumptions immediately leads to non-regularity.
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