Blaise Genest

Doron Peled

Sven Schewe

Knowledge = observation + memory + computation

We compare three notions of knowledge in concurrent system: memoryless knowledge, knowledge of perfect recall, and causal knowledge. Memoryless knowledge is based only on the current state of a process, knowledge of perfect recall can take into account the local history of a process, and causal knowledge depends on the causal past of a process, which comprises the information a process can obtain when all processes exchange the information they have when performing joint transitions. We compare these notions in terms of knowledge strength, number of bits required to store this information, and the complexity of checking if a given process has a given knowledge. We show that all three notions of knowledge can be implemented using finite memory. Causal knowledge proves to be strictly more powerful than knowledge with perfect recall, which in turn proves to be strictly more powerful than memoryless knowledge. We show that keeping track of causal knowledge is cheaper than keeping track of knowledge of perfect recall.

Introduction

Knowledge represents the information that processes can have about each other and, consequently, about the state of the entire system. In concurrency theory, there are multiple definitions of knowledge based on the specification of the system, a limited view of the other processes, and some information related to the observed history [START_REF] Van Der Meyden | Common Knowledge and Update in Finite Environment[END_REF]. We study three types of knowledge for concurrent systems. According to the first type, memoryless knowledge, a process knows everything consistent with all executions that end in its current local state. For the second type, knowledge of perfect recall [START_REF] Fagin | Reasoning About Knowledge[END_REF][START_REF] Van Der Meyden | Common Knowledge and Update in Finite Environment[END_REF][START_REF] Van Der Meyden | Model Checking Knowledge and Time in Systems with Perfect Recall[END_REF], a process knows everything consistent with all executions that share the same local history visible to this process. We define a third type of knowledge, causal knowledge, where a process knows everything consistent with all executions that have the same past, where the past of a process includes the past of other processes up to their last joint transition.

We are interested in the implementation of different kinds of knowledge as a transformation of the system under consideration. The transformation can use additional variables in order to collect information about history, and also to pass this information from process to process as part of the scheduled system synchronization. In particular, such a transformation can keep information related to the observable history in order to obtain additional knowledge. This transformation cannot change the values of the original variables of the program (including program counters) or the enabledness condition of the transitions (operations) of the system. Thus, the executions of the original system are projections of the executions of the transformed system; only further information is collected in new variables. The different kinds of knowledge become memoryless knowledge after the transformation, which stores all information required in the processes' local states.

This transformation can be used to monitor the global behavior of a system by local processes. For example we may use it to control the system to force it to satisfy some global property by blocking transitions based on knowledge [START_REF] Basu | Priority scheduling of distributed systems based on model checking[END_REF][START_REF] Graf | Monitoring Distributed Systems Using Knowledge[END_REF][START_REF] Ricker | Know means no: Incorporating knowledge into discrete-event control systems[END_REF]. Another application is to perform some run time checking that a process satisfies some global properties when reaching particular local states.

Our study differs from the classical question of model-checking knowledge [START_REF] Van Der Meyden | Common Knowledge and Update in Finite Environment[END_REF], as it does not attempt to provide algorithms for checking the knowledge of processes. Instead, we are interested in providing the run-time support to use knowledge. In particular we are interested in the implementing algorithms and their complexity. When comparing the commonly used memoryless knowledge and knowledge of perfect recall [START_REF] Basu | Priority scheduling of distributed systems based on model checking[END_REF][START_REF] Van Der Meyden | Common Knowledge and Update in Finite Environment[END_REF], there is a tradeoff between the amount of knowledge available to processes and the complexity of maintaining it. We can know more properties under perfect recall, but have to maintain some history related information for that. Quite surprisingly, the new definition of causal knowledge both improves our knowledge and reduces the time and space complexity required when compared to knowledge of perfect recall. The price to pay for this is increased communication: processes have to update each other, through communication, when performing joint transitions in order to achieve this type of knowledge. We show that implementing the third kind of knowledge, knowledge based on causality, can be obtained using a construction based on the "gossip" automata of Mukund and Sohoni [START_REF] Mukund | Keeping Track of the Latest Gossip in a Distributed System[END_REF], related to the Zielonka construction [START_REF] Zielonka | Notes on finite asynchronous automata[END_REF][START_REF] Genest | Constructing Exponential-size Deterministic Zielonka Automata[END_REF][START_REF] Genest | Optimal Zielonka-like Construction[END_REF].

We establish complexity results for implementing the different types of knowledge. In particular, we show that causal knowledge requires less memory, thanks to the sharing of information during communication. It is, however, interesting to note the stark difference in cost between implementing causal knowledge and knowledge of perfect recall: communication does not only improve knowledge, it also saves resources.

Transition systems

Definition 1. A transition system is a tuple Tr = P, V, L v , T, L t , S, s 0 , R where P is a finite set of processes. V is a finite set of Boolean variables. L v : V → P is a mapping from variables to processes, such that each variable v is local to the process L v (p). Let V p = {x | L v (x) ∈ p} (the set of variables of process p). T is a finite set of transitions, where each transition τ ∈ T has an enabling condition en τ ⊆ 2 V , which is a propositional property, and a transformation

f τ : 2 V → 2 V
over the set of variables. The enabledness condition and transformation have some constraints as described below. L t : T → 2 P maps each transition to the set of processes that execute it. The transition is executed synchronously by the processes in L t (τ). Let var(τ) = p∈Lt(τ) V p . Then only the variables var(τ) can be used in en τ , and f τ can use and change only these variables. S ⊆ 2 V is a finite set of states, where each state of Tr is a possible assignments of values to the variables of V . s 0 ∈ S is the initial state. R ⊆ S × S is a relation over S. We have (s, s) ∈ R exactly when there exists some transition τ ∈ T such that s |= en τ and s = f τ (s). We say that τ can be executed (is enabled) from s, producing s .

For some future constructions, it will be convenient to assume at times that the system is first executing some initial ("mythological") transition , shared by all the processes, i.e., L t () = P , ending up with the initial state s 0 (starting with some ("mythological") initial state s -1).

We assume that S is the set of states reachable from s 0 , such that the global state space S and the global transition relation R over S are defined by the other components.

The size |Tr| of a transition system Tr is the number |P | of processes plus the number |V | of variables plus the number |T | of transitions.

We define a local state s| p as the projection of global state s ∈ S on the local variables V p of process p. For a set of processes P ⊆ P , the semi-local state s| P is the projection of s to the variables in p∈P V p . In particular, we have s| P = s. Definition 2. A history of a transition system Tr is an alternating sequence h = s 0 τ 1 s 1 τ 2 s 2 . . . s n of states and transitions such that, for each i ≥ 0, s i |= en τi+1 and s i+1 = f τi+1 (s i). We denote by last(h) the last state s n of h, and last p (h) = last(h)| p .

A state s is reachable if s = last(h) for some history h. Note that it is PSPACEcomplete to check whether a state is reachable in a transition system [START_REF] Meyer | The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space[END_REF]. As the initial state is unique and the effect of transitions is deterministic, we sometimes use only the sequence of transitions τ 1 τ 2 τ 3 . . . to denote a history or execution s 0 τ 1 s 1 τ 2 s 2 τ 3 s 3 . . . of a transition system.

Notions of knowledge

In order to avoid using a specific logical formalism, we define state properties abstractly: Definition 3. A (state) property ϕ of a transition system Tr is a subset of its states. That is, ϕ ⊆ S. A state s satisfies ϕ, denoted s |= ϕ, if s ∈ ϕ. An history h satisfies ϕ,

denoted h |= ϕ, if last(h) ∈ ϕ.
Note that properties can be defined compactly, using, for example, propositional logic. In order to define a general notion of knowledge of state properties, the different kinds of knowledge are abstracted as information available to a process. In order to define different kinds of knowledge, we define an equivalence relation between histories. Let Γ represent a type of knowledge. (The types of knowledge that we consider will be presented later.) Definition 4. Let ≡ Γ p be an equivalence relation between histories with respect to process p ∈ P in a transition system Tr. Process p in a transition system Tr knows a state property ϕ after history h, according to knowledge type Γ , denoted h |= K Γ p ϕ, if, for each history h such h ≡ Γ p h , last(h) |= ϕ. We study three types of knowledge: memoryless, perfect recall, and causal knowledge. Accordingly, Γ is ML, PR and C , respectively. Definition 5. We say that the knowledge type Γ is deeper1 than knowledge type Γ , denoted Γ £ Γ , if, for each history h, process p and property ϕ, h

|= K Γ p ϕ implies h |= K Γ p ϕ. If Γ £ Γ , but Γ £Γ , then we call Γ strictly deeper than Γ , denoted Γ Γ .
A simple observation that follows immediately from the above definition can be used to show that one kind of knowledge is deeper than another: Observation 1 Let Γ and Γ be two notions of knowledge with ≡ Γ p ⊆≡ Γ p for each p. Then Γ £ Γ .

Memoryless knowledge. This is a conservative version of knowledge, where a property ϕ is known if it holds in all the states with the same local state of process p. That is,

h ≡ ML p h if last p (h) = last p (h).
Knowledge of perfect recall. In the epistemic community, knowledge of perfect recall [START_REF] Fagin | Reasoning About Knowledge[END_REF][START_REF] Van Der Meyden | Common Knowledge and Update in Finite Environment[END_REF][START_REF] Van Der Meyden | Model Checking Knowledge and Time in Systems with Perfect Recall[END_REF] refers to the ability of process p to use local observation to distinguish between different histories. We can define, in fact, multiple different versions of knowledge of perfect recall: PR(l) A process can view (and recall) its local states along the executions (this is the version that is used in [START_REF] Van Der Meyden | Common Knowledge and Update in Finite Environment[END_REF]). PR(t) A process can view the occurrences of transitions in which it participates. PR(lt) A process can view both the local state and the executed transition. PR(ct) A process can, when executing a transition, view the combined local state of the processes involved in this transition.

We choose PR = PR(lt) as our canonical definition of knowledge of perfect recall. The observations in this case are sequences of p-events, as defined below. Definition 6. A p-event is a pair τ, r , where τ ∈ T , p ∈ L t (τ), and r is a local state of p. A p-event is obtained from a history by taking a transition τ that is executed and involves the process p and the local state just after its execution. We define the sequence of p-events of a history h, Ev p (h), inductively. For h = s 0 , Ev p (s 0) = , the empty word. Let h = h τ s (that is, h extends h with a transition τ , leading to state s). Now, if p ∈ L t (τ), then Ev p (h) = Ev p (h) τ, s| p , and otherwise Ev p (h) = Ev p (h).

For instance, for p ∈ L t (τ), p / ∈ L t (τ), and h = s 0 τ s τ t τ r, we have Ev p (h) = τ, s| p τ, r| p . Definition 7. Knowledge of perfect recall is based on the equivalence

≡ PR p such that h ≡ PR p h exactly when Ev p (h) = Ev p (h).
Similarly, PR(t) is defined based on the projection of Ev p (h) on its first components, while PR(l) is defined based on the projection of Ev p (h) on its second components. Also, PR(ct) is defined based on a sequence of extended events of the form τ, s| L(τ) , using the respective semi-local states (rather than the local states) in Ev p (h).

In the example above, this would be Ev

p (h) = τ, s| Lt(τ) τ, r| Lt(τ) .
Notice that the sequence Ev p can grow arbitrarily as the history grows. However, it has been shown [START_REF] Van Der Meyden | Model Checking Knowledge and Time in Systems with Perfect Recall[END_REF][START_REF] Basu | Priority scheduling of distributed systems based on model checking[END_REF] that a bounded implementation of PR(l) is possible. We will give a uniform implementations for all versions of PR in the next section. We now compare ML and the different definitions of PR.

Lemma 1. Knowledge of perfect recall is strictly deeper than memoryless knowledge. More precisely, P R(ct) P R(lt) P R(l) ML and P R(lt) P R(t). However, P R(t) is incomparable (with respect to £) with ML and with P R(l). {2}, because, under P R(ct), P 2 knows after executing the joint c transition that P 1 is in (the sink) state 2. At the same time, h |= {2}, and under P R(lt), P 2 sees the same sequence of P 2 -events:

Ev P R(lt) P2 (h) = Ev P R(lt) P2 (h). Thus, h |= K P R(lt) P2
{2}. "P R(t) vs. P R(l)": Consider the histories h = ad and h = bc for the transition system from Figure 1. Obviously, h |= {2} and h |= K P R(t) P2 {2}, because, under P R(t), P 2 knows after executing the joint d transition that P 1 is in (the sink) state 2. At the same time, h |= {2}, but, under P R(l), P 2 sees the same sequence of P 2 -events:

Ev P R(l) P2 (h) = Ev P R(l) P2 (h). Thus, h |= K P R(l) P2
{2}. This also implies strictness for "P R(lt) vs. P R(l)" and implies that ML is not deeper than P R(t). "P R(l) vs. ML": We consider the histories h = ε and h = bc for the transition system from Figure 1. Obviously, h |= {0, 1, 2, 3} and h |= K P R(l) P2 {0, 1, 2, 3}, because, under P R(l), P 2 knows after h that it has not taken part in any transition, and 4 is only reachable upon taking a c transition. At the same time,

v 1 b2 b1 v 2 ,v 3 v 2 b2 a a b1 v 2 ,v 3 v 1 v
h |= {0, 1, 2, 3}, but last(h)| P2 = last(h)| P2 . Thus, h |= K ML P2 {0, 1, 2, 3}
. "ML vs. P R(t)": To show that P R(t) is not deeper than ML, and thus not deeper than P R(l) and P R(lt), we consider the transition system from Figure 2. Consider the histories h = b and h = ab. Obviously, h |= {v 1 } and h |= {v 1 }. Under P R(t), P 1 sees the same sequence of P 1 -events for h, h :

Ev P R(t) P1 (h) = Ev P R(t) P1 (h). Thus, h |= K P R(t) P1 {v 1 }. However, last(h)| P1 = {v 1 }, hence h |= K ML P1 {v 1 } holds.
Notice that P R(t) is deeper than P R(l) when, for all processes p and all transitions τ , the p-local state after the transition τ only depends on the p-local state before τ . In this case, the history of local states can be retrieved from the history of transitions. This is, for example, the case for products of finite state systems.

Causal knowledge. This notion is related to partial order semantics [START_REF] Mazurkiewicz | Concurrent program schemes and their interpretation[END_REF], and has been used informally in distributed games [START_REF] Gastin | Distributed Games with Causal Memory Are Decidable for Series-Parallel Systems[END_REF][START_REF] Madhusudan | The MSO Theory of Connectedly Communicating Processes[END_REF][START_REF] Genest | Asynchronous Games over Tree Architectures[END_REF]. However, as far as we know, it has not been used in an epistemic framework before. The assumption is that processes may exchange information each time they perform a joint transition.

We first define the chain of transitions that can affect the view of a process p in a given history. The exact ordering of transitions is not necessarily known to p, hence the information function is represented as a partial order. We now define the partial order associated with a history. -E = {e 0 , e 1 , . . . , e m } is the set of occurences of events in h. For instance, for three processes p, q, and r and three transitions a, b, and c with L t (a) = p, L t (b) = q, L t (c) = {p, r}, we have P O p (abc) = P O p (acb) = {e a , e b , e c }, ≺, λ with λ(e x) = x for all x ∈ {a, b, c} and e a ≺ e c . Process p sees transitions in the past (for ≺) of the last transition on p. Definition 9. The causal view Ca p (h) of process p in history h includes all the occurrences of events that precede its last occurrence according to the partial order

-λ : E → T labels λ(e i) = t i , -≺⊆ E × E
P O(h) = E, ≺ λ . If e is the latest occurrence of h that involves p, then let E = {e ∈ E|e e}. Then, Ca p (h) = E , ≺ ∩E × E , λ| E . The equivalence ≡ C p on histories, used to define causal knowledge, is based on h ≡ C p h iff Ca p (h) = Ca p (h).
Lemma 2. Causal knowledge is strictly deeper than knowledge of perfect recall.

Proof (Sketch). We first prove Ca £ P R(ct). By Lemma 1, this implies Ca £ P R for all version of P R. Although the causal view Ca p (h) of a process p in a history h is a partial order, it contains, according to Definition 9, in particular, all the occurrences of transitions of p. The occurrences of transitions in which p participates are totally ordered by ≺ in the causal view. Given the unique mythological event and the causal view, one can also construct the p-events corresponding to the occurrences in E and, in particular, the occurrences in which p participates. To do this, one can complete the partial order ≺ into some total order that contains it, and start to calculate the global state after each occurrence, taking the relevant component of p for transitions involving this process. Although the global states generated in this way are not necessarily the ones appearing in h, one can show by induction over the length of the constructed sequence that the p-events are the same. This is the case, because occurrences of h that are not in E do not affect the values of occurrences in E. Moreover, by the disjointness of the variables for each process, the order of occurrences not in E can be commuted with occurrences in E to appear at the end, without affecting the value of the p local states.

To show that causal knowledge is strictly deeper than knowledge of perfect recall, we consider the histories h = ab and h = b in the transitions system from Figure 3.

Obviously, h |= {1} holds. Further, h |= K Ca P3 {1}: the partial order P O(h) associated with h is the total order {e 1 , e 2 }, λ(e 1) = a, λ(e 2) = b, e 1 < e 2 } , and we have Ca P 3 (h) = P O(h). That is, Process P 3 knows that P 1 is in 1.

At the same time, h |= {1}, but, under P R(ct), P 3 sees the same sequence of P 3 -events:

Ev P R(ct) P3 (h) = Ev P R(ct) P3 (h). Thus, h |= K P R(ct) P3 {1}.
Notice that the third process in the proof is necessary, because, for two process and P R(ct), each process learns the global state of the transition system when executing a joint transition. Ca and P R(lt) can be separated using the transition system with two processes from Figure 1. This indeed follows from the proof that P R(lt) is not deeper than P R(ct).

Application of knowledge

Knowledge can be applied to control systems by blocking some transitions. The more is known about a transition system, the less restrictive the control needs to be. Consider the system with three processes arb, p, p from Figure 4. Process p needs to access a critical section twice, and process p needs to access it once. Process arb helps process p, p to access the critical section in a mutually exclusive way.

Processes p and p can try to enter the critical section using an e and e transition, respectively, which they share with the arbiter, and leave it using the shared l and l transition, respectively. The effect of transition e (resp. e) depends on the state of the arbiter. If arb has given permission to the other process to enter the critical section, and not yet received the respective 'leave' transition, transition e does not change the state. In Figure 4, e is therefore split into e 1 (the case where p progresses) and e 2 (the case where p stays in its previous state). Similarly, e is split into e 1 and e 2 .

Process p can also ignore the arbiter, and progress using an i transition. Without control, the system is too permissive. For example, it allows for the history h = e i (with h |= c ∧ c), where first p enters the critical section through the e transition, followed by p entering the critical section. However, the following control can be written easily using knowledge: If K p (f), then allow the 'ignore' transition i. Else, disallow it. Clearly, this only allows p to ignore the arbiter if no future conflict is possible, as p will remain in this sink state and does no longer compete for entering the critical section. Now we compare different notions of knowledge. With memoryless knowledge, just looking at its local state, process p will never be able to ignore the arbiter, using i.

e2 c e2 c e1, i e1, i l, i l, i e ′ 2 c ′ f ′ e ′ 1 l ′ e1, e ′ 2 l, l ′ e2, e ′ 1 l l ′ e1 e ′ 1
With perfect recall, consider the following history: h = e el e. After this history, process p knows under P R that p had been in the critical section when it first requested entry, but has left it meanwhile. It thus knows that f holds henceforth, and p can make use of i, ignoring the arbiter.

With causal recall, Process p can make even more use of i. Consider the history h = e l e.

With perfect recall, p cannot distinguish it from h = e, and can make no use of i. With causal recall, the knowledge of the arbiter that p is in its sink state (such that f holds henceforth) is transferred to p through the shared transition e. It thus knows that f holds henceforth, and p can make use of i, ignoring the arbiter.

Implementation of knowledge using bounded memory

The notions of knowledge discussed in this paper are quite abstract: they represent some mathematical definition based on the observation that the processes can have. These observations are not directly implemented by the processes. Except for theoretical reasoning about programs, knowledge can be used in order to control the program [START_REF] Graf | Monitoring Distributed Systems Using Knowledge[END_REF]. If the processes need to use such observations so that they can act based on their knowledge, they necessarily need to store the observation and act on it. If the observation information is stored and available to a process, it can decide, based on some precalculated knowledge table, to restrict its behavior accordingly.

The definitions of knowledge of perfect recall and knowledge with causal memory are based on unbounded observations. We are interested in transforming the transition system for these two kinds of knowledge, such that only a bounded amount of information is needed. The transformation will add variables and augment the transitions in such a way, that one can control the system based on the knowledge through a precalculated table. In essence, such transformations convert the original system into a new system, where the knowledge can be observed by a process from its most recent local state. We provide complexity measures for both the transformations.

Implementation of memoryless knowledge

The implementation of memoryless knowledge of a process is simple, as the observation that is used consists only of the local state of the process. To decide the current knowledge regarding a property ϕ from a p-local state s p , we recall that p knows that ϕ holds if, and only if, for all reachable states s with s| p = s p , s |= ϕ holds. It therefore suffices to check the existence of a global state s with s| p = s p and s |= ϕ. This is a simple reachability problem. An implementation of memoryless knowledge may or may not use an offline precomputation.

Implementing Knowledge of Perfect Recall

We describe the transformation of knowledge for all version of perfect recall. The transformation was already known for P R(l) [START_REF] Van Der Meyden | Model Checking Knowledge and Time in Systems with Perfect Recall[END_REF][START_REF] Basu | Priority scheduling of distributed systems based on model checking[END_REF]. The idea of the construction is that each process p can consult a global automaton, representing the transformation of the entire system. A process p is only aware of the occurrences of its own transitions. Hence, upon an occurrence of a transition τ with p ∈ L t (τ), the automaton moves according to τ . However, process p is not aware of further moves of transitions not involving p. Thus, the actual global state of the system can further change through the firing of any sequence of such transitions. A subset construction can be used to encode the possible global states that can be reached without being distinguished by p after a transition τ .

Definition 10. Let S, s 0 , T, δ be a global automaton for the system Tr. Recall the notation δ * (S, ρ) that stands for the usual extension of δ from a single state and a single transition into a set of states and a finite (possibly empty) sequences of transitions. Let, for a process p, -T p = {τ ∈ T | p ∈ L t (τ)} be the set of transtitions executed by p (possibly joined by other processes) and -I p = T T p be the set of transitions that do not involve p.

Then we construct a deterministic automaton D p = 2 S , S 0 , p-events, δ p such that

-S 0 = {δ * ({s 0 }, ρ) | ρ ∈ I p * }, -δ p (S , τ, r) = ρ∈I * p δ * ({s | ∃s ∈ S . δ(s, τ) = s ∧ s | p = r}, ρ). D p reads a sequence τ ∈ T p
* of p-events. Its state reflects, in which global state the system can be at a point in time, where process p has seen a sequence of p-events. Lemma 3. For a given transition system Tr with automaton S, s 0 , T, δ , a process p ∈ P , and a sequence h ∈ T * , we have that s ∈ δ p * S 0 , Ev p (h) if, and only if, there is a sequence h with Ev p (h) = Ev p (h) such that s ∈ δ * (s 0 , h).

This can be shown by induction over the length of Ev p (h).

For each property ϕ, we equip D p with an acceptance mechanism to obtain D ϕ p = 2 S , S 0 , p-events, δ p , F ϕ , where the set of final states is:

F ϕ = {S ⊆ S | ∀s ∈ S . s |= ϕ}.
For D ϕ p , Lemma 3 provides the following corollary. Corollary 1. For a given transition system Tr with automaton S, s 0 , T, δ , a process p ∈ P , and a sequence h ∈ T * , we have that Ev p (h) is accepted by

D ϕ p iff h |= K PR p ϕ.
Thus, D ϕ p can be used to check whether or not process p knows ϕ. The complexity of this construction is quite high: as a subset automaton, D ϕ p can have 2 |S| states. However, subset automata like D ϕ p can be represented succinctly, such that the representation of a state requires 'only' S bits. As S can be exponential in the number of variables, this translates to O(2 2 |V |) states, where each state is represented by O(2 |V |) bits.

Consequently, we can transform Tr by including, for each process p, an implementation of the automaton D ϕ p . This may require |S| additional variables to represent the state of D ϕ p , which will be variables local to p. They have no influence on the enabledness of transitions.

These new variables intuitively reflect the subset of the states, in which the system might be in, or, likewise, the set of assignments to its variables consistent with the sequence of p-events observed. This representation can be improved: the valuation of the p-local variables V p is already given by the p-local state, and storing this information again would be redundant. Thus, O(2 |V Vp|) variables are sufficient to represent the additional information.

The above construction implements the PR = PR(lt) knowledge. Similarly, we can implement the other notions of knowledge of perfect recall:

PR(t) D ϕ p = 2 S , S 0 , T p , δ p , F ϕ , δ p (S , τ) = ρ∈I * p δ * ({s | ∃s ∈ S . δ(s, τ) = s }, ρ). PR(l) D ϕ p = 2 S , S 0 , S| p , δ p , F ϕ , δ p (S , r) = ρ∈I * p δ * ({s | ∃s ∈ S . ∃τ ∈ T p δ(s, τ)| p = r}, ρ). PR(ct) D ϕ p = 2 S , S 0 , p-events, δ p , F ϕ , δ p (S , τ, r) = ρ∈I * p δ * ({s | ∃s ∈ S . δ(s, τ) = s ∧ s | Lt(τ) = r}, ρ).
(Note that the p-events for PR(ct) and PR(lt) are different.)

Lower bound on the transformations for Perfect Recall

We show that the exponential memory blow-up for implementing PR is unavoidable.

Theorem 2. There exists a family of systems (Tr n) n∈N with 2 processes {1, 2}, one variable with n + 3 valuations (or equivalently log 2 n + 3 binary variables), four transitions, and n + 3 states and a family of assertion ϕ n such that knowing with PR whether ϕ n holds requires 2 n memory states.

Notice that using |V | binary variables, a counter up to 2 |V | can be encoded. Hence, Theorem 2 proves that one needs at least 2 |V | -3 bits of memory to implement PR, even when the description size of Tr n is polynomial in |V |. For convenience, we use a variable with domain {-2, -1, 0, . . . , n} instead of encoding the values in binary. Process 2 is shown in Figure 5.

The proof uses the well-known family (L n) n∈N = {w ∈ {a, b} * | w = uav and |v| = n} of regular languages, accepted by a non-deterministic automaton with n + 2 states but not by any deterministic automaton with less than 2 n states.

Proof. The systems are defined as follows:

there is only one variable v, it is on process 2, and its domain is {-2, -1, 0, . . . , n}.

Its initial value is -2. there are three transitions, {a, b, c}, with L t (a) = L t (b) = {1, 2} and L t (c) = {2}.

transitions a, b are enabled in a state v iff v < n.

a leads from -2 and -1 to -1, b leads from -2 and -1 to -2, such that the states -1 and -2 distinguish if the last transition seen has been an a (which is the case in -1 but not in -2), c is only enabled if v = -1 and updates the valuation of v to 0, and finally, for 0 ≤ v < n, transitions a, b increment the value of v by 1.

The state property ϕ n is v = n. Let H n be the set of histories h such that the suffix of h is bw with the number of a, b in w is n (w can have 0 or one c). We have that ∀h ∈ H n , last(h) |= ϕ n . The reason is that after a c, there are at most n letters a, b. Now, writing h = ubw, there cannot be a c in u, as there are n + 1 transition at least being done afterwards. That is, ub reached state -2. Now, it means that the first letter of w is not a c, and thus it is an a or a b. In any case, if c happens in w, there will be strictly less than n letters after it, and thus the valuation v = n cannot be reached.

Notice now that h ∈ H n iff Ev 1 (h) = ubw with w ∈ {a, b} n (process 1 has a unique state as it has no variable, hence we do not indicate it in the p-events). Thus for all h such that Ev 1 (h) = Ev 1 (h), we have h ∈ H n . Thus process 1 knows ϕ n after any h ∈ H n using P R.

Assume by contradiction that there is an implementation of PR with less than 2 n memory states. Process 1 has no variables, such that its memory is updated only based on the sequence Ev 1 (h). As there are less than 2 n states, there exists 2 histories

u 1 • • • u n = u 1 • • • u n ∈ {a,
= u 1 • • • u n a n-i and h = u 1 • • • u i cu i+1 • • • u n a n-i .
Clearly, h ∈ H n , and thus process 1 knows ϕ n after h using PR. However, the memory state after histories h, h are the same, as a same sequence of 1-event is seen from state s. However, last(h) = (v = n) |= ϕ n , hence 1 does not know ϕ n after h using this implementation. A contradiction.

Implementation of Causal Knowledge

In order to provide a finite representation for causal knowledge we will adapt a construction by Mukund and Sohoni [START_REF] Mukund | Keeping Track of the Latest Gossip in a Distributed System[END_REF] for gossip automata.

Recall Definition 8 of a partial order P O(h) = E, λ, ≺ associated with a history h and the causal view of a process p in h (Definition 9). We use the following notation:

-Recall that last p (h) ∈ 2 Vp is the p-state reached by h (or equivalently by P O(h)), -latest p (h) = max ≺ {e ∈ E | p ∈ L t (λ(e))} . This is the most recent occurrence of an event in h that is executed by p, and therefore the last occurrence of an event in Ca p (h). Notice that the p-state reached on Ca p (h) is also last p (h), -latest p←q (h) = max ≺ {e ∈ E | q ∈ L t (λ(e)) and e ≺ latest p (E)}. This is the most recent occurrence on q that precedes (or is the same as) the most recent occurrence of p. We denote by last p←q (h) the q-state reached on Ca p (h), which corresponds to the q-state reached by latest p←q (h).

The set R p (h) = (last p←q (h)) q∈P is the global state reached by Ca p (h). We can define the associated equivalence relation:

Definition 11. h ≈ p h iff R p (h) = R p (h).
We can define a knowledge R based on this ≈ p . It is immediately clear that Ca £ R, since ≡ C p refines ≈ p . In fact, we have equality:

Lemma 4. R is as deep as Ca.

Proof. (Sketch) It is enough to show that for every history h, {last(h

) | Ca p (h = Ca p (h)} = {last(h) | R p (h) = R p (h)}. We have trivially {h | Ca p (h) = Ca p (h)} ⊆ {h | R p (h) = R p (h)} for every history h. Hence it suffices to prove that {last(h)|R p (h) = R p (h)} ⊆ {last(h)|Ca p (h) = Ca p (h)} for every history h. Let h such that R p (h) = R p (h).
We thus have that the global state reached by Ca p (h) is the same as the global state reached by Ca p (h). By definition of Ca p (h), h can be obtained from Ca p (h) by performing a sequence w of occurrences not on p. Now, consider doing this sequence w of occurrences from Ca p (h). It is possible as the global states reached by Ca p (h) and by Ca p (h) is the same. Hence we obtain a history h = Ca p (h) w. Because the system is deterministic from a global state, last(h) = last(h) holds. We conclude by remarking that Ca p (h) = Ca p (hw) = Ca p (h). This means that, for p, keeping last p←q (h) for all q is enough to implement Ca p . Keeping this information is, however, not totally straightforward. Indeed, when performing transition a, all processes q involved in that transition a will have a value for last q←r (h) for all process r just before performing a. First, we have last p←r (ha) = last q←r (ha) for all p, q ∈ L t (a) and all process r: each process will update the value in the same way. Let state be the tuple (last s←s (h)) s∈Lt(a) aggregating all the latest s-state from all processes s involved in a. It is easy to see that, if r ∈ L t (a) is involved in a, then last q←r (ha) = δ(state, a) r . That is, it suffices to deterministically perform a from state and take the r-component. Now, the difficulties appear for r / ∈ L t (a), that is, if r is not involved in the transition. Then, it is easy to see that, for all q ∈ L t (a) involved in a (for which we need to update their state), last q←r (ha) = last s←r (ha) for some process s ∈ L t (a). The question is, which one of all the process s ∈ L t (a) has the freshest information about r. If we know this, then every process p can keep accurately last p←r (h) for all r and implement Ca p by the previous lemma.

It turns out that knowing which process among a set Q has the freshest information about any other process r is exactly what the gossip transformation of [START_REF] Mukund | Keeping Track of the Latest Gossip in a Distributed System[END_REF] does.

Knowledge additional bits of information on-the-fly complexity with precomputation memoryless 1. Complexity of checking knowledge Roughly speaking, the gossip transformation keeps a partial ordering regarding not only the occurrences latest p←q but also the occurrence latest p←q←r (called the tertiary information), which corresponds to the latest occurrence on r before latest p←q . Comparing these partial orders from every process p ∈ L t (a) involved in the transition a, one can determine who has the latest information on r for every process r [START_REF] Mukund | Keeping Track of the Latest Gossip in a Distributed System[END_REF]. As the number of processes is linear, the number of occurrences of the tertiary information is polynomial.

0 PSPACE(|V |) O(|Vp|) perfect recall 2 |V | EXPTIME(|V |) O(|V | • 2 |V |) causal |P | 2 log(|P |) log(|Tr|) + |V | PSPACE(|V |) O(|V |) Table
Keeping the partial order about occurrences of the tertiary information therefore only requires a polynomial number of bits. Notice that [START_REF] Krishnan | Optimizing the gossip automaton[END_REF] (see also [START_REF] Zielonka | Notes on finite asynchronous automata[END_REF][START_REF] Diekert | The Book of Traces[END_REF] for the original timestamping) gives a construction that uses only O(P 2 log P) bits of memory.

We thus augment the program (the transitions, in our case) with variables that will implement the gossip automata construction, as well as the state last p←q for each process q. That is, the number of bits we need to implement Ca p is O(|V | + P 2 log P).

There are again two alternative ways to check for a particular knowledge:

With offline precomputation: We precalculate a table that, for each state = (last p←q) q∈P , tells whether every global state which can be reached from state by performing only occurrences not on p models ϕ. If it is the case, then s |= K C p ϕ holds. This can be held in a table of O(2 n) entries. The complexity to check on the fly using the table whether state satisfies the property can then be done in PTIME. Online construction: If the table is not calculated in advance, we need to perform a search for a global state not satisfying ϕ and reachable from state using only occurrences not on p. This may takes exponential time (or, alternatively, PSPACE).

The various complexity results we obtained are summed up in Table 1.

Conclusions

Knowledge is the foundation for reasoning about the correctness of concurrent systems. It is a prerequisite for enforcing some global coordination with minimal synchronization. While the most basic notion of knowledge, which only depends on the current local state, is essentially an invariant (given the current local state of a process, the global state satisfies some property), knowledge can also be defined based on the observable history: 'knowledge of perfect recall' takes the local observable history of a process into account [START_REF] Fagin | Reasoning About Knowledge[END_REF]. We add another notion of knowledge, one that allows not only to memorize local history, but also to update it through communication. We provide a corresponding new definition of knowledge, based on causality. Knowledge has proven to be useful for the construction of control in concurrent systems [START_REF] Basu | Priority scheduling of distributed systems based on model checking[END_REF][START_REF] Graf | Monitoring Distributed Systems Using Knowledge[END_REF][START_REF] Ricker | Know means no: Incorporating knowledge into discrete-event control systems[END_REF]: based on the knowledge calculation, the system can be controlled to satisfy additional imposed global properties. Such constructions are monotonic in the sense that they preserve the knowledge calculated before control was added. When memoryless knowledge is not sufficient, one may need to use constructions that exploit perfect recall or causal knowledge. The view we take in this paper is that using knowledge in this context amounts to a simple transformation of the system. Specifically, the construction we provide here for causal knowledge can be used for supporting such a control construction. It is interesting to observe that causal knowledge is cheaper than knowledge of perfect recall, both in terms of bits to remember and in terms of time complexity. Moreover, causal knowledge is stronger: it refines the knowledge available under perfect recall. However, the transformation, which is required for causal knowledge, is based on the ability to exchange information while performing a joint transition (by the observed or controlled system). If this is not allowed, one may revert to the weaker control through knowledge of perfect recall, where the controller may need to keep an expensive progress table that represents the reachable global states.

 p ∈ P . Now, ≡ PR(l) p keeps the sequence of states of p, and in particular the last one. Hence h ≡ PR(l) p h implies last p (h) = last p (h), hence the relation ≡ PR(l) p refines ≡ ML p . We now show that the implications are strict. "P R(ct) vs. P R(lt)": To show strictness, we consider the histories h = ac and h = bc for the transition system from Figure 1. Obviously, h |= {2} and h |= K P R(ct) P2

Fig. 1 .

 1 Fig. 1. Local state space of two Processes: P1 (left) with a variable that can take 5 values {0, 1, 2, 3, 4} and P2 without variable. Transitions c, d are joint between P1 and P2.

Fig. 2 .

 2 Fig. 2. The bottom left shows the global state space for two Processes P1 (top left) and P2 (right), with VP 1 = {v1} and VP 2 = {v2, v3}. Boolean variables represented in the states are those with value true. Transition a is local to P2. It toggles the value of the variable v3. Transition b is joint between P1 and P2. It first assigns v1 the value of v3 and then sets v2 and v3 to false.Both transitions are enabled if, and only if, v2 is true. Initially, v2 and v3 are set to true and v1 is set to false. Thus, the effect of b on the each process depends on the state of the other process. To reflect this, the action b is graphically 'split' into b1 and b2 in the graphic representation of the processes. Note, however, that b1 and b2 refer to the same action, b.

Definition 8 .Fig. 3 .

 83 Fig. 3. Processes P1 with a boolean variable (left), P2 (middle) and P3 (right) without variables

Fig. 4 .

 4 Fig. 4. Three Processes: p (top), p (bottom left), and arb (bottom right). Only some local boolean variables are represented: c and c (set to 1 for p and p in critical section, respectively), and f set to 1 for p has finished. The remaining variables are omitted. Effect of the transitions e (resp. e) on process p (resp. p) depends on the arbiter state. It is therefore split into e1, e2 (resp. e 1 , e 2).

Fig. 5 .

 5 Fig. 5. Process 2 from the proof of Theorem 2.

 b} * leading to the same state s of the implementation. Let u i = u i , let say u i = b and u i = a. Now, let us consider the histories h

 is the smallest partial order relation (i.e., transitive, reflexive and asymmetric relation) satisfying the following: if e, e ∈ E with L t (λ(e))∩L

t (λ(e)) = ∅ and e appearing before e in h then e ≺ e .

 Online only. The reachability problem can be solved in time |Tr| • 2 O(|V |) (or in PSPACE) by constructing all reachable states ending with the observed local state. With an offline precomputation. Alternatively, for each p-local state, one can first compute the reachable states with this p-local state in a preprocessing step. One can then save this knowledge with respect to p-local states in a binary tree with 2 |Vp| entries. Accessing this tree at runtime only takes time linear in the number of variables local to p, that is, time O(|V p |). The offline construction of the tree during the preprocessing step can be done in time |Tr| • 2 O(|V |) .

The work of the second author was partly supported by ISF grant 126-12 "Practical Synthesis of Control for Distributed Systems", and partly done while invited professor in University of Rennes 1

We use the term "deeper" instead of "stronger", as the latter is associated with an implication of the opposite direction: in logic, ϕ is stronger than ϕ when ϕ → ϕ .