
HAL Id: hal-01245016
https://hal.science/hal-01245016

Submitted on 16 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Knowledge = Observation + Memory + Computation
Blaise Genest, Doron Peled, Sven Schewe

To cite this version:
Blaise Genest, Doron Peled, Sven Schewe. Knowledge = Observation + Memory + Computation.
FoSSaCS 2015, 2015, London, United Kingdom. pp.215-229, �10.1007/978-3-662-46678-0_14�. �hal-
01245016�

https://hal.science/hal-01245016
https://hal.archives-ouvertes.fr

Knowledge = observation + memory + computation?

Blaise Genest1, Doron Peled2, and Sven Schewe3

1CNRS, IRISA, Rennes, France
2Bar Ilan University, Israel

3University of Liverpool, UK

Abstract. We compare three notions of knowledge in concurrent system: mem-
oryless knowledge, knowledge of perfect recall, and causal knowledge. Mem-
oryless knowledge is based only on the current state of a process, knowledge
of perfect recall can take into account the local history of a process, and causal
knowledge depends on the causal past of a process, which comprises the infor-
mation a process can obtain when all processes exchange the information they
have when performing joint transitions. We compare these notions in terms of
knowledge strength, number of bits required to store this information, and the
complexity of checking if a given process has a given knowledge. We show that
all three notions of knowledge can be implemented using finite memory. Causal
knowledge proves to be strictly more powerful than knowledge with perfect re-
call, which in turn proves to be strictly more powerful than memoryless knowl-
edge. We show that keeping track of causal knowledge is cheaper than keeping
track of knowledge of perfect recall.

1 Introduction

Knowledge represents the information that processes can have about each other and,
consequently, about the state of the entire system. In concurrency theory, there are mul-
tiple definitions of knowledge based on the specification of the system, a limited view
of the other processes, and some information related to the observed history [11]. We
study three types of knowledge for concurrent systems. According to the first type,
memoryless knowledge, a process knows everything consistent with all executions that
end in its current local state. For the second type, knowledge of perfect recall [3, 11,
12], a process knows everything consistent with all executions that share the same local
history visible to this process. We define a third type of knowledge, causal knowledge,
where a process knows everything consistent with all executions that have the same
past, where the past of a process includes the past of other processes up to their last
joint transition.

We are interested in the implementation of different kinds of knowledge as a trans-
formation of the system under consideration. The transformation can use additional
variables in order to collect information about history, and also to pass this information
from process to process as part of the scheduled system synchronization. In particular,
? The work of the second author was partly supported by ISF grant 126-12 ”Practical Synthesis

of Control for Distributed Systems”, and partly done while invited professor in University of
Rennes 1

such a transformation can keep information related to the observable history in order to
obtain additional knowledge. This transformation cannot change the values of the origi-
nal variables of the program (including program counters) or the enabledness condition
of the transitions (operations) of the system. Thus, the executions of the original system
are projections of the executions of the transformed system; only further information
is collected in new variables. The different kinds of knowledge become memoryless
knowledge after the transformation, which stores all information required in the pro-
cesses’ local states.

This transformation can be used to monitor the global behavior of a system by
local processes. For example we may use it to control the system to force it to satisfy
some global property by blocking transitions based on knowledge [1, 8, 16]. Another
application is to perform some run time checking that a process satisfies some global
properties when reaching particular local states.

Our study differs from the classical question of model-checking knowledge [11],
as it does not attempt to provide algorithms for checking the knowledge of processes.
Instead, we are interested in providing the run-time support to use knowledge. In par-
ticular we are interested in the implementing algorithms and their complexity. When
comparing the commonly used memoryless knowledge and knowledge of perfect re-
call [1, 11], there is a tradeoff between the amount of knowledge available to processes
and the complexity of maintaining it. We can know more properties under perfect re-
call, but have to maintain some history related information for that. Quite surprisingly,
the new definition of causal knowledge both improves our knowledge and reduces the
time and space complexity required when compared to knowledge of perfect recall. The
price to pay for this is increased communication: processes have to update each other,
through communication, when performing joint transitions in order to achieve this type
of knowledge. We show that implementing the third kind of knowledge, knowledge
based on causality, can be obtained using a construction based on the “gossip” automata
of Mukund and Sohoni [14], related to the Zielonka construction [17, 7, 5].

We establish complexity results for implementing the different types of knowledge.
In particular, we show that causal knowledge requires less memory, thanks to the shar-
ing of information during communication. It is, however, interesting to note the stark
difference in cost between implementing causal knowledge and knowledge of perfect
recall: communication does not only improve knowledge, it also saves resources.

2 Transition systems

Definition 1. A transition system is a tuple Tr = 〈P, V, Lv, T, Lt, S, s0, R〉 where

P is a finite set of processes.
V is a finite set of Boolean variables.
Lv : V → P is a mapping from variables to processes, such that each variable v

is local to the process Lv(p). Let Vp = {x | Lv(x) ∈ p} (the set of variables of
process p).

T is a finite set of transitions, where each transition τ ∈ T has an enabling condition
enτ ⊆ 2V , which is a propositional property, and a transformation fτ : 2V → 2V

2

over the set of variables. The enabledness condition and transformation have some
constraints as described below.

Lt : T → 2P maps each transition to the set of processes that execute it. The transition
is executed synchronously by the processes in Lt(τ). Let var(τ) =

⋃
p∈Lt(τ)

Vp.
Then only the variables var(τ) can be used in enτ , and fτ can use and change only
these variables.

S ⊆ 2V is a finite set of states, where each state of Tr is a possible assignments of
values to the variables of V .

s0 ∈ S is the initial state.
R ⊆ S × S is a relation over S. We have (s, s′) ∈ R exactly when there exists some

transition τ ∈ T such that s |= enτ and s′ = fτ (s). We say that τ can be executed
(is enabled) from s, producing s′.

For some future constructions, it will be convenient to assume at times that the system
is first executing some initial (“mythological”) transition `, shared by all the processes,
i.e., Lt(`) = P , ending up with the initial state s0 (starting with some (“mythological”)
initial state s−1).

We assume that S is the set of states reachable from s0, such that the global state
space S and the global transition relationR over S are defined by the other components.

The size |Tr| of a transition system Tr is the number |P | of processes plus the
number |V | of variables plus the number |T | of transitions.

We define a local state s|p as the projection of global state s ∈ S on the local
variables Vp of process p. For a set of processes P ′ ⊆ P , the semi-local state s|P ′ is the
projection of s to the variables in

⋃
p∈P ′ Vp. In particular, we have s|P = s.

Definition 2. A history of a transition system Tr is an alternating sequence h =
s0τ1s1τ2s2 . . . sn of states and transitions such that, for each i ≥ 0, si |= enτi+1

and
si+1 = fτi+1(si). We denote by last(h) the last state sn of h, and lastp(h) = last(h)|p.

A state s is reachable if s = last(h) for some history h. Note that it is PSPACE-
complete to check whether a state is reachable in a transition system [13]. As the initial
state is unique and the effect of transitions is deterministic, we sometimes use only the
sequence of transitions τ1τ2τ3 . . . to denote a history or execution s0τ1s1τ2s2τ3s3 . . .
of a transition system.

3 Notions of knowledge

In order to avoid using a specific logical formalism, we define state properties ab-
stractly:

Definition 3. A (state) property ϕ of a transition system Tr is a subset of its states. That
is, ϕ ⊆ S. A state s satisfies ϕ, denoted s |= ϕ, if s ∈ ϕ. An history h satisfies ϕ,
denoted h |= ϕ, if last(h) ∈ ϕ.

Note that properties can be defined compactly, using, for example, propositional
logic. In order to define a general notion of knowledge of state properties, the different

3

kinds of knowledge are abstracted as information available to a process. In order to de-
fine different kinds of knowledge, we define an equivalence relation between histories.
Let Γ represent a type of knowledge. (The types of knowledge that we consider will be
presented later.)

Definition 4. Let ≡Γ
p be an equivalence relation between histories with respect to pro-

cess p ∈ P in a transition system Tr. Process p in a transition system Tr knows a state
property ϕ after history h, according to knowledge type Γ , denoted h |= KΓ

p ϕ, if, for
each history h′ such h ≡Γ

p h
′, last(h′) |= ϕ.

We study three types of knowledge: memoryless, perfect recall, and causal knowl-
edge. Accordingly, Γ is ML, PR and C , respectively.

Definition 5. We say that the knowledge type Γ is deeper1 than knowledge type Γ ′,
denoted Γ � Γ ′, if, for each history h, process p and property ϕ, h |= KΓ ′

p ϕ implies
h |= KΓ

p ϕ. If Γ � Γ ′, but Γ ′ 6 �Γ , then we call Γ strictly deeper than Γ ′, denoted
Γ I Γ ′.

A simple observation that follows immediately from the above definition can be
used to show that one kind of knowledge is deeper than another:

Observation 1 Let Γ and Γ ′ be two notions of knowledge with ≡Γp⊆≡Γ
′

p for each p.
Then Γ � Γ ′.

Memoryless knowledge. This is a conservative version of knowledge, where a property
ϕ is known if it holds in all the states with the same local state of process p. That is,
h ≡ML

p h′ if lastp(h) = lastp(h
′).

Knowledge of perfect recall. In the epistemic community, knowledge of perfect re-
call [3, 11, 12] refers to the ability of process p to use local observation to distinguish
between different histories. We can define, in fact, multiple different versions of knowl-
edge of perfect recall:

PR(l) A process can view (and recall) its local states along the executions (this is the
version that is used in [11]).

PR(t) A process can view the occurrences of transitions in which it participates.
PR(lt) A process can view both the local state and the executed transition.
PR(ct) A process can, when executing a transition, view the combined local state of

the processes involved in this transition.

We choose PR = PR(lt) as our canonical definition of knowledge of perfect recall.
The observations in this case are sequences of p−events , as defined below.

Definition 6. A p−event is a pair 〈τ, r〉, where τ ∈ T , p ∈ Lt(τ), and r is a local state
of p. A p−event is obtained from a history by taking a transition τ that is executed and
involves the process p and the local state just after its execution. We define the sequence
of p−events of a history h, Evp(h), inductively. For h = s0, Evp(s0) = ε, the empty
word. Let h′ = h τ s (that is, h′ extends h with a transition τ , leading to state s). Now,
if p ∈ Lt(τ), then Evp(h

′) = Evp(h)〈τ, s|p〉, and otherwise Evp(h
′) = Evp(h).

1 We use the term “deeper” instead of “stronger”, as the latter is associated with an implication
of the opposite direction: in logic, ϕ is stronger than ϕ′ when ϕ→ ϕ′.

4

For instance, for p ∈ Lt(τ), p /∈ Lt(τ
′), and h = s0 τ s τ

′ t τ r, we have
Evp(h) = 〈τ, s|p〉〈τ, r|p〉.

Definition 7. Knowledge of perfect recall is based on the equivalence ≡PR
p such that

h ≡PR
p h′ exactly when Evp(h) = Evp(h

′).

Similarly, PR(t) is defined based on the projection of Evp(h) on its first compo-
nents, while PR(l) is defined based on the projection of Evp(h) on its second com-
ponents. Also, PR(ct) is defined based on a sequence of extended events of the form
〈τ, s|L(τ)〉, using the respective semi-local states (rather than the local states) in Evp(h).
In the example above, this would be Evp(h) = 〈τ, s|Lt(τ)〉〈τ, r|Lt(τ)〉.

Notice that the sequence Evp can grow arbitrarily as the history grows. However, it
has been shown [12, 1] that a bounded implementation of PR(l) is possible. We will
give a uniform implementations for all versions of PR in the next section. We now
compare ML and the different definitions of PR.

Lemma 1. Knowledge of perfect recall is strictly deeper than memoryless knowledge.
More precisely, PR(ct) I PR(lt) I PR(l) I ML and PR(lt) I PR(t). However,
PR(t) is incomparable (with respect to �) with ML and with PR(l).

Proof. By definition, the relation ≡PR(ct)
p refines ≡PR(lt)

p , which refines both ≡PR(l)
p

and ≡PR(t)
p , for all p ∈ P . Now, ≡PR(l)

p keeps the sequence of states of p, and in
particular the last one. Hence h ≡PR(l)

p h′ implies lastp(h) = lastp(h
′), hence the

relation ≡PR(l)
p refines ≡ML

p . We now show that the implications are strict.
“PR(ct) vs.PR(lt)”: To show strictness, we consider the histories h = ac and h′ =

bc for the transition system from Figure 1. Obviously, h |= {2} and h |= K
PR(ct)
P2

{2},
because, under PR(ct), P2 knows after executing the joint c transition that P1 is in (the
sink) state 2. At the same time, h′ 6|= {2}, and under PR(lt), P2 sees the same sequence
of P2−events: EvPR(lt)

P2
(h) = Ev

PR(lt)
P2

(h′). Thus, h 6|= K
PR(lt)
P2

{2}.
“PR(t) vs. PR(l)”: Consider the histories h = ad and h′ = bc for the transi-

tion system from Figure 1. Obviously, h |= {2} and h |= K
PR(t)
P2

{2}, because, under
PR(t), P2 knows after executing the joint d transition that P1 is in (the sink) state 2. At
the same time, h′ 6|= {2}, but, under PR(l), P2 sees the same sequence of P2−events:
Ev

PR(l)
P2

(h) = Ev
PR(l)
P2

(h′). Thus, h 6|= K
PR(l)
P2

{2}. This also implies strictness for
“PR(lt) vs. PR(l)” and implies that ML is not deeper than PR(t).

012 3 4
a bc, d c

c, d

Fig. 1. Local state space of two Processes: P1 (left) with a variable that can take
5 values {0, 1, 2, 3, 4} and P2 without variable. Transitions c, d are joint between P1 and P2.

5

v1
b2

b1

v2,v3 v2

b2

a

a

b1

v2,v3v1 v2
b

a

a

b

Fig. 2. The bottom left shows the global state space for two Processes P1 (top left) and P2 (right),
with VP1 = {v1} and VP2 = {v2, v3}. Boolean variables represented in the states are those
with value true. Transition a is local to P2. It toggles the value of the variable v3. Transition b is
joint between P1 and P2. It first assigns v1 the value of v3 and then sets v2 and v3 to false. Both
transitions are enabled if, and only if, v2 is true. Initially, v2 and v3 are set to true and v1 is set
to false. Thus, the effect of b on the each process depends on the state of the other process. To
reflect this, the action b is graphically ‘split’ into b1 and b2 in the graphic representation of the
processes. Note, however, that b1 and b2 refer to the same action, b.

“PR(l) vs. ML”: We consider the histories h = ε and h′ = bc for the transition
system from Figure 1. Obviously, h |= {0, 1, 2, 3} and h |= K

PR(l)
P2

{0, 1, 2, 3}, be-
cause, under PR(l), P2 knows after h that it has not taken part in any transition, and
4 is only reachable upon taking a c transition. At the same time, h′ 6|= {0, 1, 2, 3}, but
last(h)|P2

= last(h′)|P2
. Thus, h 6|= KML

P2
{0, 1, 2, 3}.

“ML vs. PR(t)”: To show that PR(t) is not deeper than ML, and thus not deeper
than PR(l) and PR(lt), we consider the transition system from Figure 2. Consider the
histories h = b and h′ = ab. Obviously, h |= {v1} and h′ 6|= {v1}. Under PR(t),
P1 sees the same sequence of P1−events for h, h′: EvPR(t)

P1
(h) = Ev

PR(t)
P1

(h′). Thus,

h 6|= K
PR(t)
P1

{v1}. However, last(h)|P1 = {v1}, hence h |= KML
P1
{v1} holds.

Notice that PR(t) is deeper than PR(l) when, for all processes p and all transitions
τ , the p-local state after the transition τ only depends on the p-local state before τ . In
this case, the history of local states can be retrieved from the history of transitions. This
is, for example, the case for products of finite state systems.

Causal knowledge. This notion is related to partial order semantics [10], and has been
used informally in distributed games [4, 15, 6]. However, as far as we know, it has not
been used in an epistemic framework before. The assumption is that processes may
exchange information each time they perform a joint transition.

We first define the chain of transitions that can affect the view of a process p in a
given history. The exact ordering of transitions is not necessarily known to p, hence the
information function is represented as a partial order. We now define the partial order
associated with a history.

Definition 8. The partial order PO(h) associated with a history h =
s0τ1s1τ2s2 . . . τnsn is a triple 〈E, λ,≺〉 where

6

0 1
a

a, b b

Fig. 3. Processes P1 with a boolean variable (left), P2 (middle) and P3 (right) without variables

– E = {e0, e1, . . . , em} is the set of occurences of events in h.
– λ : E → T labels λ(ei) = ti,
– ≺⊆ E×E is the smallest partial order relation (i.e., transitive, reflexive and asym-

metric relation) satisfying the following: if e, e′ ∈ E with Lt(λ(e))∩Lt(λ(e′)) 6= ∅
and e appearing before e′ in h then e ≺ e′.

For instance, for three processes p, q, and r and three transitions a, b, and c
with Lt(a) = p, Lt(b) = q, Lt(c) = {p, r}, we have POp(abc) = POp(acb) =
〈{ea, eb, ec},≺, λ〉 with λ(ex) = x for all x ∈ {a, b, c} and ea ≺ ec. Process p sees
transitions in the past (for ≺) of the last transition on p.

Definition 9. The causal view Cap(h) of process p in history h includes all the oc-
currences of events that precede its last occurrence according to the partial order
PO(h) = 〈E, ≺ λ〉. If e is the latest occurrence of h that involves p, then let
E′ = {e′ ∈ E|e′ � e}. Then, Cap(h) = 〈E′,≺ ∩E′ × E′, λ|E′〉.

The equivalence ≡C
p on histories, used to define causal knowledge, is based on

h ≡C
p h′ iff Cap(h) = Cap(h

′).

Lemma 2. Causal knowledge is strictly deeper than knowledge of perfect recall.

Proof (Sketch). We first prove Ca� PR(ct). By Lemma 1, this implies Ca� PR for
all version of PR. Although the causal view Cap(h) of a process p in a history h is
a partial order, it contains, according to Definition 9, in particular, all the occurrences
of transitions of p. The occurrences of transitions in which p participates are totally
ordered by ≺ in the causal view. Given the unique mythological event and the causal
view, one can also construct the p−events corresponding to the occurrences in E and,
in particular, the occurrences in which p participates. To do this, one can complete the
partial order ≺ into some total order that contains it, and start to calculate the global
state after each occurrence, taking the relevant component of p for transitions involving
this process. Although the global states generated in this way are not necessarily the
ones appearing in h, one can show by induction over the length of the constructed
sequence that the p−events are the same. This is the case, because occurrences of h that
are not in E do not affect the values of occurrences in E. Moreover, by the disjointness
of the variables for each process, the order of occurrences not in E can be commuted
with occurrences in E to appear at the end, without affecting the value of the p local
states.

To show that causal knowledge is strictly deeper than knowledge of perfect recall,
we consider the histories h = ab and h′ = b in the transitions system from Figure 3.

7

Obviously, h |= {1} holds. Further, h |= KCa
P3
{1}: the partial order PO(h) associated

with h is the total order 〈{e1, e2}, λ(e1) = a, λ(e2) = b, e1 < e2}〉, and we have
CaP3(h) = PO(h). That is, Process P3 knows that P1 is in 1.

At the same time, h′ 6|= {1}, but, under PR(ct), P3 sees the same sequence of
P3−events: EvPR(ct)

P3
(h) = Ev

PR(ct)
P3

(h′). Thus, h 6|= K
PR(ct)
P3

{1}. ut

Notice that the third process in the proof is necessary, because, for two process and
PR(ct), each process learns the global state of the transition system when executing a
joint transition. Ca and PR(lt) can be separated using the transition system with two
processes from Figure 1. This indeed follows from the proof that PR(lt) is not deeper
than PR(ct).

4 Application of knowledge

Knowledge can be applied to control systems by blocking some transitions. The more
is known about a transition system, the less restrictive the control needs to be. Consider
the system with three processes arb, p, p′ from Figure 4. Process p needs to access a
critical section twice, and process p′ needs to access it once. Process arb helps process
p, p′ to access the critical section in a mutually exclusive way.

Processes p and p′ can try to enter the critical section using an e and e′ transition,
respectively, which they share with the arbiter, and leave it using the shared l and l′

transition, respectively. The effect of transition e (resp. e′) depends on the state of the
arbiter. If arb has given permission to the other process to enter the critical section, and
not yet received the respective ‘leave’ transition, transition e does not change the state.
In Figure 4, e is therefore split into e1 (the case where p progresses) and e2 (the case
where p stays in its previous state). Similarly, e′ is split into e′1 and e′2.

Process p can also ignore the arbiter, and progress using an i transition.
Without control, the system is too permissive. For example, it allows for the history

h = e′i (with h |= c ∧ c′), where first p′ enters the critical section through the e′

transition, followed by p entering the critical section.

e2

c

e2

c
e1, i e1, il, i l, i

e′2

c′ f ′
e′1 l′

e1, e
′

2 l, l′ e2, e
′

1

l

l′e1

e′1

Fig. 4. Three Processes: p (top), p′ (bottom left), and arb (bottom right). Only some local boolean
variables are represented: c and c′ (set to 1 for p and p′ in critical section, respectively), and f ′ set
to 1 for p′ has finished. The remaining variables are omitted. Effect of the transitions e (resp. e′)
on process p (resp. p′) depends on the arbiter state. It is therefore split into e1, e2 (resp. e′1, e′2).

8

However, the following control can be written easily using knowledge: If Kp(f
′),

then allow the ‘ignore’ transition i. Else, disallow it. Clearly, this only allows p to ignore
the arbiter if no future conflict is possible, as p′ will remain in this sink state and does
no longer compete for entering the critical section.

Now we compare different notions of knowledge. With memoryless knowledge, just
looking at its local state, process p will never be able to ignore the arbiter, using i.

With perfect recall, consider the following history: h = e′el′e. After this history,
process p knows under PR that p′ had been in the critical section when it first requested
entry, but has left it meanwhile. It thus knows that f ′ holds henceforth, and p can make
use of i, ignoring the arbiter.

With causal recall, Process p can make even more use of i. Consider the history
h = e′l′e.

With perfect recall, p cannot distinguish it from h′ = e, and can make no use of i.
With causal recall, the knowledge of the arbiter that p′ is in its sink state (such that f ′

holds henceforth) is transferred to p through the shared transition e. It thus knows that
f ′ holds henceforth, and p can make use of i, ignoring the arbiter.

5 Implementation of knowledge using bounded memory

The notions of knowledge discussed in this paper are quite abstract: they represent some
mathematical definition based on the observation that the processes can have. These ob-
servations are not directly implemented by the processes. Except for theoretical reason-
ing about programs, knowledge can be used in order to control the program [8]. If the
processes need to use such observations so that they can act based on their knowledge,
they necessarily need to store the observation and act on it. If the observation infor-
mation is stored and available to a process, it can decide, based on some precalculated
knowledge table, to restrict its behavior accordingly.

The definitions of knowledge of perfect recall and knowledge with causal memory
are based on unbounded observations. We are interested in transforming the transition
system for these two kinds of knowledge, such that only a bounded amount of infor-
mation is needed. The transformation will add variables and augment the transitions in
such a way, that one can control the system based on the knowledge through a precal-
culated table. In essence, such transformations convert the original system into a new
system, where the knowledge can be observed by a process from its most recent local
state. We provide complexity measures for both the transformations.

5.1 Implementation of memoryless knowledge

The implementation of memoryless knowledge of a process is simple, as the observa-
tion that is used consists only of the local state of the process. To decide the current
knowledge regarding a property ϕ from a p-local state sp, we recall that p knows that ϕ
holds if, and only if, for all reachable states s with s|p = sp, s |= ϕ holds. It therefore
suffices to check the existence of a global state s with s|p = sp and s 6|= ϕ.

This is a simple reachability problem. An implementation of memoryless knowl-
edge may or may not use an offline precomputation.

9

Online only. The reachability problem can be solved in time |Tr| · 2O(|V |) (or in
PSPACE) by constructing all reachable states ending with the observed local state.

With an offline precomputation. Alternatively, for each p-local state, one can first
compute the reachable states with this p-local state in a preprocessing step. One
can then save this knowledge with respect to p-local states in a binary tree with
2|Vp| entries. Accessing this tree at runtime only takes time linear in the number of
variables local to p, that is, timeO(|Vp|). The offline construction of the tree during
the preprocessing step can be done in time |Tr| · 2O(|V |).

5.2 Implementing Knowledge of Perfect Recall

We describe the transformation of knowledge for all version of perfect recall. The trans-
formation was already known for PR(l) [12, 1]. The idea of the construction is that each
process p can consult a global automaton, representing the transformation of the entire
system. A process p is only aware of the occurrences of its own transitions. Hence,
upon an occurrence of a transition τ with p ∈ Lt(τ), the automaton moves according
to τ . However, process p is not aware of further moves of transitions not involving p.
Thus, the actual global state of the system can further change through the firing of any
sequence of such transitions. A subset construction can be used to encode the possible
global states that can be reached without being distinguished by p after a transition τ .

Definition 10. Let 〈S, s0, T, δ〉 be a global automaton for the system Tr. Recall the
notation δ∗(S, ρ) that stands for the usual extension of δ from a single state and a single
transition into a set of states and a finite (possibly empty) sequences of transitions. Let,
for a process p,

– Tp = {τ ∈ T | p ∈ Lt(τ)} be the set of transtitions executed by p (possibly joined
by other processes) and

– Ip = T r Tp be the set of transitions that do not involve p.

Then we construct a deterministic automaton Dp = 〈2S , S0, p−events, δp〉 such that

– S0 = {δ∗({s0}, ρ) | ρ ∈ Ip∗},
– δp(S

′, 〈τ, r〉) =
⋃
ρ∈I∗p

δ∗({s′ | ∃s ∈ S′. δ(s, τ) = s′ ∧ s′|p = r}, ρ).

Dp reads a sequence τ ∈ Tp∗ of p−events . Its state reflects, in which global state
the system can be at a point in time, where process p has seen a sequence of p−events .

Lemma 3. For a given transition system Tr with automaton 〈S, s0, T, δ〉, a process
p ∈ P , and a sequence h ∈ T ∗, we have that s ∈ δp∗

(
S0,Evp(h)

)
if, and only if, there

is a sequence h′ with Evp(h) = Evp(h
′) such that s ∈ δ∗(s0, h′).

This can be shown by induction over the length of Evp(h).
For each property ϕ, we equip Dp with an acceptance mechanism to obtain Dϕp =

〈2S , S0, p−events, δp, Fϕ〉, where the set of final states is:

Fϕ = {S′ ⊆ S | ∀s ∈ S′. s |= ϕ}.

For Dϕ
p , Lemma 3 provides the following corollary.

10

−2 −1 0 1 2 . . . n−1 n

ab
a

b

c a, b a, b a, b

Fig. 5. Process 2 from the proof of Theorem 2.

Corollary 1. For a given transition system Tr with automaton 〈S, s0, T, δ〉, a process
p ∈ P , and a sequence h ∈ T ∗, we have that Evp(h) is accepted by Dϕp iff h |= KPR

p ϕ.

Thus,Dϕp can be used to check whether or not process p knowsϕ. The complexity of
this construction is quite high: as a subset automaton,Dϕp can have 2|S| states. However,
subset automata like Dϕp can be represented succinctly, such that the representation of
a state requires ‘only’ S bits. As S can be exponential in the number of variables, this
translates to O(22|V |) states, where each state is represented by O(2|V |) bits.

Consequently, we can transform Tr by including, for each process p, an implemen-
tation of the automaton Dϕp . This may require |S| additional variables to represent the
state of Dϕp , which will be variables local to p. They have no influence on the enabled-
ness of transitions.

These new variables intuitively reflect the subset of the states, in which the system
might be in, or, likewise, the set of assignments to its variables consistent with the
sequence of p−events observed. This representation can be improved: the valuation of
the p-local variables Vp is already given by the p-local state, and storing this information
again would be redundant. Thus, O(2|VrVp|) variables are sufficient to represent the
additional information.

The above construction implements the PR = PR(lt) knowledge. Similarly, we
can implement the other notions of knowledge of perfect recall:

PR(t) Dϕp = 〈2S , S0, Tp, δp, Fϕ〉,
δp(S

′, τ) =
⋃
ρ∈I∗p

δ∗({s′ | ∃s ∈ S′. δ(s, τ) = s′}, ρ).
PR(l) Dϕp = 〈2S , S0, S|p, δp, Fϕ〉,
δp(S

′, r) =
⋃
ρ∈I∗p

δ∗({s′ | ∃s ∈ S′. ∃τ ∈ Tp δ(s, τ)|p = r}, ρ).
PR(ct) Dϕp = 〈2S , S0, p−events, δp, Fϕ〉,
δp(S

′, 〈τ, r〉) =
⋃
ρ∈I∗p

δ∗({s′ | ∃s ∈ S′. δ(s, τ) = s′ ∧ s′|Lt(τ) = r}, ρ).
(Note that the p−events for PR(ct) and PR(lt) are different.)

5.3 Lower bound on the transformations for Perfect Recall

We show that the exponential memory blow-up for implementing PR is unavoidable.

Theorem 2. There exists a family of systems (Trn)n∈N with 2 processes {1, 2}, one
variable with n + 3 valuations (or equivalently dlog2 n + 3e binary variables), four
transitions, and n + 3 states and a family of assertion ϕn such that knowing with PR
whether ϕn holds requires 2n memory states.

11

Notice that using |V | binary variables, a counter up to 2|V | can be encoded. Hence,
Theorem 2 proves that one needs at least 2|V | − 3 bits of memory to implement PR,
even when the description size of Trn is polynomial in |V |. For convenience, we use
a variable with domain {−2,−1, 0, . . . , n} instead of encoding the values in binary.
Process 2 is shown in Figure 5.

The proof uses the well-known family (Ln)n∈N = {w ∈ {a, b}∗ | w =
uav and |v| = n} of regular languages, accepted by a non-deterministic automaton
with n+ 2 states but not by any deterministic automaton with less than 2n states.

Proof. The systems are defined as follows:

– there is only one variable v, it is on process 2, and its domain is {−2,−1, 0, . . . , n}.
Its initial value is −2.

– there are three transitions, {a, b, c}, withLt(a) = Lt(b) = {1, 2} andLt(c) = {2}.
– transitions a, b are enabled in a state v iff v < n.
– a leads from −2 and −1 to −1, b leads from −2 and −1 to −2, such that the states
−1 and −2 distinguish if the last transition seen has been an a (which is the case in
−1 but not in −2),

– c is only enabled if v = −1 and updates the valuation of v to 0, and
– finally, for 0 ≤ v < n, transitions a, b increment the value of v by 1.

The state property ϕn is v 6= n. Let Hn be the set of histories h such that the suffix
of h is bw with the number of a, b in w is n (w can have 0 or one c). We have that
∀h ∈ Hn, last(h) |= ϕn. The reason is that after a c, there are at most n letters a, b.
Now, writing h = ubw, there cannot be a c in u, as there are n + 1 transition at least
being done afterwards. That is, ub reached state −2. Now, it means that the first letter
of w is not a c, and thus it is an a or a b. In any case, if c happens in w, there will be
strictly less than n letters after it, and thus the valuation v = n cannot be reached.

Notice now that h ∈ Hn iff Ev1(h) = ubw with w ∈ {a, b}n (process 1 has a
unique state as it has no variable, hence we do not indicate it in the p−events). Thus
for all h′ such that Ev1(h′) = Ev1(h), we have h′ ∈ Hn. Thus process 1 knows ϕn
after any h ∈ Hn using PR.

Assume by contradiction that there is an implementation of PR with less than
2n memory states. Process 1 has no variables, such that its memory is updated only
based on the sequence Ev1(h). As there are less than 2n states, there exists 2 histories
u1 · · ·un 6= u′1 · · ·u′n ∈ {a, b}∗ leading to the same state s of the implementation. Let
u′i 6= ui, let say ui = b and u′i = a. Now, let us consider the histories h = u1 · · ·unan−i
and h′ = u′1 · · ·u′icu′i+1 · · ·u′nan−i. Clearly, h ∈ Hn, and thus process 1 knows ϕn af-
ter h using PR. However, the memory state after histories h, h′ are the same, as a same
sequence of 1-event is seen from state s. However, last(h′) = (v = n) 6|= ϕn, hence 1
does not know ϕn after h using this implementation. A contradiction. ut

5.4 Implementation of Causal Knowledge

In order to provide a finite representation for causal knowledge we will adapt a con-
struction by Mukund and Sohoni [14] for gossip automata.

Recall Definition 8 of a partial order PO(h) = 〈E, λ,≺〉 associated with a history
h and the causal view of a process p in h (Definition 9). We use the following notation:

12

– Recall that lastp(h) ∈ 2Vp is the p-state reached by h (or equivalently by PO(h)),
– latestp(h) = max≺{e ∈ E | p ∈ Lt(λ(e))} . This is the most recent occurrence

of an event in h that is executed by p, and therefore the last occurrence of an event
in Cap(h). Notice that the p-state reached on Cap(h) is also lastp(h),

– latestp←q(h) = max≺{e ∈ E | q ∈ Lt(λ(e)) and e ≺ latestp(E)}. This is
the most recent occurrence on q that precedes (or is the same as) the most recent
occurrence of p. We denote by lastp←q(h) the q-state reached on Cap(h), which
corresponds to the q-state reached by latestp←q(h).

The set Rp(h) = (lastp←q(h))q∈P is the global state reached by Cap(h). We can
define the associated equivalence relation:

Definition 11. h ≈p h′ iff Rp(h) = Rp(h
′).

We can define a knowledge R based on this ≈p. It is immediately clear that Ca�R,
since ≡C

p refines ≈p. In fact, we have equality:

Lemma 4. R is as deep as Ca.

Proof. (Sketch) It is enough to show that for every history h, {last(h′) | Cap(h′) =
Cap(h)} = {last(h′) | Rp(h′) = Rp(h)}.

We have trivially {h′ | Cap(h′) = Cap(h)} ⊆ {h′ | Rp(h′) = Rp(h)}
for every history h. Hence it suffices to prove that {last(h′)|Rp(h′) = Rp(h)} ⊆
{last(h′)|Cap(h′) = Cap(h)} for every history h.

Let h′ such that Rp(h′) = Rp(h). We thus have that the global state reached by
Cap(h) is the same as the global state reached by Cap(h′). By definition of Cap(h′),
h′ can be obtained from Cap(h

′) by performing a sequence w of occurrences not on p.
Now, consider doing this sequence w of occurrences from Cap(h). It is possible as the
global states reached by Cap(h) and by Cap(h′) is the same. Hence we obtain a history
h′′ = Cap(h)w. Because the system is deterministic from a global state, last(h′′) =
last(h′) holds. We conclude by remarking that Cap(h′′) = Cap(hw) = Cap(h). ut

This means that, for p, keeping lastp←q(h) for all q is enough to implement Cap.
Keeping this information is, however, not totally straightforward. Indeed, when per-
forming transition a, all processes q involved in that transition a will have a value for
lastq←r(h) for all process r just before performing a. First, we have lastp←r(ha) =
lastq←r(ha) for all p, q ∈ Lt(a) and all process r: each process will update the value
in the same way. Let state be the tuple (lasts←s(h))s∈Lt(a) aggregating all the latest
s-state from all processes s involved in a. It is easy to see that, if r ∈ Lt(a) is involved
in a, then lastq←r(ha) = δ(state, a)r. That is, it suffices to deterministically perform
a from state and take the r-component. Now, the difficulties appear for r /∈ Lt(a), that
is, if r is not involved in the transition. Then, it is easy to see that, for all q ∈ Lt(a)
involved in a (for which we need to update their state), lastq←r(ha) = lasts←r(ha)
for some process s ∈ Lt(a). The question is, which one of all the process s ∈ Lt(a)
has the freshest information about r. If we know this, then every process p can keep
accurately lastp←r(h) for all r and implement Cap by the previous lemma.

It turns out that knowing which process among a set Q has the freshest informa-
tion about any other process r is exactly what the gossip transformation of [14] does.

13

Knowledge additional bits of information on-the-fly complexity with precomputation
memoryless 0 PSPACE(|V |) O(|Vp|)
perfect recall 2|V | EXPTIME(|V |) O(|V | · 2|V |)
causal |P |2 log(|P |) log(|Tr|) + |V | PSPACE(|V |) O(|V |)

Table 1. Complexity of checking knowledge

Roughly speaking, the gossip transformation keeps a partial ordering regarding not only
the occurrences latestp←q but also the occurrence latestp←q←r (called the tertiary in-
formation), which corresponds to the latest occurrence on r before latestp←q . Com-
paring these partial orders from every process p ∈ Lt(a) involved in the transition a,
one can determine who has the latest information on r for every process r [14]. As the
number of processes is linear, the number of occurrences of the tertiary information is
polynomial.

Keeping the partial order about occurrences of the tertiary information therefore
only requires a polynomial number of bits. Notice that [9] (see also [17, 2] for the
original timestamping) gives a construction that uses onlyO(P 2 logP) bits of memory.

We thus augment the program (the transitions, in our case) with variables that will
implement the gossip automata construction, as well as the state lastp←q for each pro-
cess q. That is, the number of bits we need to implement Cap is O(|V |+ P 2 logP).

There are again two alternative ways to check for a particular knowledge:

With offline precomputation: We precalculate a table that, for each state =
(lastp←q)q∈P , tells whether every global state which can be reached from state
by performing only occurrences not on pmodels ϕ. If it is the case, then s |= KC

p ϕ
holds. This can be held in a table of O(2n) entries. The complexity to check on the
fly using the table whether state satisfies the property can then be done in PTIME.

Online construction: If the table is not calculated in advance, we need to perform
a search for a global state not satisfying ϕ and reachable from state using only
occurrences not on p. This may takes exponential time (or, alternatively, PSPACE).

The various complexity results we obtained are summed up in Table 1.

6 Conclusions

Knowledge is the foundation for reasoning about the correctness of concurrent systems.
It is a prerequisite for enforcing some global coordination with minimal synchroniza-
tion. While the most basic notion of knowledge, which only depends on the current
local state, is essentially an invariant (given the current local state of a process, the
global state satisfies some property), knowledge can also be defined based on the ob-
servable history: ‘knowledge of perfect recall’ takes the local observable history of a
process into account [3]. We add another notion of knowledge, one that allows not only
to memorize local history, but also to update it through communication. We provide a
corresponding new definition of knowledge, based on causality.

Knowledge has proven to be useful for the construction of control in concurrent
systems [1, 8, 16]: based on the knowledge calculation, the system can be controlled
to satisfy additional imposed global properties. Such constructions are monotonic in

14

the sense that they preserve the knowledge calculated before control was added. When
memoryless knowledge is not sufficient, one may need to use constructions that exploit
perfect recall or causal knowledge. The view we take in this paper is that using knowl-
edge in this context amounts to a simple transformation of the system. Specifically, the
construction we provide here for causal knowledge can be used for supporting such a
control construction. It is interesting to observe that causal knowledge is cheaper than
knowledge of perfect recall, both in terms of bits to remember and in terms of time
complexity. Moreover, causal knowledge is stronger: it refines the knowledge available
under perfect recall. However, the transformation, which is required for causal knowl-
edge, is based on the ability to exchange information while performing a joint transi-
tion (by the observed or controlled system). If this is not allowed, one may revert to the
weaker control through knowledge of perfect recall, where the controller may need to
keep an expensive progress table that represents the reachable global states.

References
1. A. Basu, S. Bensalem, D. Peled, J. Sifakis. Priority scheduling of distributed systems based

on model checking. Formal Methods in System Design 39(3), pp. 229-245, 2011.
2. V. Diekert and G. Rozenberg, editors. The Book of Traces. In particular, Chapter 8 by

V. Diekert and A. Muscholl. World Scientific, Singapore, 1995.
3. R. Fagin, J.Y. Halpern, Y. Moses, M. Vardi. Reasoning About Knowledge. MIT Press,

Cambridge, 1995.
4. P. Gastin, B. Lerman and M. Zeitoun. Distributed Games with Causal Memory Are Decid-

able for Series-Parallel Systems. Proc. of FSTTCS’04, LNCS 3328, 2004.
5. B. Genest, H. Gimbert, A. Muscholl and I. Walukiewicz. Optimal Zielonka-like Construc-

tion. Proc. of ICALP’10, LNCS 6199, pp. 52-63, 2010.
6. B. Genest, H. Gimbert, A. Muscholl, I. Walukiewicz. Asynchronous Games over Tree Ar-

chitectures. Proc. of ICALP’13, LNCS 7966, pp. 275-286, 2013.
7. B. Genest and A. Muscholl. Constructing Exponential-size Deterministic Zielonka Au-

tomata. Proc. of ICALP’06, LNCS 4051, pp. 565-576, 2006.
8. S. Graf, D. Peled, S. Quinton. Monitoring Distributed Systems Using Knowledge. Proc. of

FMOODS/FORTE’11, LNCS 6722, pp. 183-197, 2011.
9. R. Krishnan, S. Venkatesh. Optimizing the gossip automaton, Report TCS-94-3, School of

Mathematics, SPIC Science Foundation, Madras, India, 1994.
10. A. Mazurkiewicz. Concurrent program schemes and their interpretation. Technical report,

DAIMI Report PB-78, Aarhus University, 1977.
11. R. van der Meyden. Common Knowledge and Update in Finite Environment. Information

and Computation 140(2), pp. 115-157, 1998.
12. R. van der Meyden, N. V. Shilov. Model Checking Knowledge and Time in Systems with

Perfect Recall. Proc. of FSTTCS’99, pp. 432-445, 1999.
13. A.R.Meyer, L.J. Stockmeyer. The Equivalence Problem for Regular Expressions with Squar-

ing Requires Exponential Space. Proc. of STOC’73, pp. 1-9, 1973.
14. M. Mukund, M. Sohoni. Keeping Track of the Latest Gossip in a Distributed System. In

Distr. Computing 10(3):137-148, 1997.
15. P. Madhusudan, P. S. Thiagarajan, S. Yang. The MSO Theory of Connectedly Communicat-

ing Processes. Proc. of FSTTCS’05, pp. 201-212, 2005.
16. S. L. Ricker, K. Rudie. Know means no: Incorporating knowledge into discrete-event control

systems. IEEE Trans. Automat. Contr. 45(9): 1656-1668, 2000.
17. W. Zielonka. Notes on finite asynchronous automata. In R.A.I.R.O. - Informatique Théorique

et Applications, 21:99-135, 1987.

15

