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Abstract

We prove global existence, uniqueness and regularity of the mild, L? and
classical solution of a non-linear Fokker-Planck equation arising in an adaptive
importance sampling method for molecular dynamics calculations. The non-
linear term is related to a conditional expectation, and is thus non-local. The
proof uses tools from the theory of semigroups of linear operators for the local
existence result, and an a priori estimate based on a supersolution for the global
existence result.
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1. Introduction

We consider the following Fokker-Planck equation

{ dp = div(VVY + B7IVY) — s, (dy) in (0,00) x T", @
W( '

. 0) = o in T",

with periodic boundary conditions on the unit torus T™ of dimension n > 2,
where T = R/Z denotes the one-dimensional unit torus. We assume 1y €
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WeP(T™), p > n, with z/JOZOand/ Yo =1,0< 0 <2and p > n to be fixed

later on. The function V : T — ]RTdenotes the potential energy assumed to
be a C? function and 3 is a positive constant proportional to the inverse of the
temperature 7. The function ¢ — ¢y, is defined from W1P(T") into W1-P(T")
as follows

/ 0z, V(2)(t, x)dxs...dxy,
Tn—1

peltn) = Tt | .

where

Wt o) = Y(t, x)dxs...dx,. (1.3)
Tn—1
Notice that ¢y, is well defined if 1 (¢, 21) # 0, Va1 € T. Therefore, we will work
on the following open subset of W7 (T"):

DTP(T™) = {4y € WOP(T™) | % > 0}. (1.4)

The partial differential equation (1.1) is a parabolic equation with a nonlocal
nonlinearity. A solution of the Fokker-Planck equation is a probability density
function. The parabolic system (1.1) can be rewritten as
¥ =BT AY = F(¢) in(0,00), (L5)

1/1(0) = 1/}0,

where 1) = % denotes the time derivative and

() := VV.VY + AV — 0y, (dy1)).

Such Fokker-Planck problems (i.e (1)) arise in adaptive methods for free en-
ergy computation techniques. Many molecular dynamics computations aim at
computing free energy, which is a coarse-grained description of a high-dimensional
complex physical system (see [5; 10]). More precisely, (1) rules the evolution of
the density (i.e. (t)) of a stochastic process X (t) that is following an adap-
tively biased overdamped Langevin dynamics called ABF (or Adaptive biasing
force method). The nonlinear and nonlocal term ¢y, defined in (1.2), is used
during the simulation in order to remove the metastable features of the original
overdamped Langevin dynamics (see [2; 9] for more details).

Up to our knowledge, this is the first time that parabolic problems with
nonlinearities involving the nonlocal term (1.2) are studied. Different types of
nonlocal nonlinearities have been studied in [13] for instance. A proof of exis-
tence of a solution to (1.1) is also obtained in [8] using probabilistic arguments.
Here, we use analytical techniques that we expect to be more robust to extend
the result to more general settings.

Before we present our main results, we define the mild, the LP and the
maximal solutions of the parabolic problem (1.1).



Definition 1. (Mild, LP and mazimal solution)
Suppose that 0 < o <2 and p >n. Let 1 : [0,T) — LP(T"), where 0 <T < o0
and ¥ (0) = 1pg € D7P(T™).

() v is said to be a mild solution of (1.5), if ¢ € C([0,T), D7P(T™)) satisfies

the following integral-evolution equation:
t
wl) =Byt [OOSR Ge)s, te 0D (L
0

(43) ¥ is said to be a LP—solution of (1.1) on [0,T), if¢» € C([0,T), LP(T")) N
CH((0,7), LP(T™M)), %(t) € WHP(T")ND7P(T"), for t € (0,T) and ¥(t) —
BTIAY(E) = F(¢(t)) in LP(T™), for t € (0,T) and ¥(0) = vo.

(i) ¢ is a mazimal mild (resp. LP—) solution if there does not exist a mild
(resp. LP—) solution of (1.1) which is a proper extension of v. In this
case, its interval of definition in time (0, Taz) = (0,T) is said to be a
mazimal interval.

As will become clear below, all the definitions make sense since F' is well
defined from D? into LP(T™), thanks to the assumption on o and p.

In this paper, we will use the following hypothesis:
[H1] w0 € D7P(T™), 4o = 0 and Yo = 1. (L.7)

T’Vl
[Ho] n>2,p>nand o€ (1+n/p,2). (1.8)

Our first main result concerning local-in-time existence and regularity is the
following theorem.

Theorem 1. Assume [Hi] and [Hz]. The initial boundary value problem (1.1)
has a unique mazimal LP-solution v(t) with mazimal interval of existence (0, Tynaz),
where Trae := Tmaz(to) > 0.

Moreover,

(i) Ve € [0,1—0/2), VT € [0,0), ¢ ((0 Tmam) W2P(T")NCL ([0, Traz),
W™P(T™)), with p := min (1 — =)

(i) % € Cp . ((0, Trmaz), LP(T™)), where v := min(l — £, — L_ 1) By

Z
2

C” , we mean CV~¢, for any ¢ € (0,v);

(iii) For g € D7o»tP(T"), where oop = + (8 + 2”) then Vp € (0, %(1 - %)),

W € CP([0, Traz), CTTP(T™)). In the case when 1)y € Dg"’o('ﬂ‘”), then
Vp e (0,1), ¥ € CP[0, Taz), C*T#(T™));

(iv) 1 is a classical solution, which means that 1 belongs to C1((0, Tpnaz), C*(T™)).



The proofs of local existence are inspired from [3] and [12]. The existence
of the unique local-in-time solution relies on the fact that F' is locally Lipschitz
continuous from D%P(T") into LP(T") (see Lemma 5). Another fondamental
ingredient is the following proposition, which will be used intensively throughout
this paper.

Proposition 1. Assume that ¢ is a LP-solution of (1.1), then (t,x;) =

Y(t, x)dxs...dx, is the unique solution in the distribution sense of the fol-
Tn—l
lowing diffusion equation:

{ op = B2, ¥ in[0,00) x T,

_ —_ (1.9)

¥(0,.) =y on T.
Remark 1. Since, by Proposition 1, ¢ satisfies a simple diffusion equation, then
the property 1 > 0 is propagated in time. Moreover, since 1, > 0 and fT Py =1,
then up to considering the problem fort >ty > 0, one can assume that 1, > 0.
This will be assumed in the following (see Definition 1) . In addition, it follows
from known results on parabolic linear equation (see for example [6] or [11]) that

¥ € C*((0,00),C(T")).

We will check that v is a probability density function. In particular, the
positivity of ¥ can be verified upon some positivity conditions on g as following.

Proposition 2. Assume [H1] and [Ha]. Then the LP—solution ¥(t) of (1.1)
satisfies Y(t) > 0 for all t € (0, Trmaz)-

The local-in-time existence result is expected and rather standard since F' is
locally Lipschitz continuous. The main difficulty of this work is then to obtain
a-priori estimates to prove the global-in-time existence and uniqueness. This is
done by exhibiting a supersolution of the partial differential equations satisfied
by exp(%), which only depends on ¢ and z; (see Section 5.1).

The second main result states the global existence of the solution to (1.1).

Theorem 2. Assume [H1] and [Hsz]. Let i) be the solution of (1.1) given by
Theorem 1, with mazimal interval of existence (0, Tynaz). Then

(Z) Tmaax = +OO7'
(it) For every 6 > 0, sup||¢(t)||,p < 0o for every p € [0,2) and the orbit set
t>6
(o) = {(t,); 0 <t < Tynax} is relatively compact in C1(T™).
Let us make a few comments on the functional framework we use. In this

paper, we work in LP(T™) with p > n to ensure that W>P(T") is an algebra
for o > 1. In addition, the parameter o is restricted to the interval (1 + %, 2)

since we need on the one hand the Sobolev embedding W7 (T") — C!(T")



(see (2.1) below) and, on the other hand, ¢t — He_tAP\|L(Lg7ng) € L*(0,+o0),
which requires o < 2 (see (2.6) below).

The paper is organized as follows. In Section 2 we provide some notations
and preliminaries. The Section 3 contains the proof of Theorem 1, which states
the local-in-time existence and uniqueness of solution to (1.1). In Section 4, we
prove Proposition 1 and we use a weak maximum principle to prove that ¢ > 0.
In Section 5, LP-bounds for the nonlinear functional F' and a-priori bounds of
¢ are proved, which yield the global in time existence theorem (Theorem 2).

2. Notations and preliminaries

We denote by LP(T™) and WP (T™) the usual Lebesgue and Sobolev spaces.
The space C*t*(T"), with k € N and a € (0,1), is the Banach space of all
functions belonging to C*(T™) whose k' order partial derivatives are a—Holder
continuous on T". We denote by ||.||, and ||.||s,, the usual norms on LP(T™) and
W#P(T") respectively. The norm on C*T*(T") is defined by:

; |D'f(z) — D' f(y)|
flloe+r := max sup |D*f(x)| + max sup .
I#lle |i|Skme’E”| (@) fil=k ooty [z —yl*

Ct (T™) (resp. CL.(T™)) is the space of globally (resp. locally) Lipschitz
continuous functions on T". We mean by f € C%'=((0,T) x WP, LP), that
the mapping f(-,%) : (0,T) — LP is continuous for each v € WP and f(¢,.) :
WP — LP is uniformly Lipschitz continuous for each ¢ € (0,T).

B, (0, R) denotes the ball of radius R > 0, in the topology of the space
WeoP(T™). For T > 0 and p € (0,1), the space C?((0,T),LP(T™)) (resp.
CP .((0,T),LP(T™))) denotes the space of globally (resp. locally) p—Holder
continuous functions from (0,7") to LP(T™). Recall that a Holder continuous
function on a compact is equivalently a locally Holder continuous function on

this compact.

By e; we denote the unit vector (1,0, --,0) of R™ and C' denotes various
positive constants which may vary from step to step.

We shall use the following Sobolev embeddings, that can be found in [4; 7; 1]:
WP(T") — C™(T"), if 0 <m < s —n/p, (2.1)

WHha(T™) < WEP(T™), if k > I, and k — % >1- %. (2.2)

In the following, we will use the operator A, = —37*A. The domain of A,

is D(A,) = W2P(T™) N LE(T™), where L§(T™) := {¢ € LP(T")]| /Tn ¥ = 0},

equipped with the LP-norm. The operator —A,, generates a strongly continuous
analytic semigroup of contraction {e~*4r; ¢ > 0} on LE(T") (see Lemma 1).
The domain of A, is D(A,) = W*?(T") N LE(T™). Then the mild solution



would be written in terms of A, rather than —3~!'A such that a mild solution
will actually be solution to (compare with (1.6)):

w(t)—lze_tAP(¢o—l)+/() e~ =N By (s))ds, te[0,T). (2.3)

Indeed, we have that / (v —1)=0, / (Yo —1) =0 and F (1) =0 (since
n ’]I‘n ']I‘ﬂ,

F is periodic and in divergence form). In addition, since e/ 21 = 1, a solution
¥ of (2.3) gives a solution v of (1.6) satisfying P =1.
Tn

In the following, we will use the notation A, and e~ *4r_ when the operator

applies to a function in D(4,) (as in (2.3)) and the notation —37*A and AT
otherwise.

The following Lemmas will be used in the next sections. These are classical
results that we recall in our specific context, for the sake of consistency (see [12]
or AppendixA.1 and AppendixA.2 for proofs).

Lemma 1. Let 1 < p < oo, then the operator A, = —B7'A, with domain
D(A,) = W2P(T™) (" LE(T"), satisfies the following assertions:
1. The operator —A, generates a strongly continuous analytic semigroup of
contraction {e~*v; t > 0} on Lg(T™). In particular [le™" || zp 1p) < 1.
2. The spectrum of A, is included in R
3. Va > 0,3C, > 0,3k > 0 such that

V>0, [[Ape™ L pp gy < Cat™ %™ (2.4)
4. Va € [0,1],3C, > 0,V € D(Ag)
vt >0, |[[(e™ = Dol|, < Cat®[| AT %ol (2.5)
5. Vo €10,2), 3C, > 0, Ik > 0 such that
vt >0, [le || porp wor) < a(), (2.6)

where a(t) = C,t~2e ", Note that a is in L'((0,00),Ry) and is a
decreasing function.
6. Vo €[0,2], Vy € [0/2,1], 3Cs >0, Ik > 0 such that VO < s <r <t

le= =04 — =4 £ 1p gy < Coy (= 1)1 (r = S)”e”(r(s)-)
2.7

Lemma 2. Let 19 € LE(T") and {e~*4»;t > 0} be the continuous analytic
semigroup of contraction defined in the previous lemma, then

1. ih
Vi > 0, lim / e Arhods = e HAr ). (2.8)
h—0 J4



t
2. The integml/ e ¥ rapods is in D(A,) and
0

t
vt >0,-A, </ eSAPwods> = e Hrehy — 1hp. (2.9)
0

3. Fory € D(A,),

t
V0 < s < t,e”trqpy — e 3 Arghy = / —Ape T apodr. (2.10)

3. Local existence

This section is devoted to a proof of the local existence of solution to the
partial differential equation (1.1). In Section 3.1, we show the existence of mild
solution. Section 3.2 is devoted to some regularity results for the mild solution.
Finally, we prove Theorem 1 in Section 3.3.

8.1. Ezistence of mild solution

In this section, we show that F' : D7P(T") — L{(T") is a locally Lipschitz
continuous function, which is essential to prove the existence of a mild solution
by using the Banach fixed point theorem.

Lemma 3. Let ) € C(T™) and suppose that)(t,x1) := Y(t, x)dxs...dx, >

Tn—l
0. Then
16 lloo < [0, V][ oo- (3.1)
Moreover, for all v € C*(T"), we have that

C
102, Pplloc < —=Il¢llc1, (3.2)
min

where C' depends only on the potential V.

Proof. The first assertion is easy to prove. For the second assertion, since P >0
and ¢ € C(T"), then there exists a constant « > 0, such that ¥ (t,z1) > a > 0,
for all ; € T. Therefore,

an—l a;% x Vw f’]l‘nfl 6$1V6$1¢ f']rnfl a$1 Vw f']rnfl a$1,(/)
O, by = 121 - . (33
¢w f’]l‘n—l d) + f']l‘nfl 7/) an—l 1/) fjl‘nfl rl/} ( )

Using (3.3), one obtains

1 1
192 Bulloe < ~ 12,0, Vliool¥lloo + 192, V el 90
1
00, Vol

which yields (3.2). O



Lemma 4. Assume [Hs] (defined in (1.8)). For all 1 and ¢y € D7P(T™),
there exists C&)h% and C’i,l,% such that

165, — dus llp < Cyy ullvor — tallp (3-4)
102, (G = Pua)llp < CF, ol — 21

where )
v smin(lg i, [[Yellie)
PY1,h2 T C
’ min ¢; min 9y
and
Cimbz — len(||¢1||o,p7 1V2]lo,p) + CHz/)l |U,pl|¢2”a,p(||w1”0,p + |2 |U,p)

min ¢, min ¢, (min ¢, )2 (min 1),)

The WP —norms are finite since 1 and o € DP(T"™). The constant C
depends only on the potential V.

Proof. Let 1, ¢o € DoP(T™). There exists @; > 0 and as > 0 such that
Yy > oy and ¢y > as. Now,

1 — _
60, = Fuals < —— | / vt [ ouvis|

<
[e5Ke%)

Using the embedding (2.1),

tom Hw/ 00,V (2 )

T 0V

P

1 _ _
1Pw: = byallp S —— 10 Vllooll¥1 oo l¥1 = ¥2lls
102
1 _
e 10 Vil Bl 91 = bl

1
< ol Vil | [ (1=
102 Tn—1

p

1
+ Qs ||811V||00||1/’1H00H¢1 - 7/)2”1)
1
< _
< a0 Viselrllollon = ol

1
+ 7||3z1V||oo||¢1HooH¢1 — allp

< C”'(/)lHoon ol

Since the left hand side is symmetric in (¢1,1)3), one can take the minimum
of the upper bounds obtained by permutation of (¢1,s). This concludes the
proof of (3.4).

A similar analysis can be done for the proof of the second assertion:



[ ooy [ oave]os,
aﬂfl((rbwlid)ﬂ&):  — - —

(08 (¢1)?

/ 811 (611 V¢2) |:/ 8961 V¢2:| 8301@2
_Jremt n Tn—1 _

1[]2 (w2)2
B v T [ on@ave
P19
B (@2)2 |:/’JI‘"—1 aml V¢1:| azl@l - (@1)2 |:/]I‘n—1 8361V1/)2:| aflEQ.

(V1105)?

Using the embeddings WP (T") < L°(T") and WoP(T") — W1oo(T")
(see (2.1)), then

U [ 0n@uve) =T [ 0n0aVe

p

<|@ v [ on@ven| +[5 [ on@vin -

< [[$2 = Pl 190, @2, Voo + [[P1lloc 12, (B, V (51 — w2)ll,
< Y2 = ull, (102121 Vibilloo + 102, VO, 1| o0)
1]l (102100 V (W1 = )l + (102, V0w, (%1 = 13)]],)
< Cllpr = all, 1nll1p + C 101 = wall, [¥nllop + Clivnllsp 11 — 2y,
< Clihallop llr — 2y -

In addition,

"

p

(@2)2 |:/T"1 aﬂ?lvwl] a‘/ﬂl@l - (@1)2 [/’H‘nl a$1vz/}2:| 8131@2
= @P0n Ty [ 0V~ b0+ (@)~ @) 0T, [ 0.V

Tn—1 Tn—1

@000, (F1 — ) / 0, Vi,

']I‘n—l
thus,



H(wQ)Q |:/'];‘n1 8I1V¢1:| 8Z1E1 - (El)Q |:/T"1 6971 V¢2:| 8a:1@2

P
<10, Voo 192112 102, 91 oo ll#1 — 921,
1102, Vllooll¥1 = ¥allplltoy + Palloc |0, 1 lloo 92l
1102, Voo [0 3 ¥ lloc 91 = Pl
< 102, Voo (I llopll2liy p + 01 + @2lli pllonlloplltllap
+ [l plellp)llen — vallip
< Clldnllopldallopltnllop + lballop)llr = dallvp-
Then, by combining the last two results, one obtains the assertion (3.5). O

Lemma 5. Let us assume [Hs] then F : D7P(T™) — L{(T™) is locally Lipschitz
continuous.

Proof. Tt is sufficient to prove the local Lipschitz continuity of ¢ — VV.V +
AV, )+ Oy, (¢y) and b — ¢y,04, 1. First of all, the application D7P(T") 5
Y = Oy, (Gy) 0+ Py0ry 0 € LP(T™) is well defined. Indeed, using the continuous
embedding (2.1) and Lemma 3,

100, Gyt + G40, Yllp < [[9]lp]10, Pylloc + (|00 oo [0, Y[l

Wl Il + gl < oo

min ¢

Let ¢ € D7P(T™) and R > 0 such that B, (¢, R) C D”P(T™). Let 9, and

Vo € By (Y, R). We may assume without loss of generality that R < min1).

With this choice of R, for i = 1,2, 1, is bounded from below by a positive

constant. Indeed, since ¥; > ¥ — ||t — ¥illoo, then ¥, > ¥ — || — ¥illoo >
min1 — R =: . Now, let us first consider

<

[VV.VY1 + AVipy = VV.Vs — AVihs|l, = [[VV.V (41 — h2) + AV (1 — )]l
<OV = Y2)llp + Clltr — allp
< Oy — b2

lop-

In addition, using the continuous embedding (2.1), Lemma 3 and Lemma 4, one
obtains

||1/)15m1¢¢1 - w2811¢1/12 ||P < ”811(;57#1 (1/11 - wQ)”p + ”1/12(8901¢¢1 - 3x1¢w2)\|p

< 1102, B o101 =l + W2l 10 (901 = )l
c
< o Walloallgs = allop + 3, o Walloy
C
< (Wl + B = Valloy

o +R 2 g +R °
w0 (Wlop B 2MWlen 2 B0 oy,
o «

10

1 — 2lop



and

||¢¢13z1¢1 - ¢w2811w2”p < ”‘Waazl(wl - ¢2)HP + ||8$1w2(¢)w1 - ¢¢2)||p
< NP llool|0zy (1 = ¥2)llp + 102y V2lloc [Py, — duallp

< Cllr = ¥allop + Cyy s 1V2lloplltn = w2l
Yllop + R
<o (1 a8 - vl
This concludes the proof of Lemma 5. O

Proposition 3. Let us assume [H1] and [Ha]. There exists 6 > 0 and a unique
Y e C([0, 0], DP(T™)) such that,

Vi e [0,6], ¥(t)—1=etr(shy—1) +/0 e =D p(y(s))ds.  (3.6)

The local existence of a mild solution is a standard consequence of the fact
that F : D7P(T") — LB(T™) is locally Lipschitz continuous (ee [3], Proposi-
tion 2.1 or AppendixA.3 for a proof).

Remark 2. Referring to Section 1, we have actually proved that there exists
0 >0 and a unique ¢ € C([0,0], D7P(T™)) such that,

Wemay¢w=JIMW+/lB”ﬂmﬂwmw. (3.7)
0

For the sake of simplicity, we will use, in the following, this formulation instead

of (3.6).

The local existence result of a maximal mild solution is then obtained using
standard arguments (see AppendixA.4 for a proof).

Theorem 3. Assume [H1] and [Hz], there exists a unique mazimal mild solution
¥ € C([0, Thnaz), D7P(T™)).

3.2. Regularity of the solution

In this section, we show that the maximum mild solution v built in the
previous section is actually a LP—solution of (1.1). First we need to prove
several preliminary lemmas.

The proof of the following lemma is rather standard, see [3], Proposition 1.4
and AppendixA.5.

Lemma 6. Assume g € D?P(T"). Suppose that ¥ : [0, Tyaz) — WPP(T™) is
the maximal mild solution of (1.1), then

Fis ot) = /Ot == p(y(s))ds € CUF) ([0, Tonaa), D7P(T™).  (3.8)

loc

11



Lemma 7. For ¢y € D7P(T") and 0 < 7 < 0 < 2, then VT >0
tes el Byg e 072 ([0, T), WTP(T™)). (3.9)
Proof. For t =0 and h > 0, then by (2.5)
@ — i = 1), = 452 = Dwa - 1)

= || = DA — 1)

p

p

< C‘r,ah% HA;%A;/2(K¢)O - 1)

P
= Croh™= [[(%0 = Dllop-

Now for t > 0, using the previous case and the fact that e
tion semigroup, one gets

t4p is a contrac-

— H(e—hAp _ I)e_tAp(wo _ 1)”

p TP
le™ 47 (4o = 1)lop
o™ 45 (o — 1),
< Crgh™F A7 (0 = 1),
< Croh™ (%0 = Dlloyp-
Then e~*47 ()g—1) (and therefore ® t2¢)y) belongs to cr ([0, Tinax), WTP(T™)).

loc

e — ety gy — 1)

-

< Croh™

o—T

= CT,Uh 2

O

Lemma 8. Let us assume [H1] and [Ha]. Suppose that ) : [0, Tyes) — DOP(T™)
is the maximal mild solution of (1.1). Then

1. Vee[0,1- %), VT €[0,0),

¥ € Cloo(10. Trnaz), D™P(T™)), where ju := min (1 — -6
(3.10)
2.
v P n L . . g g B 1 _ ﬁ
F() € CL. ([0, Timaz), LE(T™)), where v := min (1 53 3 2p> .
(3.11)

Proof. For the first assertion, using the embedding WP — WP (since 7 < o),
(3.8) and (3.9), one obtains that

P € C*([0, Trnax), DTP(T™)), with g := min (1 - % —¢, U;T) .

12



For the second assertion, let 7 € (14 2, o), using again the embedding WP —
WT™P and applying Lemma 5 with o replaced by 7 € (1 + %, o), one gets

F € Cioe(DTP(T"), LE(T™)). (3.12)

The results (3.10) and (3.12) imply (3.11). Indeed, let 0 < t < T < Typax. For
all t € [0, T, there exists a positive real number «a(¢) such that F' is Lipschitz on
B, ,(1(t),a(t)) since F € CL_(D™P(T™), LP(T™)). We know that ¢([0,T]) =
{¥(t), t € [0,T]} is a compact set of D™P(T™). Then, 3t1,...,t, € [0,7] and
a(t;) > 0,4 € {1,...,n} such that F is Lipschitz on B ,(¥(%;), a(t;)), Vi €
{1,...,n} and

n

w(.1) = U By (w6, 25

i=1

)Nty

li) e
Define now « := 1r<nl£1 a(2 ) Since ¢ € C([0,T],D™P(T™)), then it is uniformly

continuous on [0, 77:
Je > 0, such that Vs, t € [0,T7], [t — s| <e, |¥(E) —¥(s)|lrp <

Let ¢, s € [0,T] such that ||¢(t) — ¥(s)||-p < a. Then 3¢ € {1,...,n} such that
() — Y(E)|rp < % Consequently,
[9(s) = P (t)llrp < [[9(s) = V() llrp + [[0() = P (E:) 7

<a+ @ < a(t;).

Then, for t,s € [0,7T], if |t —s| < e, I € {1,...,n} such that ¢(¢) and
¥(s) belong to B.,(¥(t;),(t;)) and using the fact that F is Lipschitz on
B; ,(¥(t;), o(t;)) then, using (3.10)

IE () = F((s)llp < Collp(t) = ¢ (s)llrp < Crlt — s,

n
where Cjy is the Lipschitz constant on U B.,(¥(t;), a(t;)). If |t — s| > ¢, then
i=1
since F' € C(D™P(T™), LE(T™)), then Cy := sup ||F(¥(¢))]], < oo and
t€[0,T)

2C:
[E((t)) — F(¥(s))llp <202 < g—flt — sl
In conclusion, we have that

Vt,s € [0, T [[F(4(t) = F(i(s))llp < CJt — ],

where C' = max(C1, QECH? ). Observe that v := lir% 1, thus V& > 0, 3¢ > 0 and
e—
Ta1+%
EIT>1—|—%,suchthatu2V—é. O
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The proofs of the two following results are similar to the proofs of Lemma 3.4
and Theorem 3.5 in [12]. We provide details of the proof in AppendixA.6 and
AppendixA.7.

Lemma 9. Assume [Hz] and suppose that ¢ : [0, Tpeg) — WP(T™) is the
mazimal mild solution of (1.1). Fort € [0, Timay), define

v () ::/o e~ (F(y(s)) — F(4(1))) ds. (3.13)

Then ¥t € [0, Tynaz) v1(t) € D(4,) and Ayvy € CY ([0, Thnaz), LP(T™)), where v
is defined in (3.11).

Theorem 4. Assume [Hi1] and [Hz]. Suppose that 1) : [0, Tyaz) — WP (T™) is
the mazimal mild solution of (1.1), then

(i) Ay e C¥ (0, Trmaz), LP(T™)) and ¢ € C%_((0, Tymaz), LP(T™)), where v~

loc loc

is defined in (3.11);

(i) If in addition 1y € W2P(T") then A and ¥ are continuous on [0, Tyaeq)
with values in LP(T™).

8.3. Proof of Theorem 1

We are now in the position to prove Theorem 1. The local existence of the
maximal LP—solution is a consequence of Theorem 3 and Theorem 4(7). In the
following we prove the first item (i) of Theorem 1.

For all t € (0, Trnax), we have ¢(t)—1 € W2P(T")NLE(T") and & (y—1)(t) €
LE(T™), then we have in L

d
Ap(¥(t) —1) = F(y (1) — — ((t) — 1).
Since At € L(LH(T™), W*P(T™)NLG(T™)), F(¢(-)) € C([0, Tinax), L (T™)) and
L((t) — 1) € C((0, Tmax), L§(T™)) then
_ . d
V(t) = 1= AT F((t) — A" = ((t) = 1)

is continuous from (0, Tinax) into D(A,) = W2P(T™) N LE(T™). The rest of (i)
follows from Lemma 8.

The part (i7) of Theorem 1 follows from Theorem 4(i). We are now in
position to prove (iii).

It follows from Lemma 8 that, Ve € [0,1 — 0/2), V7 € [0,0), v € C*([0,T],
WTP(T")), where p := min (1 — § — ¢, Z57). Let £ = min (%(U -1-2), Q_T”) >
Oandlet 7 =1+ 2 +p, for all 0 < p <é&. Now, by (2.1), we have WP (T") —

C*tP (T™). To prove (iii), it is sufficient to prove that p > p, which holds
since:

14



1. %5* > p. This is equivalent to o — 1 — % > 3p, which is true since
p<é<glo—1-1)

2. 1 — Z > p, which is true by the definition of €.

Thus ¢ € C?([0,T],C** (T™)). Now, we look for the largest value of p and
thus of €. Let us first optimize o € (1+ %, 2). In view of the definition of £, the
best o (denoted oop¢ in the following), is such that

1 n 2 — Oopt 1 2n
(oo 1 5] =B =g (54 2).

It is easy to check that oopt € (1 + %, 2). Therefore, the optimized value of &
(denoted £,pt in the following), satisfies:

- CTopt 1 n
ot =1 — 2 = (1-=1.
Fort 2 5( p)

Therefore, ¢ € C%rt([0,T],C*Te»t(T™)). Finally, when p — +00, fopt — =,
which implies that if ¢g € D5°(T"), then ¢ € C?([0,T], C**+°(T™)) for all
p€(0,3)

It remains to prove (iv). To get the C1((0, Tipax), C%(T™)) regularity, we
consider the parabolic problem as a linear problem with Holder-continuous right-
hand side. Indeed, we have that

Y — BTIAY = F() in (0, Thax)-

Fix 0 < § < Thax and define the following cut-off function x € C°°(R) such that

0 for ¢t <4§/2,
R(t) =
1 for ¢t > 6.

Let v(t) := k() (t). Thus, one obtains the following linear parabolic problem

{ v— B AV = f in (0, Trax), (3.14)
v(0) =0,
where ~
f(t) = w(O)F (Y1) + ~(t)p(t). (3.15)

In the following, we prove that there exists a € (0, 1) such that f§ C2((0, Tmax),
C*(T™)). The last assertion is satisfied as soon as we prove that f € C7((0, Tinax),
C7(T™)), for some v € (0,1) by taking o := 2y (since 1 +v > 2y = ).

We know that 1 € C? ([0, Trax), C1T* (T™)). Now, by a bootstrap argu-
ment, we prove F (1)) € C? ([0, Trax), C1T* (T™)). Recall that

¥ € C((0, Tnax), W*P(T™)) N CH((0, Tinax ), L2 (T™)). (3.16)

15



We know that F () € C([0, Tinax), L?(T™)) and

J oV [o3 VY _falvallff Jouvy [on

F = AVyY+VV-Vip— 01— .
S T CT S N KT KT
Then by (3.16), it is easy to show that
F(y) € C((0, Tinax), WHP(T™)). (3.17)

Since 1) — LAY = F(v), then by standard LP regularity for the heat kernel
¥ € C((0, Tnax), WHP(T")) 0 CH((0, Thna), WHP(T™))). - (3.18)
Differentiating F'(¢) in space, one obtains:
0;iF () = 0;(VV.NY) + 0;(AVY) — 010410 — 01040500 — 05y 019 — Py 0in1).
When i # 1, 0;¢y = Oi1¢yy = 0. When i =1,
o Ve +2f8f1V811/) B 2]81211/1/1 [ 0y

P —
o=y Jv Jo T
LJovohe Javow [ow [0V (falw)Q
I R K Jv \ Jv
_Jovy [oi
Jv  Je
Since there exists o > 0 such that ﬁn@ < L, then one can easily prove
F(¢) € C((0, Tiax), W?P(T™)). (3.19)
Similarly since ¢ — 71 AY = F(¢), we have:
Y € C((0, Tmax), WH(T™)) N C*((0, Tinax ), WP(T™))). (3.20)

By iterating the arguments one more time, the following regularity result is
satisfied

Y € C((0, Tax), WP (T™)) N CH((0, Tinax ), W3P(T™))). (3.21)
Differentiating F'(¢) in time, one then obtains:
O F () = VV.V(0)) + AV (041)) — 0101049 — 01040410 — Orpyy 011 — ¢4y 0104
And it follows without difficulties that
F() € C((0, Tonax), W2P(T™)). (3.22)

Then 3p’ € (0,1) such that we have the embedding W2?(T") < C*¢'(T").
Therefore, 3p’ € (0,1) such that

F() € C'((0, Trnax), C ' (T")). (3.23)
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Taking v = min(p, p), one obtains that f € C7((0, Tinax), C*+7(T™)), defined by
(3.15). Finally, one can now use Theorem 48.2(ii) in [13], to show that there ex-
ists a unique classical solution w of (3.14) satisfying w € C*((0, Tipax), C*(T™)).
By uniqueness of solutions of (3.14) we have that w = v, therefore 9 is a classical
solution for ¢ > 0.00

Remark 3. (Another method to deal with the nonlocal term)
We present a second way to handle the nonlocal term in the proof of local-in-time
existence and uniqueness result. The initial problem (1.1) can be written as

(Y —1) = Ap(y — 1) = H(t,9), (3.24)

where
81 V’(/degdxn

JY) = div -0 /TTHI =
H(t, ) :=div(VVy) — o T

with 1/; satisfying the following diffusion equation:

O =02, ¥ in T x [0, 00),
B (3.25)
¥(0,.) = ¥(0, z)dzs...dx, on T.
Trn—1

Notice that, if 1, > 0, then for allt >0 , &(t) > 0. One can prove that H :
(0, Tynaz) x WPP(T™) — LP(T") is locally Lipschitz continuous, which implies
the local existence of a solution to (3.24). It is then easy to show that V¥(t,x1) =

Y(t, x)dry...dx,. Indeed, by integrating the equation (3.24) which writes:

Tn—1
/ NV
Tn71~

Op = B 000,00 +div(VV - ) — Oy 7

v,

one obtains,
- — L OV
o) = B 000,00 + Op, (/ alv¢> — 0, <W¢) ’
Tn—l

where )(t,z1) = /wdarg...dxn. Denote f(t,x1) = fT",laledxz...da:n, we

obtain the equation:

0p(x1) = B 00,0, (1) + Op, f(t, 1) — O, (f(tlxl)@b) . (3.26)

It is easy to see that ¥ is a solution of (3.26) and 7,[:(0,:171) = (0,21). Since
(3.26) admits a unique solution, then ¥ = 1.
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4. Diffusion equation and weak maximum principle

In this Section, we first prove that 1) satisfies a simple diffusion equation and
we show that the solution of (1.1) is positive.
Proof of Proposition 1.
Let g : T — R be a function in H(T), and let v is a LP—solution of (1.1), then
we have:

d

G [Feengendn = 5 [ vt

= [ [av(TVe+ 5V u)glan) - 0, (Gulglen)] da
= [ 1= @Vt 570l @) + o ()] de
=57 | Oty (1)
'H"n.
=-p! 69:17 ; ' d
570 [ 0nttan)g e
=p" Tailmﬁ(w)g(m)dxl,

which is a weak formulation in the distribution sense of :

at@ = B_lagll’l

¥, in [0, 00) x T.

Finally, using the fact that v is a density function, then / )= Y=1.0
T 7
Let 7 be the maximum mild solution of (1.5). We are now in position to

prove the positivity of .

Proof of Proposition 2.
Multiplying ¢ (t) = B 'A¢(t) + div(VV) — dyertp) (where e; is defined in
Section 2) by the negative part of ¢ defined as

b = |T/)|2— Y >0,
and integrating over T™, one gets
R /T Ay + /T ATV dger ()

By the definition of 1)_ and using properties about Vi _ stated in Lemma 7.6

in [7], one obtains:
~ 1d 9
T T2

and

APy =pt Vi_ |2
R N
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We now restrict ourselves to [0, T, for a fixed T' < Tipax. Referring to Lemma 3
and applying Young’s inequality,

/ div(VVY - melw)w‘ = \ /T (VY= pyerts) w’

< 2 VV|P.e / Vo2 +C. [ Tl
TTL ']r'll

where £ > 0 is arbitrary, but C. depends on the choice of €. Choosing £ > 0
so that —371 + 2||[VV||2,e < 0, then (4.1) becomes

1d 9 9
- — I’ < N
2 dt Tn |w ‘ — OE An |,¢) |

Having ¢ € C([0, Ty], L*(T™)) (since 2 < p) and 1(0)_ = 0 (since 1 is supposed
positive), Gronwall’s lemma now implies [, [¢—|* = 0, for all ¢ € [0,7]. Since
T < Tmax is arbitrary, we see that ¢ (t)~ = 0, for all ¢ € (0, Tyax)-

5. A-priori estimates for solutions and global existence

In this Section, we prove some a-priori bounds for F' and universal a-priori
bounds for v, which are essential to prove global existence. We will use repeat-
edly the fact that 1 > a > 0 on (0, Tinax), since ¥, € DP(T") and 1) satisfies
3t¢ = 5_1aa:1x1w'

5.1. Polynomial and universal a-priori bounds

We define My(z1) = sup (woeBTV)(;vl,xg, ..., Zn) and we consider the fol-

T2yeens Ty

lowing parabolic problem on a function 9 : Ry x T — R,

M = B 00,0, M — OM — Dy, (GyM) on [0, +00) x T,
- (5.1)

0,21) = Mo(z1),

where

/ Oz, V(2)9(t, x)dxs...dx),
T’nfl

@(ta xl)
U(t, ) = Y(t, x)dxs...dxy,,

Tn—1
2

Oy(t, ) =

Y

A
§ = — max (V — §|VV|2 + 6w1V||OO>
z€Tn 2 4

and 1 is the unique maximal solution defined in Section 3.

In a classical way, one can prove that the problem (5.1) admits a unique
solution 9 € L*((0, Tyax), L*(T)) N L2((0, Timax), H*(T)) and satisfies MM > 0
since ¢y, € L((0, Trnax), L>(T™)) , V € C?*(T™) and My > 0. This function
will be used to dominate the solution 1 given by Theorem 1. In fact, we have
the following lemma.
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Lemma 10. Let 9 be the solution of (5.1), then the solution ¢ given by The-
orem 1 satisfies:

b < Me 5.

Proof. The analysis will be carried out in a suitable system of coordinates which
simplifies the calculations. We will perform two changes of variable. First, one
may assume that § = 1 up to the following change of variable: t = g1,
U(t, ) = p(t,z), V(x) = BV (z). Second, we take:

¥ =de?
Therefore, the problem (1.1) becomes
o) = div [VV@Ee*% + V(ie*%)} e? — Oz, (gbwz/;e*%) e
VvV - ~ ~ 0,V -
= div [(¢ + vw) e-Z} % =0, (609) + 2 0¥

= irai- Y ﬂw % (609) +

— AG+ W — 0, (Wb) +

where W = (A—QV — w) Multiplying Equation (5.1) by (¢ — 9%), and
integrating over space, one then obtains

[ ad@-m. = [ abG-m.+ [ witi-m,

- [ o. (mw o).+ [ 2600 - ),

Furthermore,

/atww ). ;jt ((1/3—932)+)2+/wat9ﬁ

Integrating by parts, one thus obtains

1d . 2 .
vt fo, (@=m00) == | oo —am),

[5G - P [ 0o,

+ /HW(WF*imn) + [ won(g - ),

T

+ [ b= oG-y = [ o, 6o (5 -,
[ 0 (@G-m) s [ B um - m..

2

20



In addition, applying Young’s inequality
- - 1 - 2 -
[ o=, G-y, < Lo VIE [ (6=m)) +e [ v@-a.p
Then, by Lemma 3

(@ -my)

2t Jr.
<o) [ 9@ -m P (Wt LloaVI) [ (G-’
+ [ 25 00 (@-my)

0y, V ~
+ / {—8,593? + Opyay M+ WM — Oy, (G IM) + 5 ¢,¢sm} (v — M) 4.
One knows that
0,V

—OIM + Oy, M+ WIN — Oy, (M) + PN < 0.

2
Indeed, since 9t is the solution of (5.1) (and since 2t > 0)

2

—OU A+ Oy, M — O (652 = — max (W + axlvnoo) m

0o,V

S—(W—F ¢¢) .

For 9 solution of (5.1) and for € sufficiently small, one obtains, by Lemma 3,
that

LA [ o Lo i+ 12V |
-z _ < il 121 ¥ lloo
s [ G-z < (Il + Lo viz + ) 1

Then using the fact that 9ty > 1/70 and applying the Gronwall Lemma (since

() —9M)4 € LY((0, Tax), L2(T™))), one then obtains /E (1) — 9M)2 = 0, which
means that (¢ — 91), = 0. O

—fm)+)2.

<

Corollary 1. The solution 1 given by Theorem 1 belongs to L*((0, Traz), L (T™)).

Proof. The assertion follows directly from the fact that ¢ < 9 e (by Lemma 10)

and from the embedding H} (T) < L>(T). O
Proposition 4. The solution ¢ given by Theorem 1 satisfies:

¥ € L¥((0, Tynas), L*(T))) N L*((0, Trnaa), H' (T"))) (5.2)
and

W € L((0, Tna), H'(T"))) 0 L*((0, Tona), H*(T"))). (5:3)
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Proof. Recall that by Corollary 1, one has that ¢ € L2((0, Tyax), L>=(T™)) and
by Remark 1 one has ¢ € C*°((0, Tynax), C°(T™)).
First step: Multiply (1.1) by ¢ and then integrate over space:

no1 OV
2 V|2 YV -V s OV
5 Lkt [ e == [ wvi.ves [ i

Applying Young’s inequality, one obtains,

1
[ovveve <ivvis |5 [ vere o [ ).

Using the fact that ¥ > 0,

an 181‘/1/) 9 2 1 2
[ e vons| < ol [ [ toww o [ o],

Thus, one obtains:

P01,

1
SR+ (57— cIVVIITYIE < TIVVIslll (5.)

Choose ¢ such that 371 — ¢||VV|| > 0. In this case:

2
S S II3 < IV ol

Using Gronwall Lemma, one gets
1
613 < Il exp (219Vlnt) ¥t € 0, Tome)

Since ¢y € L?(T™) and V € C%(T"), then v € L>®([0, Timax), L2(T™)). By (5.4),
we have that ¢ € L2([0, Tyyax), H*(T")). Therefore,

¥ € L*([0, Tax), L*(T"))) 0 L*([0, Trnax), H* (T™))). (5:5)

Second step: Multiply (1.1) by —A and then integrate over space:

33 L ekt [ jaup

_ / TV oveAd - [ AVYAY+ / ACHOIN
n Tn Tn
) VV - VA — s AV A + /T ) Py pAY  (5.6)
Jouvey Jovowy
+ Tn f¢ w w T fw w w
Jove fow
o VY
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Using Young’s inequality,

[ovvevvae] < giovik [ wer s [ jave

and

1 5
AV A sfHAVllio/ |w|2+f/ AP,
25 Tn 2 Tn

’H"n
We have also,

[ osononi] < g [ ver e Shels [ 1aue

Using the fact that ¥ > 0,

fallvd’ 1 2 2 € 2
Lo unn| < piouvi [ w5 [ ik
Similarly,
Vo o0
[ 2 | < Lot (1) [ oup e [ 1w

And Finally,
L0 o0 < Lo (M=) [ oo 45 [ (o
[ s < v [owip+5 [ 1ave

Then taking into account all the previous estimates, one can choose £ small
enough such that Equation (5.6) can be written as

2
W”‘”) IVI3 + Caclls, (5.7)
min

where C; . > 0, ¢ = 1,2, 3 are three constants.

By (5.2), one gets

3ol Cralavig < e

¥l \? 2 2
3319018 < Cac (L= ) g + ool
2
The function Cs (!ﬁﬂ"i) is in L'((0, Timax)) (by Corollary 1) and thus, by

Gronwall Lemma:

t
V113 < [IVbo13 exp ( / Co.e (wnoo
0

2
> dt) +Cuey, Vt €0, Tmax)-

min ¢

Since 19 € H'(T"), then using Equation (5.7), (5.2) and elliptic regularity
results, one obtains that

W € L((0, Tnax), H' (T"))) N L2((0, Tinax), H*(T")))- (5-8)
O
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Lemma 11. The solution ¢ given by Theorem 1 belongs to L™ ((0, Traz), L (T™)).

Proof. Recall that MM € L ((0, Twax), L2(T)) N L?((0, Tinax), H*(T)) is the so-
lution of (5.1). We would like to prove more regularity on 9t (and thus on
¥). Multiplying Equation (5.1) by —0z,., 90, integrating by parts and using
Gronwall lemma, one has

2 2
33 [1omome 57 [ 1o, m

_ 75/ |amgm|2+/am (G ) Dy, 0, M
T T
1
<5 / 02,92 + / 100, (Sp) 2+ 2 / Dy, P
T T 4 T

/B 1
< (5410, V) [ 102907 +5 [ 100, (00) P + 7= [ (00,
Recall that

fT"—l axlmlvw + f’]l‘n—l azlvaﬂﬂlw . f’]rn—l 811V¢ f’]rn—l al‘ldj
Jrar ¥ R Jpoa ¥ Jpn ¥
Since 1 € L®((0, Toax), H'(T™))), then 8, ¢y € L®((0, Tmax), L2(T™))) with

102, V156

12
(min))?

azl ¢¢ =

1021 D 1 7w (0, Toma) L2 (7)) < 31|y, V[[o +6 102, 117 o0 (0, Toman) L2 ()

Since M € L2((0, Trax), L°°(T))), then

35
337 |10+ 2 [ 10,1090 < (54 10, Vi) [ 10,00
T

+ Bl10w, S 131190712

Applying now Gronwall lemma, we get

M € L=((0, Tnax), H' (T))) N L*((0, Tinax), H*(T))).- (5.9)

Therefore, the assertion follows directly from the fact that ¢ < 93?e7§V
Lemma 10) and from the embedding H'(T) < L>°(T).

O

The following proposition shows a polynomial bound for the nonlinear func-
tional F' which is useful to prove later the global existence.

Proposition 5. (Polynomial bound)

Let us suppose that ¢ : [0, Tyaz) — WPP(T™) is the solution v given by The-
orem 1 of (1.1). There exists Cr > 0 such that the nonlinear functional F
satisfies the following polynomial bound:

IE@@E)p < Crllv@llop, Yt € [0, Tinas)- (5.10)
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Proof. For every t € [0, Tinax), using Lemma 3,

IE@)lp = [VV.VY + AVY = 05, (p))
< IVVol Vel + 1AV oo [¢llp + 104 llool| 02, 1l

/ amlvw / axlvazlw / 0u Ve [ 0uu
JITr-r JTn-tr T Tn—1 ’l/)

" " /
Tn—1 P Tn—1 n— _ p
<VV s IVl + [[AV oo [0l + ||¢¢Hoo|\5a:11/)||p

Y| oo
- 02, 5l + 100,V 00, e 1,
< 9Vl + IAV o bl + ||azlvnoo||w o+ 101V ol llop

bl
. =l + 105, Voo 0y Bl

F 110212, Vlsoll9llp + 102, Vlloo

102, Voo

CONYllo.p,

where C(1) = 4]V e+, V oo 1=

implies that there exists Cp > 0 such that C(t) < Cr, Vt € [0, Tnax)- O

+1102, V || so |02, IN || 0o. Now, Lemma 11

Proposition 6. The solution v given by Theorem 1 satisfies
¥ € L*((0, Trnaz), WTP(T™)). (5.11)
To prove this proposition, we need the following lemma.

Lemma 12. For t € [0,T)q4z), suppose that there exists a decreasing function
v € LY(0, Thaz), RT) and two functions u and ¢ € C([0, Tyuaz), RT), such that
the following inequality holds

t
u(t) < C(F) +/ v(t — s)u(s)ds, Vt € [0, Thaz)-
0
Then, there exists a constant § > 0, depending only on -y, such that
u(t) < 2¢7(t)exp(6t), for 0 <t < Tiaa,

where ¢*(t) := max{((s) |0 < s < t}.

The proof of this lemma can be found in [3], Lemma 2.2, see also Ap-
pendix AppendixA.8.

Proof of Proposition 6. Recall that i satisfies

Y(t) —1=etr(1hg — 1) + /t e" DY p(y(s))ds Yt € (0, Tmax). (5.12)
0
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Let ¢t € (0, Thax). Using (2.6) and (5.10), one has

t
1 (t) = lop <lle™ (o = Dllop +/0 le™ =% £ ro g 1E (1(5)) | ds

i

t
<Jle= (o — 1) oy + / Colt — 5)~Fe =9 Cp

o,pds

t
SO+ Cor [ (¢ )5 s,
0
where ((t) := |[e"*4* (g — 1)||5- By Lemma 12, there exists § > 0 such that

l()]lop < 2¢*(t) exp(dt), for0 <t < Tax,

where (*(t) := max{((s) |0 < s <t} € L*°([0, Tiax]). Therefore, the assertion
follows immediately. [J

5.2. Global existence: Proof of Theorem 2
The global existence result follows from the following general result.

Theorem 5. Suppose that F(¢) € L®((0, Tyaz), LP(T™)), then Tyaz = +00
and 1 is a global solution.

Proof. We follow Amann [3| to prove this proposition. We suppose that Ty <
+00, then we study the behaviour of ¢ (t) as t — Tiyax- By (2.6), since F(¢) €
L>((0, Trnax), LP(T™)), we have

(t = o(t) == /O e_(t_S)APF(dJ(s))ds) € C([0, Trmax), WP (T™)).

Denote w(t) := e t4ryhy+v(t), then w € C([0, Tinax], WP), since 1y € WP (T™).
Consequently, w(Timax) = t_l)lj{n w(t) exists in WP (T™).
If w(Timax) € D7P(T™), then w is a solution of the integral equation (1.6) on
[0, Tinax] extending 1, which contradicts the fact that v is a maximal solution.
Hence, w(Tmax) € (WoP(T™) (D7P(T™)), which means that w is zero at some
point, but this is again impossible since @ = 1) > 0. Therefore the assumption
Timax < 00 is false, and thus Tiax = +00.
O

We are now in position to prove the global existence result for the initial
problem (1.1) announced in Theorem 2 (7). In fact, using Proposition 5 and
Proposition 6, we obtain that F'(¢) belongs to L ((0, Tmax), L*(T™)). We thus
conclude by Theorem 5 that Ti,.x = +00.

This last assertion implies that the orbit v (1)) exists for all time and is
bounded in W#P?(T") for every s € [0, 2). Indeed, recall that (by Equation (2.6))
there exists a constant £ > 0 and a constant C, > 0 such that

||e7tA”||c(Lp,wp,p) < C’ptfge*’”"t, (5.13)

26



for all £ > 0, provided 0 < p < 2. Let 0 < d < Tihax, We can write:

¢
Y(t)—1 = e (79404 (1/}0—1)+/ e~ =94 p(y(s))ds, for & <t < Thax.
0

(5.14)
Since e 947 (¢pg — 1) € W2P < WPP then using (5.13), (5.14) and the bound-
edness of F(y* (1)) in LP(T"), we have

[W@llop < Cpy Yt €[5, Tinax)-

Since T™ is bounded, choosing p > ¢ and using the compact embedding WP (T") —
WP (T™), we obtain that {1(t); 6 <t < Tinax} is relatively compact in WP (T"™).

The assertion v (¢g) = {1(t); 6 < t < Tyax} is relatively compact in C*(T")
follows from the fact that {¢(¢);0 <t < §} = ([0, d]) is compact (continuous
image of a compact set) and by using the compact embedding (2.1) since o >
1+ 2. This proves the assertion (ii) of Theorem 2.

AppendixA. Proofs of various results

AppendizA.1. Proof of Lemma 1

The operator A, is a strongly elliptic operator of order 2 and D(A,) =
W2P(T™)N LE(T™) which is dense in L5(T™) by the embedding (2.2). Therefore,
by a straightforward adaptation of Theorem 7.3.6 in [12], where Dirichlet bound-
ary conditions are considered instead of periodic boundary conditions, —A, gen-
erates a strongly continuous analytic semigroup of contraction {e’tAP; t > 0}
on LE(T™). The Hille-Yosida theorem (see Theorem 1.3.1 in [12]), provides the
fact that the resolvent of —A, contains R..

Since the operator —A, generates a strongly continuous analytic semigroup
{e=t4r; ¢ > 0} on L{(T™), then 0 belongs to the resolvent of —A,,. Therefore,
by Theorem 2.6.13 in [12], one has the assertions (2.4) and (2.5).

To prove item 5, we use (2.4). Indeed, there exists x > 0 and C, > 0 such
that V1o € LE(T™)

le™ 440l = 1AG/2e 404, < Cot ™5 e[t

For the last assertion, Vv € [0/2,1]
He—a—s)Ap e (r=9)4,

L(LE WP

— HA;N(G—(I%—T)AP _ I)e—(r—s)Ap

L(LG,LE)

- H AT/2=7 (== Ay _ ) gre=(r=9)4y

L(L§,Lg)

< H(e—(t—rmp _ [)Agm—vH

—(r—s)A,
‘Age (r=s)

£(Lg,LE)
< Cory(t — 7)Y/ 2 (1 — 5) Ve r =)

L(LG,Lg)
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where we used (2.4) and the fact that, Vipo € L§(T™)
H(e—(t—r)Ap — ])AZ/Z—W%H < Coq(t— P)Y=o/2 HAz—ffﬂA;(v—a/?)wOH
p p
< Copy(t = T)’Y_U/Q”wonp

where the first inequality is obtained by (2.5).

AppendizA.2. Proof of Lemma 2
Part (1) follows directly from the continuity of ¢ — e~*4r4)y. To prove (2.9),

let ¥g € LE(T™) and h > 0. Then

e A A 1 [t _
0

0
1 t+h s 1 t s
= - “5ahods — — T3 ahod
h/h e 1,[)0 S h/o e d)o S
= E/ e *Arehyds — ﬁ/ e s Arehyds
t 0

and as h — 0, by (2.8), the right-hand side tends to e *4»1)y — 1)y, which
proves (2.9). For the last assertion, using Theorem 1.2.4(c) in [12]

d
@e‘“‘wo = _Ape_tprO
then (2.10) follows by integrating the last equation from s to t.

AppendizA.3. Proof of Proposition 8

The proof of this result is inspired from [3], Proposition 2.1. Since ¢ €
D7P(T™) and F is locally Lipschitz continuous from D??(T™) into L§(T"), then
there exist » > 0 and A > 0 such that

By (o, 2r) C D7P(T"), (A1)
Vi, € By p(%0,27),  [|IF(¥) = F(@)llp < Al — ¢llop (A.2)
and -
M :=sup {||F(¢)[lp, ¥ € Bgp(1ho,2r)} < oc. (A.3)
Choose 6 > 0 such that
Vte[0,6], lle (o —1) = (o — Dl <7 (A.4)
and
0 N . 1 r
/0 a(s)ds < min {2)\, M} , (A.5)

where & is defined in Lemma 1. Let

Z = {w s.t ¢ — 1€ C([0,6], W5 (T™)); sup [[(4(t) = 1) — e (¢ — 1) ]lop < 7“} :

0<t<s
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Z is endowed with the norm || - ||z := || - ||z ((0,5),w») and it is a complete

subset of the Banach space C([0,0], WP (T")). By (A.4), one has
Vip € Z,Vt € [0,6], (t) € By p(tho, 2r).
Indeed, let ¢ € Z, by (A.4), one has
[0(8) = Yollop = () = 1) = (o = Doy
< [(@(t) = 1) = e (g = Dllop + ™ (0 —
<r+r.
Since Vi) € Z, By (10, 2r) C D7P(T"), then

F(i(-)) € C([0,0], Lg) < L>=((0,0), Lg(T")).
In addition, by (A.3), V¢ — 1 € Z and V¢ € [0, §], one obtains

IE @)z (0,8),28) < M.

1) —

(A.6)

(%0 = Dllop

(A7)

(A.8)

Since —A,, generates a strongly continuous analytic semigroup on L§(T") (see

Lemma 1), then
t s e e (4hy — 1) € C([0, 8], WP (T™)).

Define now the application g : 1) € Z +— g(¢)), where

vt € (0,6, g(4)(t) = 1+ e e (g — 1) + / e = B (y(5))ds.

0

(A.9)

We have that ¢(Z) C Z. Indeed, using (2.6), (A.8) and (A.5), V¢ € Z, Vt € [0, 4]

l9(0)(8) = 1= 5 (g — 1)l = H [ e rwnas

/ He (=) 4 P (y(s))ds

< M/ a(t — s)ds
0

r
< M—.
- M

a,p

a,p

Moreover, by (A.2), (A.5) and (A.6), then Vt € [0,6], V1,92 € Z

|g<w1>—g<w2>|zzH / )4 (P (s)) — F(tha(s)) ds

Z

<P () = P (D= 0.0 | @t = 9)ds

1
7#2”04)5

= 2l

<Al =
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In conclusion, g : Z — Z is a contraction and the assertion follows by the
Banach fixed point theorem.

AppendizA.4. Proof of Theorem 3
Proposition 3 implies the existence of a unique mild solution % on some

compact interval [0,¢1] C [0,00), t; > 0, with initial boundary condition 1

at time ¢t = 0. If t; < oo, we can apply Proposition 3 to find a unique mild

solution v on [t1,ts], for some ¢5 > t;, with initial boundary condition ; :=
t1 _

Y(ty) = ef 1By +/ f (1 =9)A P (4(s))ds, which belongs to D7P(T"). Let
0

w € C([0,t2], D”P(T™)) be defined as:

w— { P in [0, 1],

v in [t1,ts].

Then, w is a mild solution on [0,¢5]. Indeed, Vit € [0, 4]
t
wlt) =Byt [0S P (s))ds.
0
Now, Vi € [tl, tQ]

t
¢k [ R ()
0

—1
= By +/

0

ty

I (s)ds + [ eI B ()

t1

t
=y, g [ 92 P y(s))ds
ty

= o(t),

since

t1 )
eﬂflmwo —|—/ e’ (f’_s)AF(w(s))ds

0

= o (1A 1“A#JWL/ o/ TIAE (y(s))ds
0

t1 B
_ A [eﬂ%%@ s [ AR )
0

_ eﬁ‘l(tftl)Ad,l_

By Proposition 3, it is also the unique solution on [0, t3]. Define now,
Ty 1= U {[0,%] C [0, 0) such that (1.1) has a unique mild solution on [0,]}.

Jy, is an interval in [0, 00), which contains 0 and is right open in [0, 00) since
otherwise, an application of Proposition 3 to its endpoint would give contradic-
tion. Clearly Jy, is the maximal interval of existence of a solution ¢ of (1.5),
which is uniquely defined.

30



AppendizA.5. Proof of Lemma 6

To prove Lemma 6, we will use the following lemma.
Lemma 13. Let r,t > 0 such that r < %, then
Vp e (0,1), t°4+rP <3(t—r)". (A.10)

t
Proof. Let r < 5, then

3(tr)"23<t;)p3<;)p2 (1+27) (;)p <;>p+t'”2rp+tp.

O

The proof of the following Lemma is inspired from [3]|, Proposition 1.4.
Since ¢ € C([0,Tax), D7P(T™)) it follows from Lemma 5 that F(¢(-)) €
C([0, Trmax), LE(T™)). Let 0 < p <7 <t < T < Thpax, then M := sup [|[F(¥(2))|l, <

t€[0,T)

o0. Let us now consider two cases:

(i) If 0 < r < t/2, then using (2.6) and (A.10)

/ e~ (=)0 Py (5))ds — /r e~ (=94 P(y(s))ds
0

0

o,p

t r
< |[at-sas+ [ a(r—s)ds] IE@O) =01 22

(16) T0 < t/2 <r <t<T,thus using (i) and (2.7), Vv € (0/2,1), one has
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/ e =)4, p((5)) ds — [ e r s
0

0

<

a,p

/ e~ =) F(ah(s))ds — /T e~ T F(y(s))ds
2

r—t 2r—t

a,p

2r—t
+‘ / (e~ =94 _ o= (=9)4) P (y)(s))ds
0

a,p

<

2(t—r) , 2r—t ,
/ ef(Q(tfr)fs )APF(d)(S,))dS, _ / ef((tfr)fs )APF(i/J(S/))dS/
0 0

2r—t
/ (e—(t—s’)Ap _ e—(r—s’)Ap)F(w(S/))dS/
0

1—y
< 3C,M  Co NMT (t—r)r—o/2,
1—0/2 1—7

"

a,p

where we used in the fourth line the following change of variable: s’ =
s — 2r + t. Since the result is valid for all v € (¢/2,1), then

v e U7 ([0, T, DOP(TTY).

loc

AppendizA.6. Proof of Lemma 9
First of all, let’s prove that v1(t) € D(A,). We define,

o= [ - Fee)ds foreze oy
0 for t < e.

From this definition, it is clear that vy .(¢) — v1(¢) as € — 0 in LP. It is also
clear that vy .(t) € D(Ap) and for t > ¢

Apvre(t) —/06 Ape” U (F(y(s)) — F(4(t)))ds. (A.12)

Since, by Lemma 8, F(1()) € C¥ . ([0, Trax), L (T™)), it follows that, for ¢ > 0,

loc
Apv1 £ (t) converges as ¢ — 0 and

iig%Apulyg(t)z/o Ape™ =04 (F(4p(s)) — F(¥(1)))ds.

The closedness of A, then implies that v1(t) € D(A,) for ¢t > 0 and

t
Apur(t) = / Ape™ U (F(3(s)) = F(3(t)))ds. (A.13)
0
Now we have only to prove the Holder continuity of A,v;(t). Since e™*4» is a
contraction semigroup on Lf(T™), then Vt € [0, T
le™ 4|l cug ey < 1 (A.14)
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and

[le=(t+m A _ e_tA”Hg(Lg,Lg) < 2. (A.15)

Using Equation (2.4) with o = 1, there exists a constant C' > 0 such that
vt € (0,7), ||Ape_tAPH£(Lg7Lg) <ct . (A.16)
Using (2.10), (A.14), (A.16) and (2.4) (with o = 2), then for all 0 < s <t <

T < Tmax, We have

t
”Ape—tAp _ Ape_SAp”[,(Lg,Lg) — HAP/ —Ape_TApdT

/ A2 A dr
L(LE,LP)
/ S pe—
SC/ T2
_ 0(871 _ tfl)
= Ot tsTH(t — s). (A.17)

L(LG,LE)

Let t > 0 and h > 0 then

Ayon(t+h) — Apor (1) = A / A o0 (F(y(s)) — F((1)))ds
+ A, / e~ Hh=9)Ap (P (y(t) — F(1(t + h)))ds
4 / ~WHR=) A (P(3(s) — F(6(t + h)))ds

=L+ 1L+]1s (A.18)

We estimate each of the three terms separately. From the Hoélder continuity
of F' and from (A.17), one has V0 < t < T < Tipax

[1E((s)) = F((1))lpds

t
I < HA —(t+h—s)Ap, _ A —(t—s)A,
Il < [ [l e ronn

¢ ds
SCh/O t—sth)(t—s)"

<Ch" . (A.19)

The last inequality is obtained by using several changes of variable as follows:
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! ds K du
/0 (t—s+h)(t—s)1—v :/0 (ut hyut—— (A.20)

1 ti-m e
= - _/ S (A.21)
-V 0 vi—v= 4+ h
1 tl,y— 211/__—_1
= f/ v dv (A.22)
h Jo (hlfV7 Yimv— 41
1 (t/h)l_’/7 h2u_71 %hlfu_
- / v dw  (A.23)
h Jo wi-v~ +1
- 00 QIM::
<h —1/ e — (A.24)
0 wi-v= 41
<Cchr ! (A.25)

where we have used respectively the following changes of variable: u =t — s,
v=u'""and w = .

To estimate I, we use (2.9), that F(i(-)) € C¥ ([0,T], LP(T")) and (A.15),

t+h
nbmzl%[; A (F((8)) — F((t + h))ds

P
= || (e7tmAr — e=h2) (P(p() - Pt + WHP
< lem M Ar _o=h4y L(LP,Lv) [1E @) = F((E+ h)llp
< 20n" . (A.26)

Finally, to estimate I3, we use (A.16) and that F(y(-)) € C¥ ([0,T], LE(T™)),

1E((s)) = F((t+ h)llp

t+h ( 1A
I, < HA eltth=s)4,
|| 3||P \/t P c(ng’L;g)

t+h -
SC’/ (t+h—s)” "ds
¢

<Ch" . (A.27)

Combining (A.18) with estimates (A.19), (A.26) and (A.27), one obtains
that Apvi(t) is Holder continuous from [0, T] to L?(T™).

AppendizA.7. Proof of Theorem 4
Let § > 0 and T € (0, Tynax), we have that

(Y(t) —1) = e (1o — 1) + / e” (=N P (3)(s))ds = e 7 (¢hg — 1) + v(t)

0
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and p

S —1) = ~A, ()~ 1)+ F(y).
Since by (A.17) Ape~4#(¢py — 1) is Lipschitz continuous from [0, Tiax) into
LB(T™), then it suffices to show that A,v(t) € CY . ((0, Tmax), LP(T™)). To this
end, one can decompose v into

e~ =34 Py (t))ds.

S~

v(t)=v1(t)+vz(t)=/o eI (F (4 ()= F (1)) )ds+

From Lemma 9, it follows that A,vi(t) € C¥_((0,Timax), LP(T™)), so it re-
mains only to show that A,va(t) € C¥ . ((0, Tmax), LP(T™)). By (2.9), we have
Apva(t) = —(e=t — I)F(¢)(t)), and since F(1(t)) € C¥ ([0, Tmax), LP(T™)), it
only remains to prove that e *4» F()(t)) € C¥ _((0, Tiax), LP(T™)).

Using (2.7) (with o =0,y =1, ¢t =t+h, r = ¢ and s = 0), then Yy, €

L§(T™), ¥6 > 0, Vt > § one obtains:

He_(H_h)Ap(PO _ e—tAp(pOHp < C”@O”ph(s_lo (A28)

Let § <t <T < Tax and h > 0, then using the fact that F(¢) € C* ([0, T], LE(T™))
and (A.28)

He*(tJrh)APF('L/)(t + h)) — e P F(y(t))

p

et IF((t + h) — F @),
+ He_(H'h)AP — e_tAp ||F(¢(t))||p

L(Lg,Lg)
< ChY 4+ C5'h||F ()l e ((0,1),L7)
< Ch" .

< He*wh)f‘p

Thus A,(v —1) € CL. ((0, Tiax), LP(T™)). This completes the proof of the part
(i) since &(yp — 1) = —A,(¢p — 1) + F(¢p) € CL (0, Tmax), LP(T™)).

To prove (ii), we first note that if 109 € W2P(T"), then A,e~*4r (¢ — 1) =
et A, (1o—1) € O([0, Trnax), LE(T™)). By Lemma 9, A,v1(t) € C¥_ ([0, Timax), LP(T™)).
We also have A,vz(t) = —(e"t4» — I)F(3(t)). Since F(3) is continuous on
[0, Timax) with values in LH(T™), it only remains to show that e~*4r F(¢)(t))
is continuous on [0, Tyax) with values in LE(T™). From (i), it is clear that
et F(1)(t)) is continuous on (0, Tiax). Since F(1)) € LH(T™), the continuity
at t = 0 follows directly from,

et Po(e) = F@o)ll, < fle™** (o) = F@)ll, + 1P 00) = F@l,

and this completes the proof of (7).
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AppendizA.8. Proof of Lemma 12

This prove is borrowed from Lemma 3.3 in [3]. Choose € > 0 such that

£
1
/ v(s)ds < 5 Thus, for 0 <r <t < Tiax
0

u(r) < {(r) + /OTE v(r — s)u(s)ds + /i v(r — s)u(s)ds

< ¢ () + () /

0

u(s)ds + u*(t) /E ~(s)ds,

0

<) [ ws)ds+ .

where u*(t) := max{u(s) |0 < s < ¢}. Therefore,
t
u*(t) < 2¢"(t) + 5/ u*(s)ds, 0 <t < Tmax,
0
where 0 := 2y(e). Standard Gronwall’s lemma then yields the assertion.
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