
HAL Id: hal-01244862
https://hal.science/hal-01244862

Preprint submitted on 16 Dec 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FUNCTION VARIATIONAL PRINCIPLES AND
NORMED MINIMIZERS

Mihai Turinici

To cite this version:
Mihai Turinici. FUNCTION VARIATIONAL PRINCIPLES AND NORMED MINIMIZERS. 2015.
�hal-01244862�

https://hal.science/hal-01244862
https://hal.archives-ouvertes.fr


FUNCTION VARIATIONAL PRINCIPLES

AND NORMED MINIMIZERS

MIHAI TURINICI

Abstract. The function variational principle due to El Amrouss [Rev. Col.

Mat., 40 (2006), 1-14] may be obtained in a simplified manner. Further ap-
plications to existence of minimizers for Gâteaux differentiable bounded from

below lsc functions over Hilbert spaces are then provided.

1. Introduction

Let (M,d) be a complete metric space; and ϕ : M → R be (M,d)-regular; i.e.,

(a01) ϕ is bounded below (inf ϕ(M) > −∞)

(a02) ϕ is d-lsc on M (lim infn ϕ(xn) ≥ ϕ(x), whenever xn
d−→ x).

Define for each θ ≥ 0

ulev(ϕ;M ; θ) = {x ∈M ;ϕ(x) ≤ inf ϕ(M) + θ};
this will be referred to as the θ-upper level set of ϕ with respect to M ; in partic-
ular, ulev(ϕ;M ; 0) is nothing else than the (global) minimizers set of ϕ over M .
The following 1974 statement in Ekeland [9] (referred to as Ekeland’s variational
principle; in short: EVP) is well known.

Theorem 1.1. Let ε > 0 be given; as well as some u ∈ ulev(ϕ;M ; ε). Then, for
each δ > 0, there exists v = v(ε, u; δ) ∈M with

(11-a) (ε/δ)d(u, v) ≤ ϕ(u)− ϕ(v); hence [ϕ(u) ≥ ϕ(v), d(u, v) ≤ δ]
(11-b) (ε/δ)d(v, x) > ϕ(v)− ϕ(x), for all x ∈M \ {v}.

This principle found some basic applications to control and optimization, gener-
alized differential calculus, critical point theory and global analysis; we refer to the
1979 paper by Ekeland [10] for a survey of these. So, it cannot be surprising that,
soon after its formulation, many extensions of (EVP) were proposed. For example,
the abstract (order) one starts from the fact that, with respect to the Brøndsted
order [6] (on M)

(x, y ∈M): x ≤ y iff (ε/δ)d(x, y) ≤ ϕ(x)− ϕ(y)

the point v ∈ M appearing in the second conclusion above is maximal; so that,
(EVP) is nothing but a variant of the Zorn-Bourbaki maximal principle [31, 4];
see Hyers et al [14, Ch 5] for a number of technical aspects. The dimensional
way of extension refers to the ambient space (R) of ϕ(M) being substituted by a
(topological or not) vector space; an account of the results in this area is to be found
in the 2003 monograph by Goepfert et al [13, Ch 3]. Further, the (pseudo) metrical
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one consists in conditions imposed to the ambient metric over M being relaxed.
The basic result in this direction was obtained in 1992 by Tataru [22], via Ekeland
type techniques; subsequent extensions of it may be found in the 1996 paper by
Kada et al [15]. Finally, we must add to this list the functional extension of (EVP)
obtained in 1997 by Zhong [30] (and referred to as Zhong’s Variational Principle;
in short: ZVP). Let again ϕ : M → R be a (M,d)-regular function. Further, take
a normal function t 7→ b(t) from R+ := [0,∞[ to R0

+ :=]0,∞[; i.e.,

(a03) b(.) is increasing and continuous

(a04) B(∞) =∞, where B(t) =
∫ t

0
(1/b(τ))dτ, t ≥ 0.

Theorem 1.2. Let ε > 0 be given, as well as some u ∈ ulev(ϕ;M ; ε). Further, let
x0 ∈M and δ, ρ > 0 be taken according to

δ ≤ B(r + ρ)−B(r), where r := d(x0, u).

There exists then v = v(ε, u;x0, δ, ρ) in M , with

(12-a) ϕ(u) ≥ ϕ(v), d(x0, v) ≤ r + ρ
(12-b) (ε/δ)d(v, x)/b(d(x0, v)) > ϕ(v)− ϕ(x), for each x ∈M \ {v}.

Now, evidently, (ZVP) includes (for b = 1, x0 = u, and δ = ρ) the local version
of (EVP) based upon (11-a) (the second half). The relative form of the same, based
upon (11-a) (the first half) also holds (but indirectly); see Bao and Khanh [2] for
details. Summing up, (ZVP) includes (EVP); but the provided argument is rather
involved. A simplification of the proposed reasoning was given in Turinici [26], by
a technique developed in Park and Bae [20]; note that, as a consequence of this,
(ZVP) is nothing but a logical equivalent of (EVP).

Recently, a local functional version of (EVP) was established by El Amrouss [11].
Let ϕ : M → R be a (M,d)-regular function. Further, let the function a : R+ → R0

+

be admissible, in the sense

(a05) a(.) is increasing and continuous
(a06) a(.) is a comparison function, of order k > 0
(∀q ≥ k, ∃λ, µ ≥ 0 : a((t+ 1)s) ≤ a(t)[λsq + µ],∀t, s ≥ 0).

Denote also, for u ∈M , ρ > 0,

M [u, ρ] = {x ∈M ; d(u, x) ≤ ρ}, M(u, ρ) = {x ∈M ; d(u, x) < ρ}
(referred to as: the closed/open sphere with center x and radius ρ). Finally, take
some x0 ∈M and some function γ : M → R0

+, with

(a07) u 7→ γ(u)/(1 + d(x0, u)) is bounded on M .

The following result (referred to as El Amrouss Ordering Principle; in short: EAOP)
is now available.

Theorem 1.3. Let ε, δ > 0 be given, as well as some u ∈ ulev(ϕ;M ; ε). There
exists then a sequence (zn;n ≥ 0) in M [u, γ(u)] and a point v ∈ M [u, γ(u)], with
the properties

(13-a) z0 = u, limn zn = v and (d(x0, zn);n ≥ 0) is ascending

(13-b)
∑j

n=0 d(zn, zn+1)/a(d(x0, zn+1)) < 2δ, for all j ≥ 0
(13-c) ϕ(u) ≥ ϕ(v) and d(u, v) ≤ min{γ(u), δa(d(x0, v))}
(13-d) (ε/δ)d(v, w)/a(d(x0, w)) ≥ ϕ(v)− ϕ(w),
for all w ∈M [u, γ(u)] \M(x0, d(x0, v)).
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In particular, the constant function a = 1 is admissible. Note that the varia-
tional conclusion (13-d) above (retainable for certain points of a closed sphere in
M) is effectively stronger than the variational conclusion (12-b) (valid for all ele-
ments of M). Despite this local character, (EAOP) found some nice applications
in Variational Analysis; see the quoted paper for details. So, a technical analysis
of its basic lines may be not without profit. It is our aim in this exposition to
show (in Section 3) that a simplification of this reasoning is possible, by reducing
(EAOP) to the metrical version of (EVP) in Turinici [23] (cf. Section 2). This,
among others, allows a re-consideration of the admissibility concept; in fact, we
simply show that the comparison type condition (a06) may be dropped. Further,
Section 4 is devoted to a differential version of our main result, in Hilbert spaces.
Finally, in Section 5, an application of the differential result above to existence of
minimizers for Gâteaux differentiable regular functions acting over Hilbert spaces
is considered. Some other aspects of this problem will be discussed elsewhere.

2. Metrical ordering principles

Let (M,d) be a metric space; and (�) be an order (reflexive, transitive, anti-
symmetric relation) over it; the resulting triple (M,d;�) will be termed an ordered
metric space. A point z ∈M is called (�)-maximal, when

w ∈M , z � w =⇒ z = w;

and the order (�) is termed a Zorn one, when:

for each x ∈M there exists a (�)-maximal z ∈M with x � z.
For a number of both practical and theoretical reasons, it would be useful to es-
tablish under which conditions is such a property retainable. The standard way of
solving this question is based upon the chains (i.e.: totally ordered subsets) of the
structure (M,�); cf. Bourbaki [4]. However, under the precise metrical setting, a
denumerable version of such principles is more appropriate for our purposes. This
will necesitate a few conventions and auxiliary facts. Let (xn) be a sequence in M ;
we shall term it ascending (resp.: descending), if

xi � xj (resp.: xi � xj) when i ≤ j.
Further, a point u ∈M is called an upper bound of our sequence (xn), provided

xn � u, for all n (written as: (xn) � u);

when such elements u exist, we say that (xn) is bounded above (modulo (�)).
The following 1984 answer to the above problem (referrred to as: metrical Zorn-

Bourbaki principle; in short: (ZB-m)) is provided in Turinici [24]:

Proposition 2.1. Suppose that

(b01) (�) is inductive:
each ascending sequence is bounded above (modulo (�))
(b02) (�) is regular: each ascending sequence is a d-Cauchy one.

Then, (�) is a Zorn order.

Note that the semimetric variant of (ZB-m) includes the 1976 ordering principle
due to Brezis and Browder [5] (in short: BB); which in turn, includes Ekeland’s
Variational principle [10] (i.e.: EVP). It is worth remarking that, by developments
like in Cârjă et al [8, Ch 2, Sect 2.1], (ZB-m) is deductible from the Principle of
Dependent Choices (in short: DC) due to Bernays [3] and Tarski [21]; see also Wolk



4 MIHAI TURINICI

[29]. Finally, (EVP) includes (DC), as results from the 1987 paper by Brunner [7],
and its refinement in Turinici [28]. Summing up, we have

(DC) =⇒ (ZB-m) =⇒ (BB) =⇒ (EVP) =⇒ (DC);

whence, all members of this inclusion chain are mutually equivalent. This assertion
comprises as well the variational statements in Altman [1], Kang and Park [16], or
Turinici [25]; we do not give details.

A basic particular case of these developments is the following. Let again (M,d;�)
be an ordered metric space. Call the subset Z ⊆M , (�)-closed if:

the limit of each ascending (modulo (�)) sequence in Z belongs to Z.

For example, this holds whenever Z is closed; but the reciprocal is not in general
true. Further, let us say that (�) is self-closed, when;

M(x,�) := {y ∈M ;x � y} is (�)-closed, for each x ∈M ;
or, equivalently:
the limit of each ascending sequence is an uper bound of it (modulo (�)).

In particular, this holds whenever (cf. Nachbin [18, Appendix]):

(�) is closed from the right: M(x,�) is closed, for each x ∈M ;

but, the converse is not in general valid. Finally, call d, (�)-complete if

each ascending (modulo (�)) d-Cauchy sequence in M is d-convergent.

For example, this always happens when d is complete (in the usual sense). The
reciprocal is not in general true; just take M =]0, 1], endowed with the standard
metric and order.

The following maximal type statement (referred to as: strong metrical Zorn-
Bourbaki principle; in short: (ZB-m-s)) established in 1981 by Turinici [23], will be
useful for us.

Proposition 2.2. Suppose that

(b03) (�) is regular and self-closed
(b04) d is (�)-complete (over M).

Then, for each u ∈M there exists v ∈M with

(22-1) u � v (i.e.: v ∈M(u,�))
(22-2) w ∈M and v � w imply v = w.

The proof consists in verifying that, under (b03) (the second half) and (b04),
the ambient order (�) is inductive; we do not give details.

3. Extension of (EAOP)

With this information at hand, we may now return to the posed questions of
introductory part.

Let (X, d) be a complete metric space; and ϕ : X → R be a function with the
(X, d)-regular properties; i.e.:

(c01) ϕ is bounded below (inf ϕ(X) > −∞)

(c02) ϕ is d-lsc on X (lim infn ϕ(xn) ≥ ϕ(x), whenever xn
d−→ x).

Further, let the function a : R+ → R0
+ be taken as

(c03) a(.) is increasing (t1 ≤ t2 implies a(t1) ≤ a(t2)).

Finally, take some point x0 ∈ X (fixed in the sequel).
(A) Let (≤) stand for the relation (in X)
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(z, w ∈ X): z ≤ w iff d(x0, z) ≤ d(x0, w).

Clearly, it is reflexive and transitive; i.e., it is a quasi-order on X. Further, let us
fix ε, δ > 0 and consider the relation

(z, w ∈ X): z ⊥ w iff (ε/δ)d(z, w)/a(d(x0, w)) ≤ ϕ(z)− ϕ(w).

For the moment, (⊥) is reflexive and antisymmetric. Further properties of this (and
the preceding) object are contained in

Lemma 3.1. The couple (≤,⊥) is transitively compatible, in the sense

u ≤ v ≤ w, u ⊥ v, v ⊥ w =⇒ u ⊥ w.

Proof. Let u, v, w ∈ X be as in the premise of this implication; that is

(i) d(x0, u) ≤ d(x0, v) ≤ d(x0, w)
(ii) (ε/δ)d(u, v)/a(d(x0, v)) ≤ ϕ(u)− ϕ(v),
(ε/δ)d(v, w)/a(d(x0, w)) ≤ ϕ(v)− ϕ(w).

By the increasing property of a(.), we have

a(d(x0, v)) ≤ a(d(x0, w)) [whence, 1/a(d(x0, w)) ≤ 1/a(d(x0, v))];

so that, the second half of working condition gives

(ε/δ)d(u, v)/a(d(x0, w)) ≤ ϕ(u)− ϕ(v),
(ε/δ)d(v, w)/a(d(x0, w)) ≤ ϕ(v)− ϕ(w);

wherefrom (by the triangular property of d)

(ε/δ)d(u,w)/a(d(x0, w)) ≤
(ε/δ)(d(u, v) + d(v, w))/a(d(x0, w)) ≤ ϕ(u)− ϕ(w);

i.e., u ⊥ w; hence the conclusion. �

As a consequence of this, the ”product” relation (�) over X

(z, w ∈ X): z � w iff z ≤ w, z ⊥ w
is reflexive, transitive and antisymmetric; hence, an ordering on X. Our next
objective is to establish that the strong metrical Zorn-Bourbaki principle (ZB-m-s)
is applicable on each structure (M,�; d); where M is a (nonempty) closed bounded
part of X. This is clearly the case with the (�)-completeness property; because (as
M is closed) we necessarily have

d is complete on M ; hence, d is (�)-complete on M .

So, it remains to verify that

(�) is regular and self-closed (over this class of subsets).

(B) We start with the verification of regularity condition. A positive answer to
this is given in

Lemma 3.2. The introduced order (�) is boundedly regular; i.e.,

each ascending (modulo (�)) bounded sequence in X is d-Cauchy.

And, as such, (�) is regular over each (nonempty) closed bounded part M of X.

Proof. Let (yn) be some bounded sequence in X with

yn � yn+1,∀n; or, equivalently: yn � ym, whenever n ≤ m.

By the very definition of our order (�), this amounts to the couple of conditions
below being fulfilled
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(asc-1) d(x0, yn) ≤ d(x0, ym), whenever n ≤ m

(asc-2) (ε/δ)d(yn, yn+1)/a(d(x0, yn+1)) ≤ ϕ(yn)− ϕ(yn+1), ∀n.

The boundedness condition upon (yn) means

µ := sup{d(yi, yj); i ≤ j} <∞;

hence
d(x0, yn) ≤ d(x0, y0) + d(y0, yn) ≤ ν := d(x0, y0) + µ, ∀n.

Combining with (asc-2) yields (by the increasing property of a(.))

(ε/δ)d(yn, yn+1)/a(ν) ≤ ϕ(yn)− ϕ(yn+1),∀n.
The (real) sequence (ϕ(yn)) is descending and bounded from below; hence

the series
∑

n(ϕ(yn)− ϕ(yn+1)) converges (in R+).

This, added to the previous relation, assures us that

the series
∑

n d(yn, yn+1) converges (in R+);

whence, (yn) is d-Cauchy; as claimed. �

(C) Finally, we are passing to the verification of self-closeness condition. An
appropriate answer is contained in

Lemma 3.3. Under the imposed conditions,

(�) is self-closed on X;

hence, a fortiori,

(�) is self-closed over each (nonempty) closed bounded part M of X.

Proof. Let (yn) be some ascending (modulo (�)) sequence in X; i.e.,

conditions (asc-1) and (asc-2) (see above) are fulfilled.

In addition, assume that (for some y ∈ X)

yn
d−→ y (i.e.: d(yn, y)→ 0) as n→∞.

By (asc-1) and continuity of u 7→ d(x0, u), one gets (passing to limit as m→∞)

d(x0, yn) ≤ d(x0, y) (i.e.: yn ≤ y), for all n.

So, combining with (asc-2) (and a(.) being increasing)

(ε/δ)d(yn, yn+1)/a(d(x0, y)) ≤ ϕ(yn)− ϕ(yn+1), for all n.

This, by the triangular property of d, gives

(ε/δ)d(yn, ym)/a(d(x0, y)) ≤ ϕ(yn)− ϕ(ym), for n ≤ m.

Passing to lim inf as m→∞, one derives (by the d-lsc property of ϕ)

(ε/δ)d(yn, y)/a(d(x0, y)) ≤ ϕ(yn)− ϕ(y) (i.e.: yn ⊥ y), for all n.

Hence, (yn) � y; and this ends the argument. �

We are now in position to formulate an appropriate variational result involving
these data. Let the general conditions above be accepted. Precisely, let (X, d) be a
complete metric space; and ϕ : X → R be a function with

(regu) ϕ is (X, d)-regular (see above).

Remember that, for each θ ≥ 0 we denoted

ulev(ϕ;X; θ) = {x ∈ X;ϕ(x) ≤ inf ϕ(X) + θ};
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this will be referred to as the θ-upper level set of ϕ with respect to X; in particular,
ulev(ϕ;X; 0) is nothing else than the (global) minimizers set of ϕ over X. Further,
let the function a : R+ → R0

+ be chosen according to

(incr) a(.) is increasing (t1 ≤ t2 implies a(t1) ≤ a(t2)).

Finally, pick some point x0 ∈ X; and let u 7→ γ(u) be a function from X to R0
+.

The following extended El Amrouss Ordering Principle (in short: (EAOP-ext)) is
now available:

Theorem 3.1. Let ε, δ > 0 be given, as well as some point u ∈ ulev(ϕ;X; ε).
There exists then another point v = v(ε, δ;u) ∈ X[u, γ(u)], with

(31-a) d(x0, u) ≤ d(x0, v), (ε/δ)d(u, v)/a(d(x0, v)) ≤ ϕ(u)− ϕ(v);
hence d(u, v) ≤ min{γ(u), δa(d(x0, v))}
(31-b) w ∈ X[u, γ(u)] \ {v}, d(x0, v) ≤ d(x0, w)
imply (ε/δ)d(v, w)/a(d(x0, w)) > ϕ(v)− ϕ(w);
hence, (ε/δ)d(v, w)/a(d(x0, v)) > ϕ(v)− ϕ(w).

Proof. Denote for simplicity M = X[u, γ(u)], where u is as before. Clearly, M is
closed bounded; as well as nonempty (since u ∈ M). Let also (�) stands for the
(product) order

(z, w ∈ X): z � w iff z ≤ w (i.e.: d(x0, z) ≤ d(x0, w)), and
z ⊥ w (i.e.: (ε/δ)d(z, w)/a(d(x0, w)) ≤ ϕ(z)− ϕ(w)).

By the preliminary facts above, the strong metrical Zorn-Bourbaki principle (ZB-
m-s) applies to (M,d;�); so that (the restriction to M of) (�) is a Zorn order
(over M). This means that, for the starting point u ∈ M , there exists another
point v = v(u) ∈M , with

(31-c) u � v (i.e.: u ≤ v and u ⊥ v)
(31-d) v � w ∈M =⇒ v = w (i.e.: w ∈M,v ≤ w, v ⊥ w ⇒ v = w).

The former of these means, by definition

(31-e) d(x0, u) ≤ d(x0, v), (ε/δ)d(u, v)/a(d(x0, v)) ≤ ϕ(u)− ϕ(v).

Note that, as a consequence of its second half,

ϕ∗ ≤ ϕ(v) ≤ ϕ(u), where ϕ∗ := inf ϕ(X);

so that (by the choice of u)

ϕ(u)− ϕ(v) ≤ ϕ(u)− ϕ∗ ≤ ε.

This, again combined with (31-e) (the second half), gives

d(u, v) ≤ δa(d(x0, v)); hence d(u, v) ≤ min{γ(u), δa(d(x0, v))};

which, along with (31-e), is just our first conclusion in the statement. On the other
hand, (31-d) may be written as (by definition)

(31-f) whenever w ∈M fulfills d(x0, v) ≤ d(x0, w) and
(ε/δ)d(v, w)/a(d(x0, w)) ≤ ϕ(v)− ϕ(w), then v = w;

or, equivalently,

for each w ∈M \ {v} with d(x0, v) ≤ d(x0, w),
we must have (ε/δ)d(v, w)/a(d(x0, w)) > ϕ(v)− ϕ(w);

which is just the first half of second conclusion in the statement. The second half
of the same is immediate, in view of
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d(x0, v) ≤ d(x0, w) =⇒ a(d(x0, v)) ≤ a(d(x0, w))
=⇒ 1/a(d(x0, v)) ≥ 1/a(d(x0, w)).

The proof is thereby complete. �

Technically speaking, this result may be viewed as a refinement of El Amrouss
Ordering Principle (EAOP). Remember that, in the quoted statement, the extra
regularity conditions below were considered (in our notations)

(c04) a(.) is continuous on R+

(c05) a(.) is a comparison function, of order k > 0
(∀q ≥ k, ∃λ, µ ≥ 0 : a((t+ 1)s) ≤ a(t)[λsq + µ],∀t, s ≥ 0)
(c06) u 7→ γ(u)/(1 + d(x0, u)) is bounded on X.

The proposed argument tells us that, in the refined principle (EAOP-ext), all these
regularity conditions may be dropped. This may have some theoretical impact upon
the quoted result; but, in general, not a practical one.

Finally, the obtained ”relaxed” principle (EAOP-ext) allows us (in a limited
sense) some comparison type operations with Zhong’s Variational Principle (ZVP).
For, as precise, a direct consequence of conclusion (31-b) is (by the increasing
property of a(.))

(31-g) w ∈ X[u, γ(u)] \ {v}, d(x0, v) ≤ d(x0, w)
imply (ε/δ)d(v, w)/a(d(x0, v)) > ϕ(v)− ϕ(w).

This, added to the fact that

(12-b) =⇒ (31-g) under b = a,

tells us that the variant of (EAOP-ext) – with (31-g) in place of (31-b) – is obtain-
able from (ZVP), whenever

(c06) the function a(.) is normal (see above).

However, a general inclusion of this type is not accessible for the moment. Further
aspects will be discussed elsewhere.

4. Differential versions

The usefulness of our main result above is to be judged in a differential context
only. For, as we shall see further, this setting has an essential role in solving the
minimizers problem for such (nonlinear) functions.

Having these precise, it is our aim in the following to establish a differential
version of extended El Amrouss Ordering Principle (EAOP-ext), within the class
of Gâteaux differentiable regular maps acting on a Hilbert space. Note that, such
a context is not the most general one; but, for the applications to be considered,
this will suffice.

Let H be a (real) Hilbert space with respect to the scalar product (x, y) 7→ 〈x, y〉.
As usually, we denote by ||.|| the norm induced by this scalar product; and by d,
its associated metric:

(||x|| = 〈x, x〉1/2;x ∈ H), (d(x, y) = ||x− y||;x, y ∈ H);

remember that, by the very definition of our structure,

(H, ||.||) is a Banach space; hence, (H, d) is a complete metric space.

Put also, for simplicity,

H1 = {h ∈ H; ||h|| ≤ 1} (the unitary closed sphere in H)
∂H1 := {h ∈ H1; ||h|| = 1} (the boundary of H1).
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Let the function ϕ : H → R be (H, d)-regular; i.e. (see above)

(d01) ϕ is bounded below (inf ϕ(H) > −∞)

(d02) ϕ is d-lsc on H (lim infn ϕ(xn) ≥ ϕ(x), whenever xn
d−→ x).

Define for each θ ≥ 0

ulev(ϕ,H; θ) = {x ∈ H;ϕ(x) ≤ inf ϕ(H) + θ};
this will be referred to as the θ-upper level set of ϕ with respect to H; in particular,
ulev(ϕ;H; 0) is nothing else than the (global) minimizers set of ϕ over H. The
differential setting we just evoked is to be introduced as follows. Let z ∈ H be
arbitrary fixed. We say that ϕ is Gâteaux differentiable at z when there exists an
element ϕ′(z) ∈ H (the Gâteaux differential of ϕ at z), with

limt→0+(1/t)(ϕ(z + th)− ϕ(z)) = 〈ϕ′(z), h〉, for all h ∈ H.

Suppose that (in addition to (d01)+(d02))

(d03) ϕ is Gâteaux differentiable over H:
ϕ′(z) exists (cf. this definition), ∀z ∈ H.

Denote, for each z ∈ H,

C(z) = {h ∈ H; 〈z, h〉 ≤ 0}; C1(z) = C(z) ∩ ∂H1.

Clearly, C(z) is a convex cone in H; i.e.:

C(z) + C(z) ⊆ C(z), R+C(z) ⊆ C(z).

On the other hand, C1(z) is always non-degenerate; precisely,

C1(0) = ∂H1; C1(z) 3 −z/||z|| 6= 0, z ∈ H \ {0}.
Denote also (for each z in H)

ν(ϕ′(z)) = sup{〈ϕ′(z), h〉;h ∈ C1(z)}, |ν|(ϕ′(z)) = max{ν(ϕ′(z)), 0}.
Note that, in view of

|〈ϕ′(z), h〉| ≤ ||ϕ′(z)|| · ||h|| ≤ ||ϕ′(z)||, ∀h ∈ C1(z), ∀z ∈ H,

we must have (for all such z)

ν(ϕ′(z)) ∈ R; hence, |ν|(ϕ′(z)) ∈ R+.

Finally, take some function a : R+ → R0
+, according to

(d04) a(.) is increasing (t1 ≤ t2 implies a(t1) ≤ a(t2));

and introduce the mappings (from H to R0
+)

β(u) = ||u||+ 1, γ(u) = 2β(u) = 2||u||+ 2, u ∈ H.

As a direct application of extended El Amrouss Ordering Principle (EAOP-ext),
we have the following statement, referred to as: differential El Amrouss Ordering
Principle (in short: (EAOP-dif)):

Theorem 4.1. Let ε > 0 be given, as well as some u ∈ ulev(ϕ;H; ε). Further, let
δ > 0 be taken according to

(d05) δ < β(u)/a(3β(u)) (hence, δa(3β(u)) < β(u)).

There exists then v = v(ε, u, δ) ∈ H, with the properties

(41-a) ||u|| ≤ ||v||, ϕ(u) ≥ ϕ(v), and ||u− v|| ≤ min{γ(u), δa(||v||)}
(41-b) ||u− v|| < β(u) < γ(u); hence, v ∈ H(u, β(u)) ⊆ H(u, γ(u))
(41-c) (ε/δ)t/a(||v||) > ϕ(v)− ϕ(v − th), for 0 < t < β(u),
whenever h ∈ C1(v) (i.e.: h ∈ ∂H1 and 〈v, h〉 ≤ 0)
(41-d) ε/δa(||v||) ≥ |ν|(ϕ′(v)) ≥ ν(ϕ′(v)).
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Proof. Choose in the following

x0 = 0 (the null element of H).

By the imposed conditions, (EAOP-ext) is applicable to the data (H, d;ϕ; a; γ).
So, for (ε, u) and δ as before, there exists v = v(ε, u, δ) ∈ H[u, γ(u)], with the
properties given by its conclusion; i.e.,

(41-e) ||u|| ≤ ||v||, (ε/δ)||u− v||/a(||v||) ≤ ϕ(u)− ϕ(v);
hence ||u− v|| ≤ min{γ(u), δa(||v||)}
(41-f) w ∈ H[u, γ(u)] \ {v}, ||v|| ≤ ||w||
imply (ε/δ)||v − w||/a(||w||) > ϕ(v)− ϕ(w);
hence, (ε/δ)||v − w||/a(||v||) > ϕ(v)− ϕ(w).

By the former of these [i.e.: (41-e)], one gets (41-a). As a direct consequence,

||v|| ≤ ||v − u||+ ||u|| ≤ γ(u) + ||u|| ≤ 3||u||+ 2 < 3β(u);

and this, in combination with (d05), gives (via (41-a) above)

||u− v|| ≤ δa(3β(u)) < β(u) < γ(u);

i.e., (41-b) is verified. This, in particular, tells us that v is an interior point of
H[u, γ(u)]; moreover (from the above), we must have

v + th ∈ H[u, γ(u)], ∀t ∈ [−β(u), β(u)],∀h ∈ ∂H1.

In fact, let the couple (t, h) be as before; then

||v + th− u|| ≤ ||v − u||+ |t| < β(u) + β(u) = γ(u);

and the claim follows. On the other hand,

||v − th|| > ||v||, for 0 < t < β(u),
whenever h ∈ C1(v) (i.e.: h ∈ ∂H1 and 〈v, h〉 ≤ 0);

because (from the properties of scalar product)

||v − th||2 = ||v||2 + t2 − 2t〈v, h〉 > ||v||2, for all such (t, h).

Putting these together gives (44-c), if one takes (41-f) into account. Finally, let
h ∈ C1(v) be arbitrary fixed; hence, h ∈ ∂H1, 〈v, h〉 ≤ 0. From (41-c), one gets an
evaluation like

ε/δa(||v||) > (1/t)(ϕ(v)− ϕ(v − th)), when 0 < t < β(u).

So, passing to limit as t→ 0+ and taking the Gâteaux differentiable property of ϕ
into account, one derives

ε/δa(||v||) ≥ 〈ϕ′(v), h〉.
This, by the arbitrariness of h in C1(v), yields

ε/δa(||v||) ≥ ν(ϕ′(v)); hence, ε/δa(||v||) ≥ |ν|(ϕ′(v));

and establishes the final conclusion (41-d) in the statement. �

The differential principle (EAOP-dif) is comparable with a related one in El
Amrouss and Tsouli [12]. However, some basic differences between these results
must be noted.

I) As precise, the extra regularity conditions imposed by the quoted authors

(d06) a(.) is continuous (in the usual sense)
(d07) a(.) is a comparison function, of order k > 0
(∀q ≥ k, ∃λ, µ ≥ 0 : a((t+ 1)s) ≤ a(t)[λsq + µ],∀t, s ≥ 0)
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are not needed here.
(II) The final differential relation above is written by the quoted authors as

(41-d-var) ε/δa(||v||) ≥ ||ϕ′(v)||.
Formally, this is better that (41-d) above, in view of

||ϕ′(z)|| ≥ |ν|(ϕ′(z)), ∀z ∈ H.
Unfortunately, (41-d-var) is not true under authors’ directional context; and this is
retainable as well for our statement we just exposed.

Note finally that some extensions of these results are possible, in the class of
quasi-ordered normed spaces; see Turinici [27] for details.

5. Existence of minimizers

In the following, an application of the result above to existence of minimizers for
Gâteaux differentiable regular functionals is considered. The basic instrument for
our investigations is the well known Palais-Smale condition [19].

Let H be a (real ) Hilbert space with respect to the scalar product (x, y) 7→ 〈x, y〉.
Further, let ϕ : H → R be a (H, d)-regular function; i.e.,

(e01) ϕ is bounded below (inf ϕ(X) > −∞)

(e02) ϕ is d-lsc on X (lim infn ϕ(xn) ≥ ϕ(x), whenever xn
d−→ x).

Remember that, for each θ ≥ 0 we denoted

ulev(ϕ;H; θ) = {x ∈ H;ϕ(x) ≤ inf ϕ(H) + θ};
this will be referred to as the θ-upper level set of ϕ with respect to H; in particular,
ulev(ϕ;M ; 0) is nothing else than the (global) minimizers set of ϕ over H. In
addition, suppose that

(e03) ϕ is Gâteaux differentiable over H.

Further, take some function a : R+ → R0
+ according to

(e04) a(.) is increasing (t1 ≤ t2 implies a(t1) ≤ a(t2)).

Roughly speaking, the differential El Amrouss Ordering Principle (EAOP-dif) we
just established is a local one; because, given the starting point u ∈ H, the as-
sociated variational point v = v(u) is to be found in a (closed) sphere H[u, γ(u)]
around u. But, for an appropriate solving of our problem, a global version of this
ordering principle, relative to the class of (closed) bounded parts of H is needed.
Call the subset K of H, admissible (modulo ϕ), provided

ulev(ϕ;H; ε) ∩K is nonempty, for each ε > 0;

hence, necessarily, K is nonempty. Assume in the following that

(e05) (H,ϕ) is admissible:
there exist bounded admissible (modulo ϕ) parts of H.

Fix in the following such an object, K; as well as some number δ > 0 with

(e06) δ < 1/a(3(ρ+ 1)); where ρ = sup{||u||;u ∈ K}.
A direct consequence of this is the following. Let us introduce the mappings

β(u) = ||u||+ 1, γ(u) = 2β(u) = 2||u||+ 2, u ∈ H.

By the imposed condition, we have

β(u) ≤ ρ+ 1, γ(u) ≤ 2ρ+ 2, ∀u ∈ K;

and this yields (via a(.)=increasing)
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δ < 1/a(3β(u)) (hence, δa(3β(u)) < 1), for each u ∈ K.

The following global differential type variational statement (referred to as: global
differential El Amrouss Ordering Principle; in short: (EAOP-dif-g)) is our main step
towards the desired answer.

Theorem 5.1. Let ε > 0 be given, as well as some u ∈ ulev(ϕ;H; ε)∩K. Further,
let δ > 0 be taken as before. There exists then some v ∈ H, such that

(51-a) ϕ∗ ≤ ϕ(v) ≤ ϕ(u) ≤ ϕ∗ + ε, where ϕ∗ := inf ϕ(H)
(51-b) ||u− v|| ≤ β(u); hence ||v|| ≤ ||u||+ β(u) ≤ 2ρ+ 1
(51-c) |ν|(ϕ′(v))a(||v||) ≤ ε/δ.

Proof. Let ε > 0, u ∈ ulev(ϕ;H; ε) ∩ K and δ > 0 be taken as before. From the
above relations involving the constant δ > 0 and the couple of functions (a(.), β(.)),
it follows that the (local) differential El Amrouss Ordering Principle (EAOP-dif)
is applicable to the data (H; ε, u; δ;β(.), γ(.)); and gives us all conclusions in the
statement. The proof is thereby complete. �

In particular, when a : R+ → R0
+ fulfills the extra conditions

(ec-1) a(.) is continuous (in the usual sense)
(ec-2) a(.) is a comparison function, of order k > 0
(∀q ≥ k, ∃λ, µ ≥ 0 : a((t+ 1)s) ≤ a(t)[λsq + µ],∀t, s ≥ 0)

the global differential El Amrouss Ordering Principle (EAOP-dif-g) is nothing but
the statement in El-Amrouss [11] proved under different methods. However, we
must say that its differential conclusion

(51-d) ||ϕ′(v)||a(||v||) ≤ ε/δ
is not true under author’s directional context; we do not give further details.

An application of (EAOP-dif-g) to existence of (global) minimizers for the func-
tion ϕ may now be given along the lines below. Let us say that (H,ϕ) satisfies the
Palais-Smale condition (modulo a), when

(PS-a) each bounded sequence (xn) ⊆ H such that ϕ(xn)→ ϕ∗
and |ν|(ϕ′(xn))a(||xn||)→ 0 has a convergent subsequence.

In particular, when a = 1, this is referred to as (H,ϕ) fulfilling the standard Palais-
Smale condition:

(PS) each bounded sequence (xn) ⊆ H such that ϕ(xn)→ ϕ∗
and |ν|(ϕ′(xn))→ 0 has a convergent subsequence.

Concerning the relationship between these, note that (under the choice of our func-
tion a(.)), the following double inequality holds

|ν|(ϕ′(xn))a(0) ≤ |ν|(ϕ′(xn))a(||xn||) ≤ |ν|(ϕ′(||xn))a(σ), ∀n;

where σ := sup{||xn||;n ≥ 0}. This tells us that

(|ν|(ϕ′(xn))a(||xn||)→ 0)⇐⇒ (|ν|(ϕ′(xn))→ 0);

so that

(PS-a) is equivalent with (PS).

We are now in position to formulate the announced answer. Let the general
conditions of this section be admitted. Precisely, take a function ϕ : H → R,
endowed with the properties:

ϕ is (H, d)-regular and Gâteaux differentiable (see above).
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Moreover, let the function a : R+ → R0
+ be increasing.

Theorem 5.2. Suppose, in addition, that (H,ϕ) is admissible and fulfills the
Palais-Smale condition (PS-a) (or, equivalently, the standard Palais-Smale con-
dition (PS)). Then, ϕ admits at least one minimizer on H.

Proof. As (H,ϕ) is admissible, it admits at least a bounded admissible subset K,
in the sense:

(adm-1) K is bounded; hence, ρ := sup{||u||;u ∈ K} <∞
(adm-2) K is admissible: ulev(ϕ;H; ε) ∩K 6= ∅, ∀ε > 0.

Further, pick the number δ > 0 in accordance with

δ < 1/a(3(ρ+ 1)); hence, δa(3(ρ+ 1)) < 1.

For the arbitrary fixed ε > 0, take some (starting) point uε ∈ ulev(ϕ;H; ε) ∩ K.
From the global differential El Amrouss Ordering Principle (EAOP-dif-g), there
must be some associated point vε ∈ H fulfilling its conclusions (51-a)-(51-c); i.e.
(for any such ε > 0)

(52-a) ϕ∗ ≤ ϕ(vε) ≤ ϕ(uε) ≤ ϕ∗ + ε, where ϕ∗ := inf ϕ(H)
(52-b) ||uε − vε|| ≤ β(uε); hence ||vε|| ≤ ||uε||+ β(uε) ≤ 2ρ+ 1
(52-c) |ν|(ϕ′(vε))a(||vε||) ≤ ε/δ.

In particular, taking the sequence (εn = 2−n;n ≥ 0), it results that, for each n ≥ 0
and each starting un := uεn ∈ ulev(ϕ;H; εn) ∩K, there exists vn := vεn in H with

(52-d) ϕ∗ ≤ ϕ(vn) ≤ ϕ(un) ≤ ϕ∗ + 2−n

(52-e) ||un − vn|| ≤ β(un); hence ||vn|| ≤ ||un|+ β(un) ≤ 2ρ+ 1
(52-f) |ν|(ϕ′(vn))a(||vn||) ≤ 2−n/δ.

Now, (52-d)+(52-e) give us that (vn) is a bounded sequence in H with ϕ(vn)→ ϕ∗;
and, from (52-f), one derives that |ν|(ϕ′(vn))a(|vn||) → 0. This, along with the
Palais-Smale condition (PS-a), yields a subsequence (yn := vi(n)) of (vn), with:

yn
d−→ y, for some y ∈ H.

Combining with the d-lsc condition imposed upon ϕ, we derive

ϕ∗ ≤ ϕ(y) ≤ limn ϕ(yn) = ϕ∗; hence ϕ(y) = ϕ∗;

or, in other words: y ∈ H is a minimizer for ϕ. The proof is thereby complete. �

In particular, under the extra regularity conditions

(er-1) a(.) is continuous (in the usual sense)
(er-2) a(.) is a comparison function of order k > 0 (see above)

the obtained existence result yields a related statement in El-Amrouss [11]. Further
aspects may be found in Motreanu et al [17, Ch 5].
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