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Abstract

This paper gives a detailed account of the relationship between (a variant of)
the call-by-value lambda calculus and linear logic proof nets. The presentation
is carefully tuned in order to realize an isomorphism between the two systems:
every single rewriting step on the calculus maps to a single step on proof nets,
and viceversa. In this way, we obtain an algebraic reformulation of proof nets.
Moreover, we provide a simple correctness criterion for our proof nets, which
employ boxes in an unusual way, and identify a subcalculus that is shown to be
as expressive as the full calculus.

Keywords: Curry-Howard isomorphism, call-by-value A-calculus, linear logic,
graphical syntaxes, proof nets, explicit substitutions, correctness criteria

1. Introduction

A key feature of linear logic (LL for short) is that it is a refinement of
intuitionistic logic, i.e. of A-calculus. In particular, one S-reduction step in the
A-calculus corresponds to the sequence of two cut-elimination steps in linear
logic, steps which are of a very different nature: the first is multiplicative and
the second is exponential. The Curry-Howard interpretation of this fact is that
A-calculus can be refined adding a constructor t[z«s] for sharing annotations
called explicit substitution, and decomposing a S-step (Az.t)s —p t{z<s} into
the sequence (Ax.t)u —y t[res] —e t{z<s}.

Another insight due to linear logic is that proofs can be represented graphi-
cally, in a formalism called proof nets, and the reformulation of cut-elimination
on proof nets takes a quite different flavor with respect to cut-elimination in
sequent calculus. The parallel nature of the graphical syntax makes commu-
tative cut-elimination steps—which are the annoying burden of every proof of
cut-admissibility—(mostly) disappear.

These two features of LL have influenced the theory of explicit substitutions
in various ways [12| 16 23] 24], culminating in the design of the structural \-
calculus [8], a calculus isomorphic (more precisely strongly bisimilmﬂ) to its

LA strong bisimulation between two rewriting systems S and R is a relation = between
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representation in a variant of LL proof nets [7, [I]. Such a calculus can be seen
as an algebraic reformulation of proof nets for A-calculus [14, [36], and turned out
to have a simpler meta-theory than previous calculi with explicit substitutions.

Girard’s seminal paper on linear logic [I9] presents two translations of A-
calculus into LL. The first one follows the typed scheme (A = B)* = 14® — B",
and it is the one to which the previous paragraphs refer to. It represents the
ordinary—or call-by-name (CBN)—A\-calculus. The second one, identified by
(A= B)" =(A" — B"), was qualified as boring by Girard and received little
attention in the literature [32] 35 [15] [I7) 18], 3T]. Usually, it is said to represent
Plotkin’s call-by-value (CBV) Ag,-calculus [34]. These two representations con-
cern typed terms only, but it is well-known that they can be extended to repre-
sent the whole untyped calculi by considering linear recursive types (0 = lo — o
for call-by-name and and o = (0 —o 0) for call-by-value).

Surprisingly, the extension of the CBV translation to the untyped Ag, calcu-
lus introduces a violent unexpected behavior: some normal terms in Ag, map to
(recursively typed) proof nets without normal form, as we will point out here.
A possible interpretation of this fact is that there is something inherently wrong
in the CBV translation.

In this paper we show how to refine the three actors of the play (the CBV
A-calculus, the translation, and the proof nets presentation) in order to obtain a
perfect match between terms and proof nets. Technically, we show that the new
translation is an isomorphism of rewriting systems, and since isomorphisms
preserve reductions length (in both directions), the normalization mismatch
vanishes.

Interestingly, to obtain an isomorphism we have to make some radical changes
to both the calculus and the presentation of proof nets. The calculus, that we
call the value substitution kernel \yier, is a subcalculus of the value substitution
calculus Aysyp studied in [I0], which is a CBV A-calculus with explicit substitu-
tions. Such a kernel—as we will show—is as expressive as the full calculus.

Our contributions are:

1. Graphical Syntax and Algebraic Formalism. It is far from easy to realize
an isomorphism between terms and nets, as it is necessary to take care
of many delicate details about weakenings, contractions, representation
of variables, administrative reduction steps, and so on. The search for
an isomorphism may seem a useless obsession, but it is not. Operational
properties as confluence and termination then transfer immediately from
graphs to terms, and vice versa. More generally, such a strong relationship
turns the calculus into an algebraic language for proof nets, providing a
handy tool to reason by structural induction over proof nets.

2. Correctness Criterion. We provide a characterization of the system of
proof nets representing A,re based on graph-theoretical principles and
which does not refer to A\, zer, that is, we present a correctness criterion.

S and R s.t. whenever s = r then for every step from s —g s’ there is a step r — g r’ s.t.
s'" =r’, and viceversa (for s,s’ € S and r,r’ € R).



Surprisingly, the known criteria for the representation of the call-by-name
A-calculus (with explicit substitutions) fail to characterize the fragment
encoding the call-by-value A-calculus. Here we present a simple and non-
standard solution to this problem. We hack the usual presentation of
proof nets so that Laurent’s criterion for polarized nets [26, 28] 27]—the
simplest known correctness criterion—captures the fragment we are inter-
ested in. The hacking is about explicit boxes: they are usually attached
to !-links, while we put them on Z-links. An interesting point is that the
fragment we deal with is not polarized in Laurent’s sense, despite being
polarized in the intuitionistic/Lamarche sense [25].

3. The Kernel Calculus. The kernel subcalculus is new. We provide a de-
tailed study of the relationship with the value substitution calculus, show-
ing that they are equivalent from the point of view of termination, which is
the property used to define most notions of programs equivalence. More-
over, the two systems simulate each other with only a linear overhead.

In Sect. [7} we complement the results of the paper with 1) a discussion aimed
to show that the use of boxes for %-links is natural rather than ad-hoc, and 2)
an account of the technical points concerning the representations of terms with
proof nets, and how they have been treated in the literature.

This paper is a longer version of the workshop paper [3]. Apart from updat-
ing the notation of [3] to that of other recent papers using the same formalism
[5, @, 6], it extends it with the detailed relationship between the value substitu-
tion calculus and the kernel calculus in Sect.

2. The Problem with Plotkin’s Calculus

Plotkin’s call-by-value (CBV for short) A-calculus Ag, is obtained by restrict-
ing the B-rule (Az.t)s —g t{z<s} (where {z«s} denotes the usual meta-level
substitution) so that s is a value v, i.e. a variable or an abstraction. The value
substitution calculus, similarly to other variations on the CBV A-calculus as e.g.
the one by Herbelin and Zimmerman [22], implements the restriction in a dif-
ferent way. Every f-redex (Az.t)s, independently of the shape of s, is fired,
but substitution is delayed by introducing an explicit substitution (or, equiva-
lently, a let expressions), obtaining t[x<s| (aka let = s in t). Then, only
explicit substitutions containing values are actually substituted, by means of an
additional rewriting rule.

Before giving the details, let us point out what is the problem with Plotkin’s
calculus Ag,. Essentially, it is about open terms, and shows up as soon as one
does evaluate under abstraction or does not restrict to closed terms. While weak
evaluation and closed terms are common practice hypothesis for an evaluation
strategy, a calculus should be more liberal and not rely on them. Now, consider
a term like ¢ := (Az.\y.y)sv where s is an irreducible open application, say,
s := zz. Note that the redex (Az.\y.y)s cannot be fired. Rather than a problem
in itself, the issue is that such a blocked redex forbids the reduction of the future
redex (Ay.y)v, that would appear if the first redex was to be somehow reduced



(i.e. it forbids what Lévy calls creations of type 1 [29]). Preventing these redexes
to take place ruins the relationships between the rewriting and the semantics,
see [33} 10]. In particular, a term like

u:= (Az.0)(yy)d

(where 0 := Az..zz is the usual term whose auto application 2 := §¢ diverges) is
a normal form in Ag,, because the first argument yy of Az.J is not a value. From
a semantical point of view, however, such a term is unsolvable (roughly, it is
equivalent to Q) and should diverge. A similar but different example of discrep-
ancy between Plotkin’s calculus and proof nets is given by u' := §((Az.9)(yy)),
where now it is the evaluation of the argument—rather than the function—that
is stuck, forbidding the creation of a redex. This kind of redex creation is differ-
ent from the previous one, and typical of the CBV A-calculus. It can be called
creation of type 4, as it does not appear in Lévy’s classification, that is only
concerned with the three kinds of creation of the CBN A-calculus.

The value substitution calculus A,sup provides a compact solution to the
problem of stuck redex and creations of type 1 and 4. It employs explicit
substitutions and it adopts carefully crafted contertual rewriting rules, also
known as at a distance. We will see that in A4, the terms v and v’ diverge,
as required.

Another solution is provided by Carraro and Guerrieri in [I1], where rather
than adding explicit substitution the authors extend Plotkin’s Ag, with two
rewriting rules permuting constructors, so that blocked redexes can be enabled.
Their approach essentially adapts Regnier’s o-equivalence [37] to CBV.

3. The Value Substitution Calculus and its Kernel

The language of the value substitution calculus Aysyp is given by

Terms t,s,u,r = v|ts|tres]
Values v ou= x| Ant

where t[z«s] is an explicit substitution. Both Az.t and t[z+s] bind z in ¢, and
we silently work modulo a-equivalence. We shall use contexts (noted C, D, E)
extensively, in particular substitution contexts (noted L, L', L") so let us define
them formally:

Contexts C,D,E == ()| x.C|vC|Ct|Clx<s]|tfz<C]
Substitution Contexts L,L',L" == ()| L[zt

The plugging C(t) (resp. C(D)) of a term ¢ (resp. context D) in a con-
text C' is defined as (t) := ¢ (resp. (D) := D), (Az.C)(t) := Ax.C(t) (resp.
(Ax.C)(D) := Xx.C(D)), (Cs)(t) :== C(t)s (resp. (Cs)(D) := C(D)s), and so
on. Note that plugging in a context can capture variables.

As usual, the rewriting rules of A\, sy are obtained by first defining the rewrit-
ing rules at top level (noted +—, and ), and then taking their closure by



contexts (noted —, and —.). It is less common, instead, that contexts are also
used to specify the top-level rules, as we do here, that is the essence of rewriting
at a distance. The multiplicative and exponential rewriting rules are given by:

RULE AT ToP LEVEL CONTEXTUAL CLOSURE
Multiplicative L{x.t)s y  L{tlx<s]) C(t) =y C(s) ifftsys
Exponential tlz<L{v)] e L{t{z<v}) Ct) = C(s) iff t—es

the fact that in the lhs of —, the context L appears inside [ | while in the rhs
it appears outside { } is not a typo. We write — for the union of —, and
—e.

vsub

Theorem 3.1 ([10]). The value substitution calculus Aysup is confluent.

Let us show that in A,syp the two problematic terms u and «’ (discussed in
the previous section) diverge in Aysup, as required:

u = (A2.8)(yy)d e
d[zeyylo n
(zx)[z=d][zeyy] —e
(66)[z<yy] e
and
u o= 0((A\2.0)(yy)) —n
5(8[z<yy]) —n
(zx)[zblzeyy]] —e
(60)[z<yy] —n

Essentially, the problems with creations are solved by

1. turning generic S-redexes (i.e. not only CBV f-redexes) into ES,

2. allowing such an action to be possible up to ES, i.e. by turning to rewriting
at a distance,

3. restricting ES to substitute when they contain a value up to ES.

Note that the problem illustrated by wu, i.e. stuck creations of type 1, is solved
by points 1 and 2, while the problem showcased by u’, i.e. stuck creations of
type 4, is solved by points 1 and 3.

As hinted at in [I0], the value substitution calculus A,syp is designed around
the CBV translation of A\-calculus to proof nets (extended to untyped terms by
means of recursive types). This shows a serious mismatch between Plotkin’s
calculus and proof nets, with respect to termination. However, in [10] the rela-
tionship between A, s, and proof nets was not shown. One of the reasons is that
such a relationship—with respect to the usual presentation of the translation—
is complex, as term redexes and proof nets redexes do not match very nicely.
This paper addresses this point, providing a new and simpler relationship, iden-
tifying a subcalculus A\yxer Of Aysyup Which perfectly represents the image of the
translation to proof nets. How A,y is related to proof nets is studied in Sect.



The relationship between the value substitution calculus A, s.p and Plotkin’s
calculus Mg, has been treated indirectly in [I0]. Therein, A,syup is related to
another call-by-value calculus, Herbelin and Zimmermann’s A¢cpy [22], whose
equational theory is shown to be strictly contained in the theory of A,syup. In
turn, Acpy is related to Plotkin’s Ag, in [22], where it is shown that the equa-
tional theory of Ag, is strictly contained in the theory of Acpv.

The Kernel Calculus Ayrer. The value substitution calculus A,gyp is somewhat
redundant. In fact, there is a subcalculus, the value substitution kernel Ayier,
which is as expressive as the whole of A\, 5,5, and that is what exactly corresponds
to proof nets, as we will show. Its syntax is:

Terms t,s,u,r = v |wvs|t[zes]
Values v ou= x| Awt

The distinguished feature of the value substitution kernel is that iterated ap-
plications as (ts)u are not part of the language, because the left subterm of
an application can only be a value. Contexts are defined similarly as for A,sup
(with the obvious restriction on applications). The rewriting rules of A,k are
those of A\, sup restricted to the new syntax. Explicitly:

RULE AT ToP LEVEL CONTEXTUAL CLOSURE
Multiplicative (Ax.t)s +op  tlx<s] C(t) =n C(s) ifftoys
Exponential tlz<L{v)] e L{t{z<v}) C(t) = C(s) iff tes

Note that +, does no longer need the substitution context around the ab-
straction. Note also that A, ke is stable under reduction because only values
are substituted, and so a substitution can never turn an application of the form
zu into a term of the form (ts)u’. Since Aysyp is confluent and Ayger is a closed
subcalculus of \,sy,p, we immediately obtain

Theorem 3.2. The value substitution kernel A\yker is confluent.

In Sect. we will show that A\,s., can be represented inside Ayper. The
idea is that applications as (ts)u are rather represented as (zu)[x<ts] with x
fresh. We will prove that a term ¢ of A4, and its representation t¥ in A\ype, are
equivalent from the point of view of termination.

In the next three sections, instead, we will show that Ak, has an isomorphic
representation as a variant of linear logic proof nets.

The results of this paper are complemented by those in [4], where it is shown
that Ayrer has an isomorphic representation inside the m-calculus as well.

4. Proof Nets: Definition

Introduction. Our presentation of proof nets is nonstandard in at least four
points (we suggest to have a quick look to Fig. [3)):
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Figure 1: links.

1. Hypergraphs: we use directed hypergraphs (for which formulas are nodes
and links—i.e. logical rules—are hyperedges) rather than the usual graphs
with pending edges (for which formulas are edges and links are nodes). We
prefer hypergraphs—that despite the scaring name are nothing else but
bipartite graphs—because

(a) contraction is represented modulo commutativity, associativity, and
permutation with box borders for free, by admitting that exponential
nodes can have more than one incoming link,

(b) cut and axiom links are represented implicitly, collapsing them on
nodes. This is analogous to what happens in interaction nets. Es-
sentially, our multiplicative nodes are wires, with exponential nodes
being hyperwires, i.e. wires involving an arbitrary number of ports;

(c) subnets can be elegantly defined as subsets of links, that would not
be possible by adopting other approaches as generalized ?-links.

The choice of hypergraphs, however, has various (minor) technical con-
sequences, and the formulation of some usual notions (e.g. the nesting
condition for boxes) will be slightly different with respect to the litera-
ture.

2. ®-bozes: we use boxes for #¥-links and not for !-links. This choice is dis-
cussed in Sect. [7} and it allows to use a very simple correctness criterion—
i.e. Laurent’s criterion for polarized nets [28] 27]—without losing any prop-
erty.

3. Polarity: we apply a polarized correctness criterion to a setting which is
not polarized in the usual sense.

4. Syntax tree: since we use proof nets to represent terms, we will dispose
them on the plane according to the syntax tree of the corresponding terms,
and not according to the corresponding sequent calculus proof. Moreover,
the orientation of the links does not reflect the usual premise-conclusion
orientation of proof nets.

Nets. Nets are directed and labeled hypergraphs G = (V(G), L(G)), i.e.,
graphs where V(G) is a set of labeled nodes and L(G) is a set of labeled and
directed hyperedges, called links, which are edges with 0, 1, or more sources and
0, 1, or more targetﬂ Nodes are labeled with a type in {e,m}, where e stands for

2 A hypergraph G can be understood as a bipartite graph Bg, where V1(Bg) is V(G) and
Va(Bg) is L(G), and the edges are determined by the relations being a source and being a



exponential and m for multiplicative. If a node u has type e (resp. m) we say that
it is a e-node (resp. m-node). The label of a node will usually be left implicit,
as e and m nodes are distinguished graphically, using both colors and different
shapes: e-nodes are cyan and white-filled, while m-nodes are brown and dot-like.
We shall consider hypergraphs whose links are labeled from {!,d,w, %, ®}. The
label of a link [ forces the number and the type of the source and target nodes
of I, as shown in Fig. [1] (the types will be discussed later, and the figure also
contains the O-link, which is not used to define nets: it will be used later to
define the correction graph). Similarly to nodes, we use colors and shapes for
the type of the source/target connection of a link to a node: e-connections are
cyan and dotted, while m-connections are brown and solid. Our choice of shapes
allows to read the paper also if printed in black and white. A node is:

Initial, if it is not the target of any link,
Terminal, if it is not the source of any link,
Isolated, if it is initial and terminal,
Internal, if it is not initial nor terminal.

Note that every link (except O) has exactly one connection with a little circle: it
denotes the principal node, i.e. the node on which the link can interact. Remark
the principal node for tensor and !, which is not misplaced. Moreover, every
%-link has an associated boz, i.e., a sub-hypergraph of P (have a look to Fig.|[3).
Formally:

Definition 4.1 (Net). A pre-net P is a triple (|P|,£v(P),rp), where |P| =
(V(P),L(P)) is a hypergraph whose nodes are labeled with either e or m and
whose hyperedges are {!,d,w, %, ®}-links, and such that:

Interface:
Root: rp € V(P) is a non-isolated initial e-node of P, called the
root of P.

Free Variables: £v(P) is the set of terminal nodes of P, also called
free variables of P, which are targets of {d, w}-links (i.e. they are not
allowed to be targets of ®@-links, nor to be isolated).

Nodes:

Multiplicative: m-nodes have at most one incoming and at most one
outgoing link.

Exponential: an e-node has at most one outgoing link, and if it is
the target of more than one link then they all are d-links.

target of a hyperedge.



A net P is a pre-net together with a function boxp (or simply box) associ-
ating to every X-link | a subset box(l) of L(P)\ {l} (i.e. the links of P except
[ itself) s. t. box(l) is a pre-net with a distinguished free variable called the
variable of [, and verifies:

Border: the root rpexy and the free variable x are respectively the target
and source e-nodes of 1, and any free variable # x of box(l) is not the
target of a weakening.

Nesting: for any %-boz box(h) if § # I := |box(l)| N [box(h)|, [box(l)| L
[box(h)|, and [box(h)| Z |box(l)| then all the nodes in I are free variables
of both box(l) and box(h).

Internal Closure:

Contractions: h € box(l) for any link h of P having as target an
internal e-node of box(l).

Boxes: box(h) C box(l) for any B-link h € box(l).

Comments on the Definition.

Weakenings and Box Borders: in the border condition for nets the fact
that the free variables # = are not (the target) of a weakening means that
weakenings are assumed to be pushed out of boxes as much as possible (of
course the rewriting rules will have to preserve this invariant).

Weakenings are not Represented as Nullary Contractions: given the rep-
resentation of contractions, it would be tempting to define weakenings as
nullary contractions. However, such a choice would be problematic with
respect to correctness (to be defined soon), as it would introduce many
initial e-nodes in a correct net and thus blur the distinction between the
root of the net, supposed to represent the output and to be unique (in
a correct net), and substitutions on a variable with no occurrences (i.e.
weakened subterms), that need not to be unique.

Internal Closure wrt Contractions: it is a by-product of collapsing con-
tractions on nodes, which is also the reason for the unusual formulation of
the nesting condition. In fact, two boxes that are morally disjoint can in
our syntax share free variables, because of an implicit contraction merging
two of them.

Bozes as Nets: note that a box box(l) in a net P is only a pre-net, by
definition. Every box in a net P, however, inherits a net structure from
P. Indeed, one can restrict the box function boxp of P to the #-links
of box(l), and see box(l) as a net, because all the required conditions are
automatically satisfied by the internal boxes closure and by the fact that
such boxes are boxes in P. Therefore, we will freely consider boxes as
nets.
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Figure 2: various images.

Terminology about Nets. The level of a node/link/box is the maximum number
of nested boxes in which it is containecﬂ (a #@-link is not contained in its own
box). Two links are contracted if they share an e-target. Note that the expo-
nential condition states that only derelictions (i.e. d-links) can be contracted.
In particular, no link can be contracted with a weakening. A free weakening
in a net P is a weakening whose node is a free variable of P. Sometimes (e.g.
the bottom half of Fig. 7 the figures show a link in a box having as target a
contracted e-node = which is outside the box: in those cases x is part of the
box, it is outside of the box only in order to simplify the representation.

Typing. Nets are typed using a recursive type o = /(o — 0), that we rename
e = (e — e) = !(et X e) because e is a mnemonic for ezponential. Let
m:=e —o e = e e, where m stands for multiplicative. Note that e = Im
and m = !m —o !m. This shows that the two translations of A-calculus into linear
logic identified by the two recursive types e = !(e —o e) and m = Im —o !m are in
fact the same. Links are typed using m and e, but the types are omitted by all
figures except Fig. [[|because they are represented using colors and with different
shapes (m-nodes are brown and dot-like, e-nodes are white-filled cyan circles).
Let us explain the types in Fig. [[] They have to be read bottom-up, and thus
negated (to match the usual typing for links) if the conclusion of the logical rule
is the bottom node of the link, as it is the case for the {w,d, ®}-links, while !
and % have their logical conclusion on the top node, and so their type does not
need to be negated.

Induced !-bozes. Note that a l-link is always applied to something (m-nodes
cannot be free variables), and there is not so much freedom for this something:
either it is a dereliction link or a % with its box. Note also that in these cases
we obtain (what would usually be) a valid content for a !-box, i.e. something
ending on e-nodes. For the dereliction case it is evident, and for the % case
it is guaranteed by the border condition in the definition of nets: the content
of a %¥-box ends on e-nodes. Hence, any !-link has an associated box, possibly
induced by a %-box, that needs not be represented explicitly. Such induced
I-boxes will play a role in Sect. [6], where proof nets cut-elimination is studied.

3Here the words mazimum and nested are due to the fact that the free variables of Z8-boxes
may belong to two not nested boxes, because of the way we represent contraction.
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Translation. Nets representing terms have the general form in Fig. 2a, also
schematized as in Fig. b. The translation : from terms to nets is in Fig. 3| (the
original boring translation is sketched in Fig. @, page . A net which is the
translation of a term is a proof net. Note that in some cases there are various
connections entering an e-node, that is the way we represent contraction. In
some cases the e-nodes have an incoming connection with a perpendicular little
bar: it represents an arbitrary number (> 0) of incoming connections. The net
corresponding to a variable is given by a !-link on a dereliction and not by an
(exponential) axiom, as it is sometimes the case [I8]. The reason is that an
axiom (in our case a node, because axioms are collapsed on nodes) would not
reflect on nets some term reductions, as x[z+<v] —, v, for which both the redex
and the reduct would be mapped on the same net.

Extended Translation. The translation - is refined to a translation : 5, where A is
a set of variables, in order to properly handle weakenings during cut-elimination.
The reason is that an erasing step on terms simply erases a subterm, while on
nets it also introduces some weakenings: without the refinement the translation
would not be stable by reduction. The clause defining tx,; when y ¢ £v(t)
is the second on the first line of Fig. [3] the definition is then completed by the
following two clauses: t; := ¢ and taugyy = ta if y € £v(t).

a-Equivalence. To circumvent an explicit and formal treatment of a-equivalence
we assume that the set of e-nodes and the set of variable names for terms
coincide. This convention removes the need to label the free variables of 5
with the name of the corresponding free variables in ¢ or A. Actually, before
translating a term ¢ it is necessary to pick a well-named a-equivalent term ¢,
i.e. a term such that any two different variables (bound or free) have different
names.

Remark 4.2. The translation of terms to mets is not injective. By simply
applying the translation it is easily seen that the following pairs of terms are
sent on the same net:

tlxes]lycu] ~poes  tycullzes]  ifx ¢ fv(u) & y & £v(s)
vu[zes] ~uoy (V) [xzes] if x ¢ £v(v) (1)
tlzeslycu]] ~po,  tlaesllyeul  ify ¢ £v(2)
Let =, be the reflexive, symmetric, transitive, and contextual closure of ~yo. 4
U ~po, U ~uo,- In the proof of Lemma 6.1, we will use the fact that if t =, s

then t and s are mapped on the same net. We also claim—without proving
it—that =,, is exactly the quotient induced on terms by the translation to nets.

Paths. A path T of length k € N from u to w, noted 7 : u —* w, is an alternated
sequence of nodes and links

U:u17l1;-~-7lk;uk+1 =w
s.t. link I; has source u; and target w;4q for ¢ € {1,...,k}. A cycle is a path

u —F 4 with & > 0.
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if y ¢ £v(t) U A then ta(,; = \

04e-S

if x € fv(t), Azt =

if € fu(s), zs =
<
i

d

.,
“»0 0 o

if ¢ ¢ fv(s), zs =
o

v

..
&

if x € fv(t), (Az.t)s =
o

fv(t)Nfv(s)

if ¢ & fv(t), (Az.t)s =

fv(t)Nfv(s)

if x € fv(t), tlxes] =

\ fv(t)NEv(s)

if ¢ ¢ fv(t), tjxes] =

-

Figure 3: the translation from terms to nets.
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Correctness. The correctness criterion is based on the notion of correction
graph, which—as usual for nets with boxes—is obtained by collapsing boxes
into generalized axiom links, i.e. our (-links (see Fig. .

Definition 4.3 (Correction Graph). Let P be a net. The correction graph P°
of P is the directed hypergraph obtained from P by collapsing each 7-box at level
0 in P into a O-link (with the same interface) by applying the rule in Fig. @.c.

Definition 4.4 (Correctness). A net P is correct if:
Root: the root of P induces the only initial node of P°.
Acyclicity: P° is acyclic.
Recursive Correctness: the box of every ®-link at level 0 is correct.

As usual an easy induction on the translation shows that the translation of
a term is correct, i.e. that:

Lemma 4.5. Every proof net is correct, i.e. to is a correct net for every term
t and set of variables A.

Note that the root correctness condition forbids the existence of isolated
nodes. In logical terms, it forbids isolated axioms. Such a restriction is not
ad-hoc, as it is also used in the call-by-name translation of A-calculus to proof
nets. Additional shape constraints are indeed required when proof nets are
supposed to represent terms: some nets that would be considered correct proofs
do not represent any A-term and have to be rejected. Another shape constraint
is the requirement that nets free variables are weakenings and derelictions (see

Definition .

5. Proof Nets: Sequentialization

In this section we show how to extract a term t from every correct net P in
such a way that ¢ translates back to P, i.e. we show that every correct net is a
proof net. The proof of such a sequentialization theorem is based on the notion
of kingdom, along the lines of the proof for polarized nets by Olivier Laurent,
see [27], pp. 57-63.

The study relies on the notion of subnet @ of a correct net P, that is a
subset of the links of P plus some closure conditions, avoiding that () prunes
the interior of a box in P, or takes part of the interior without taking the whole
box, or takes only some of the premises of an internal contraction.

Definition 5.1 (Subnet). Let P be a correct net. A subnet Q of P is a subset
of its links s.t. it is a correct net (wrt the box function inherited from P) and
satisfies the following closure conditions:

Contractions: [ € Q for any linkl € P having as target an internal e-node

of Q.
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Boxes:

Root: box(h) C Q for any ®-link h € Q.

Free variables: box(l) C @ if a free variable of box(l) is internal to

Q.

To ease the language, we also give a name to the nodes that can be the root
of a subnet.

Definition 5.2 (Royal Node). Let P be a net. A royal node x of P is a e-node
such that it is not a free variable of P (i.e. x ¢ £v(P)) and it is not the variable
(i.e. not the e-source) of a B-link, or—equivalently—such that it is the source
of a !-link or of a ®-link.

Next, we define the kingdom of a royal node z, that will be proved to be the
smallest subnet of root z (forthcoming Lemma .

Definition 5.3 (Kingdom). Let P be a correct net and x one of its royal nodes.
The kingdom kingp(x) of x in P is the set of links defined by case analysis on
the link | of source x:

lis a ink: kingp(x) is given by I plus the d-link or the 7-box on the
m-target of I.

lis a ®-link: kingp(z) is given by I plus the d-link or the %-box on the
m-target of I plus kingp(y), where y is the e-target of I.

It is easily seen that kingp(z) does not really depend on P, in the following
sense.

Lemma 5.4. Let P be a correct net, Q be a subnet of P, and x be a royal node
of Q (and thus of P). Then kingp(z) = kingg(z).

Proof. By induction on the length of the maximum directed path from z in
Q°. O

Therefore, most of the time we will simplify and simply write king(x) (in-
stead of kingp(z)).
To characterize kingdoms the following definitions are required.

Definition 5.5 ((Free/Ground) Substitution). Let P be a correct net. An e-
node x of P is:

a substitution if it is the target of a {w,d}-link (or, equivalently, if it is
not the target of a ®-link nor the root) and the source of some link;

a ground substitution if it is a substitution which is a node of P° (i.e. it
s not internal to any W-boaﬂ);

4Note that our collapsed representation of contractions and cuts does not allow to simply
say that x is a node at level 0: indeed the free variables of a Z%-box can have level > 0 and
yet belong to PY.

14



a free substitution if it is a ground substitution and there is no ground
substitution of P to which x has a path (in P°).

Now, we show that kingdoms are indeed minimal subnets. At the same time,
we prove some additional properties of kingdoms to be used in the next lemmas.

Lemma 5.6 (Kingdom). Let P be a correct net and x one of its royal nodes.
Then king(x) is the smallest subnet of P of root x. Moreover, it has no free
substitutions, no free weakenings, and whenever y € fv(king(x))

1. Connected Interface: = has a path to y in king(z)°;
2. Atomicity: if y is internal to a subnet Q of P then king(z) C Q.

Proof. Let R be a correct subnet of P rooted at z. By induction on the length
of the maximum directed path from z in P° (that exists because by correctness
PY is acyclic) we show that king(z) C R and that king(z) is correct. Let [ be
the link of source x. Cases of [:

Base case: 1 is a !-link. By the free variables condition for pre-nets R has
to contain the d-link h or the %-link on the m-target of [. In the case of a %3-
link the box root condition for subnets implies that the whole box B is in
R, hence king(x) C R. In the case of a d-link correctness is obvious, in the
case of a ®¥-box it follows by the correctness of the box itself, guaranteed
by the recursive correctness condition. Moreover, no free substitutions
and no free weakenings belong to king(z) (by the border condition for
nets boxes cannot close on weakenings). Pick y € fv(king(z)), which in
the d-link case is the target of h and in the other case is a free variable of
the #¥-box B. Now,

1. Connected Interface: if y is the target of the d-link then there is a
path from z to y, given by the only path going through the !-link and
the d-link. If y is a free variable of the %-box, then there is a path
from z to y in king(z)?, the one which goes through the !-link and
the O-link replacing the %-box in king(z)°.

2. Atomicity: if y is internal to a given subnet ) then the contractions
condition for subnets guarantees that h or B are in (). Then clearly

king(x) € Q.

Inductive case: | is a ®@-link. As in the previous case, R has to contain
the d-link or the %-box on the m-target of [ (by the free variables con-
dition for pre-nets). Consider the e-target z of [, that is a royal node
of both P and R (by the free variables condition for pre-nets it cannot
be a free variable). By i.h., kingg(z) C R and by Lemma (stating
kingr(z) = kingp(z), simply noted king(z)) it follows king(z) C R, in
turn implying king(x) C R. By i.h., king(z) is also correct, hence z veri-
fies the root correctness condition for king(z), and so does z for king(z).
Acyclicity follows by correctness of P. Recursive correctness follows from
the box closure condition for subnets and correctness of P. Thus king(x)
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is the smallest subnet of P of root . Moreover by i.h., king(z)—and so
king(xz)—has no free substitutions and no free weakenings. Connected in-
terface and atomicity follow from the 4.h. for the free variables of king(z)
and from the conditions for a subnet (as in the previous case) for the other
free variables. O

A key property for the read-back of a correct net as a term is given by
the following lemma, that is a sort of splitting tensor lemma, stating that free
substitutions are splitting.

Lemma 5.7 (Substitution Splitting). Let P be a correct net with a free substi-
tution x. Then

1. The free variables of king(x) are free variables of P.
2. P\ king(z) is a subnet of P.

Proof.

1. Suppose not. Then there is a free variable y of king(z) which is not a free
variable of P. There are two possible cases:

y 18 a substitution of P. By the connected interface part of Lemmal(5.6
x has a path to y in king(z)?, i.e. to a substitution in P°, which is
also a path in PY. But such a path contradicts the hypothesis that
x is a free substitution, absurd.

y is the distinguished free variable of a @-box B. Thus, y is internal
to some ?9-box B and so it is not a node of PY. By the atomicity part
of Lemma king(xz) C B and so x is not a node of P°, against the
definition of free substitution, absurd.

2. By point 1 the removal of king(z) cannot create new initial nodes. Being
a substitution, x is the target of some link. Therefore the removal of
king(z) cannot remove the root of P. It is also clear that the removal
cannot create cycles, and the box closure condition for subnets guarantees
that the recursive correctness of P implies the one of P\ king(x). O

Of course, we need to show that as long as there are substitutions out of
boxes (i.e. ground substitutions) there are free substitutions, i.e. that the
substitution splitting lemma can be applied.

Lemma 5.8. Let P be a correct net with a ground substitution. Then P has a
free substitution.

Proof. Consider the following order on the elements of the set S, of ground
substitutions of P: z < y if there is a path from z to y in PY. Acyclicity of
PO implies that S, contains maximal elements with respect to <, if it is non-
empty. Note that a maximal element of S, is a free substitution in P. Now,
if P has a ground substitution x then S, is non-empty. Thus, P has a free
substitution. O
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The two previous lemmas together imply that ground substitutions can be
removed one after the other, by repeatedly selecting a free one, until none of
them are left. The next lemma show that what is left after these removals is
exactly the kingdom of the root.

Lemma 5.9 (Kingdom Characterization). Let P be a correct net. Then P =
king(rp) iff P has no free substitutions nor free weakenings.

Proof. =) By Lemma [5.6] <) By Lemma [5.6] king(rp) C P. If the two do
not coincide then by the contractions condition for subnets, the multiplicative
condition on nets, and the fact that they share the same root, it follows that
P contains a ground substitution = on a free variable of king(rp). Then, P
contains a free substitution by Lemma [5.8] absurd. O

We conclude the section with the sequentialization theorem, that relates
terms and proof nets at the static level.

Theorem 5.10 (Sequentialization). Let P be a correct net and A be the set
of e-nodes of its free weakenings. Then there is a term t s.t. tn = P (and
fv(P) =fv(t) UA).

Proof. By induction on the number of links of P. By the root and free variables
conditions the minimum number of links is 2 and the two links are necessarily
a I-link on top of a d-link. Let = be the e-node of the d-link. Then z = P. We
now present each inductive case. After the first one we assume that the net has
no free weakenings.

There is a free weakening l of e-node x. Then P’ = P\ {l} is still a correct
net and by i.h. there exist ¢ s.t. ta\f{z} = P’. Then t5 = P.

There is a free substitution z. Then by Lemmal5.6/and Lemmal[5.7| king(x)
and P\ king(x) are correct subnets of P. By the i.h. there exist s and
u s.t. s = king(z) and ug,y, = P\ king(z) (note that if x € fv(u) then
Ugyy = ug = u). Then ufzr<s] = P.

No free substitutions: by Lemma P = king(rp). For the root link I of
P, of source rp, there are three cases:

l is a !-link over a d-link: base case, already treated.

[ is a !-link over a ®-link: let @ be the box of the #¥-link and z its
distinguished free variable. By the border condition for a net the set
of free weakenings of @) either is empty or it contains only x. If x is
(resp. is not) the node of a free weakening then by i.h. there exists ¢
st tray = Q (resp. t = Q). Then \z.t = P.

l is a ®-link: let x be its e-target and a its m-target. Note that
P = king(rp) implies that P is composed by I, king(z) and either
the d-link or the %-link (plus its box) on a. By i.h. there exists s
s.t. s = king(x). Now, if a is the source of a d-link of e-node y we
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Figure 4: proof nets cut-elimination rules

conclude, since ys = P. Otherwise, s is the source of a % of box
Q and the i.h. gives a term u and a set of variables T' s.t. up = Q.
Let us prove that @ and king(z) can only share free variables, as
the translation prescribes: no link at level 0 of king(x) can be in
@, and no box at level 0 of king(z) can intersect @ other than on
free variables, by the nesting condition. By reasoning about the
distinguished free variable of @) as in the previous case we then obtain
(\y.u)s = P. O

6. Proof Nets: Dynamics

The rewriting rules are in Fig. 4l Let us explain them. First of all, note that
the notion of cut in our syntax is implicit, because cut-links are not represented
explicitly. A cut is given by a node whose incoming and outgoing connections
are principal (i.e. with a little dot on the line).

Rule —, is nothing but the usual elimination of a multiplicative cut, except
that the step also opens the box associated with the Z-link.

The two —. rules reduce the exponential redexes. Let us explain how to
read them. The graph noted @ in Fig. [4] is the induced box of the !-link (see
the paragraph induced !-boxes in Sect. . There are in fact two possibilities:
either it is simply a d-link or it is a #¥-link with its box, so there is no ambiguity
on what to duplicate/erase. Every pair of short gray lines denotes the sequence
(of length m;, with ¢ € {1,...,k}) of boxes closing on the corresponding links.
The rule has two cases, one where !-link is cut with & € {1,2,...} derelictions
and one where it is cut with a weakening. In the first case the subgraph @ is
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copied k times (if £ = 1 no copy is done) as Q*, ... Q" and each copy enters the
m; boxes enclosing the corresponding (and removed) dereliction. Moreover, the
k copies of each free variable of @) are contracted together, i.e. the nodes are
merged. In the case of a cut with a weakening, @) is erased and replaced by a
set of weakenings, one for every free variable of (). Note that the weakenings
are also pushed out of all boxes closing on the free variables of CE This is
done to preserve the invariant that weakenings are always pushed out of boxes
as much as possible. Such an invariant is also used in the rule: note that the
weakening is at the same level of Q). Last, if the weakenings created by the rule
are contracted with any other link then they are removed on the fly, because by
definition weakenings cannot be contracted.

Now, we establish the relationship between terms and nets at the level of
reduction. Essentially, there is only one fact which is not immediate, namely
that —, actually implements the —, rule on terms, as it is proved by the
following lemma.

Lemma 6.1 (Substitution). Let t = s[z<L(v)] then tn —e L{s{z<uv})  for
any set of names A D fv(t).
Proof. First of all observe that ¢t = s[z«L{v)] and L{s[x<v]) both reduce to

L{s{z+v}) and by Remark both translate to the same net. Hence it is
enough to prove that L(s[zevbA —e L<s{zev}>A. We prove it by induction

on L. For L = (-) the proof is by induction on the number n of free occurrences
of z in s. Cases:

n =0) In sfz<L{v)]  the Ilink associated to v is cut with a weakening.
The elimination of the cut produces a net P’ without the !-link and the
%-box associated to v, leaving a free weakening for every free variable of

. . . s _
the box, i.e. of every free variable of v: then P’ is exactly s{xev}Ava(v) =

SAUtv(v)*
n > 1) Write s = C(z) for some occurrence of x. Now, consider u =
C(y)[y<v][x<v] and note that:

u— C{v)[z<v] = Cw){x<v} = s{z<v}

The difference between P’ = u, and P = s[z«<wv]  is that one of the
occurrences of x in P has been separated from the others and cut with
a copy of v. Consider the step P — ) which reduces the cut on z in P
and the sequence P’ — Q) — @, , which first reduces the cut on y in P’
and then reduces in @’ the (unique) residual of the cut on = in P’. By

the definition of reduction in nets @ = Q;I Now, the i.h. applied to u

5Note that, for the sake of a simple representation, the figure of the weakening cut-
elimination rule is slightly wrong: given free a variable x; of Q, the links I1,...,l; having
x; as target (i.e. l1,...,l; are all contracted together) are not necessarily all inside m; boxes,
as each one can be inside a different number of boxes.
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and y gives C(v)[z<v], = @, and the i.h. applied to C(v)[z+v] and x
provides C(v){z<v} = Q. From Q = @, , and C{v){z<v} = s{z<v}
we obtain s{z<v} =@ and conclude.

n = 1) By induction on s. Some cases:

Abstraction. If s = Ay.u then by i.h. u[z<v] —e u{z<v}

Au{y} Au{y}
Autgy e /\y.(u{xev})Au{y}. Now, ob-

serve that Ay.(u{z<v}) = (A\y.u){z<v} = t{z<v} and that the two

nets Ay.(u[%—v])AU{y} and ()\y.u)[am—v]AU{y} have the same reduct

after firing the exponential cut on z, and so we obtain

and so we obtain \y.(u[z+<v])

(Ay-u)[zv] —e Ayu){zv}

AU{y} Au{y}

Explicit Substitution. If s = r[y«<u| then either z € wor « € r. In the
first case by Remark [4.2/ we obtain that sfz<v] = rly<u]lz<v], =
rlyculz<v]] . Now by ih. ufzcv] —e u{z<v}. Then we have

s[x<—v]A —e 7”[y<—u{a:<—v}]A = 7ﬂ[y<—u]{sr<—v],~A = s{z<v},. The
second case is analogous.

Application which is an m-redez. If s = (Ay.r)u. The case x € u uses
Remark and the 4.h. as in the s = r[y«<u] case. The case x € r is
slightly different. As before ((Ay.r)u)[z<v] and ((Ay.r[z<v])u) have
the same reduct. By 4.h. hypothesis r[z<v] —¢ r{z<v} and thus
(Ay-rlz<v))u, —e (Ayr{z<v})u,. We conclude since

(Ayr)u)fzeo], —e (Ayr{zcvpu) = (Ayr)u{zv}

For L = L'[y<r] the i.h. gives L'(s[z<v]) . —e L'(s{z<v}), . By definition
of the translation and of graph reduction it follows that L’(s[z«<v])[y<r] A e
L'(s{xev}ﬂyeru. O

The next theorem expresses the perfect match between rewriting steps on
terms and rewriting steps on proof nets, and it is the main result of the paper.

Theorem 6.2 (Strong Bisimulation). Let t be a term and A a set of variables
containing £v(t). The translation is a strong bisimulation between t and ta, i.e.
t —q t'if and only if tA —4 A, for a € {m,e}.

Proof. By induction on the translation. Cases:

1. Variable, i.e. t = x. Trivial, as both ¢ and ¢, have no redexes.

2. Abstraction or variable application, i.e. t = Ax.s or t = xs. The state-
ment immediately follows by the i.h., since all the redexes of ¢t and t, are
contained in s and su, respectively.
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Figure 5: A —p-step on terms and on nets.

3. m-redex at the root, i.e. t = (A\x.s)u. For the redexes in s, u, SAU{z}> and
ux just use the i.h.. The only redex of t out of its subterms is the root
m-redex t = (Az.s)u —y s[x<u] = t' to which it corresponds a m-redex in
t A that is not contained in SAU{w} DOT U - Look at Fig. [5f clearly ¢ —y t/
iff tn —nt/A-

4. Explicit substitution, i.e. t = s[x<u]. For the redexes in subterm/subnets
we reason as in the previous points. Now, if u = L(v) then ¢ has the
following e-redex out of subterms s[z«L(v)] —¢ L{s{z<wv}). Then apply
Lemma [6.I] Note moreover that t5 has a redex out of subnets only if
u = L(v), and that in such a case the redex is the one we just treated. [

Strong bisimulations preserve reduction lengths, so they preserve diver-
gent /normalizing reductions, and termination properties in general.

Corollary 6.3. Let t € Ayker and A a set of variables. Then t is weakly
normalizing/strongly normalizing/a normal form/weakly divergent/strongly di-
vergent iff ta is.

Actually, the translation is more than a strong bisimulation: the reduction
graphﬁﬁ of t and t are isomorphic, not just strongly bisimilar. An easy but
tedious refinement of the proof of Theorem (consisting in specifying the
bijection of redexes) proves:

Theorem 6.4 (Dynamic Isomorphism). Let ¢ be a term and A a set of variables
containing £v(t). The translation induces a bijection ¢ between the redexes of t
and the redexes of ta s.t. R:t —, t if and only if ¢(R) : to —>a A, where
a € {m,e}.

8 Reduction graphs, which are the graphs obtained considering all reductions starting from
a given object, are not nets.
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A nice by-product of our approach is that preservation of correctness by
reduction comes for free, since any reduct of a proof net is the translation of a
term.

Corollary 6.5 (Preservation of Correctness). Let P be a proof net and P — P’.
Then P’ is correct.

Note that there is no contradiction between 1) the fact that the translation
is not injective, and 2) the dynamic isomorphism between terms and proof nets.
As pointed out in Remark [4.2] the lack of injectivity of the translation induces
a quotient on terms: each equivalence class contains all and only the different
sequentialization of a proof net, or, equivalently, all the terms translating to the
same proof net. This does not forbid every term in the class to behave isomor-
phically to the corresponding proof net (and thus, by transitivity, isomorphically
to any other term in its class).

A strong bisimulation is enough for transporting termination properties be-
tween the two systems. For confluence, instead, a priori the situation is slightly
different. In general, both strong bisimulations and dynamic isomorphisms
transport confluence only modulo the quotient induced by the translation. Mild
additional hypothesis allow to transfer plain confluence, see [I] (pp. 83-86) for
more details. Our case however is simpler, as we want to transport confluence
from terms to proof nets and the quotient induced on proof nets is the identity,
i.e. here confluence modulo actually coincides with plain confluence. Then from
confluence of A\, e, it follows that:

Theorem 6.6. Proof nets are confluent.

The Original Boring Translation. For the sake of completeness, Fig. [6] sketches
the ordinary CBV translation from A-terms (possibly with iterated applications)
to proof nets (including the case for explicit substitutions and using a traditional
syntax with boxes on !-links). An easy computation shows that the term ¢ =
(Az.0)(yy)d, where 6 = Az.zz maps to a net without normal form, while ¢ is
a Agy-normal form. As already mentioned, this mismatch is the motivation
behind our work.

7. Proof Nets: Comments and Literature

7.1. Motivating % -boxes

The call-by-name (CBN) and call-by-value (CBV) encodings of A-calculus
into linear logic (LL) can be seen as fragments of Intuitionistic Multiplicative
and Exponential LL (IMELL). Let us stress that in IMELL what we noted ®
and % correspond to the right and left rules for the linear implication —o, and
not to the left and right rules for ®. The four rules for ® and —o are collapsed
in LL but not in Intuitionistic LL, in particular our %% acts on the output of the
term, i.e. on the right of the sequent, and corresponds to the right rule for —o.

Our argument is that in IMELL there is no correctness criterion unless the
syntax is extended with boxes for both ! and —o (our %), as we shall explain in
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Figure 6: the ordinary CBV translation from terms to nets.

the next paragraphs. In particular, the two encodings of A-calculus turn out to
be dual special cases with respect to the use of boxes, in the following sense

e The fragment of IMELL encoding the CBN A-calculus is a special case
where the box for — needs not be represented.

e The fragment of IMELL encoding the CBV A-calculus is a special case
where the box for ! needs not be represented.

Therefore, our use of Z-boxes actually unveils a nice symmetry, rather than
being ad-hoc. In the literature there are occurrences of explicit boxes for ab-
stractions (at least in [30L 21]), but none of these works studies correctness.
The difficulty of designing a correctness criterion for IMELL is given by the
presence of weakenings, that break connectedness. In most cases weakenings
simply prevent the possibility of a correctness criterion. The fragment encoding
the CBN A-calculus, and more generally Polarized Linear Logic, are notable
exceptions. For the encoding of the CBN A-calculus there exist two correctness
criteria. Let us show that none of them works for the CBV A-calculus:

o : N
; H : &,
\!/ f/ é f'/ é {/ ----- b4
e S 5 l °
4 3 X3
d ! ol ! 2
a) 2-,’ ‘\7? !, 7/? ‘!, b) ¥
B 4 B {
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Figure 7: Counter-examples to correctness without %¥-boxes.
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1. Danos and Regnier’s criterion, in the variant replacing connectedness with
the requirement that the number of connected components of every switch-
ing graph is 1 + #w, where #w is the number of weakenings at level 0
(after the collapse of boxes) [36]. In our case this criterion does not work:
the net in Fig. [7la verifies the requirement while it does not represent any
proof or term. Note that adding boxes to the !-links of the example does
not change anything.

2. Laurent’s polarized criterion [28, 27], because the CBN encoding is polar-
ized. In its original formulation it cannot be applied to the encoding of the
CBYV M-calculus, because such a fragment is not polarized (there can be a
weakening as a premise of a tensor, which is forbidden in polarized logic).
Our re-formulation of Laurent’s criterion (Definition page rejects
the net in Fig. a (because the two #-links form a cycle), but without
using X-boxes it would accept the net in Fig. [7b, which is not correct]

Thus, the known criteria do not work and—more generally—there is no
criteria for IMELL. The usual way to circumvent problems about correctness
is to add some information to the graphical representation, under the form of
boxes (as in this paper) or jumps (i.e. additional connections). It is well known
that in these cases various criteria can be used, but this extra information either
is not canonical or limits the degree of parallelism. Another possible solution
is to modify the logical system adding the mix rules. However, such rules are
debatable, and also give rise to a bad notion of subnet (for details see [1, pp.
199-201).

Let us stress that our counterexamples to the known criteria do not rely on
the exponentials (i.e. non-linearity): it is easy to reformulate them in Intuition-
istic Multiplicative Linear Logic (IMLL) with unit(s)El7 for which then there is
no correctness criterion.

In the case studied in this paper the use of #¥-boxes does not affect the level
of parallelism in a considerable way. Indeed, in IMELL the parallelism of proof
nets concerns the left rules (of ® and —o, plus contractions and weakenings)
and cuts: in our case there is no ® (remember our ® and % rather correspond
to the rules for —o), our technical choices for variables keep the parallelism for
contraction and weakenings, and the parallelism of the left rule for — (our ®)
and cuts is preserved (it is given by the equations in , page .

To best of our knowledge, the observations reported here—in particular those
about the lack of correctness criteria—are an original contribution of this work.

"The net in Fig. b would be rejected by the original version of the criterion, which is
based on a different orientation. But the original orientation cannot be applied to the fragment
under study.

8 Just replace each sequence of a ! over a dereliction with an axiom, and the weakenings
with L-links.
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7.2. Literature on Term Representations

The relationship between A-terms and proof nets presents a number of tech-
nical choices:

1. Ezplicit Substitutions, or Sharing: proof nets implement a 3-step by (at
least) two cut-elimination steps. This refined evaluation can be seen on
the calculus only if the syntax is extended with explicit substitutions, that
are nothing else but explicit sharing annotations.

2. Variables: to properly represent variables it is necessary to work modulo
associativity and commutativity of contractions, neutrality of weakening
with respect to contraction, and permutations of weakenings and contrac-
tions with box-borders. In the literature there are two approaches: to
explicitly state all these additional congruences or to use a syntax natu-
rally quotienting with respect to them. Such a syntax uses n-ary ?-links
collapsing weakening, dereliction and contractions and delocalizing them
out of boxes. It is sometimes called nouvelle syntaze.

3. Axioms: various complications arise if proof nets are presented with ex-
plicit axiom and cut links. They can be avoided by working modulo cuts
on axioms, which is usually done by employing an interaction nets presen-
tation of proof nets.

4. Exponential Cut-Elimination: cut-elimination rules for the exponentials
admit many presentations. Most of the time, either they are small-step,
i.e. an exponential cut is eliminated in one shot (making many copies of the
I-premise of the cut), or they are micro-step, with a rule for each possible
?-premise (weakening, dereliction, contraction, axiom, box auxiliary port).

Let us classify our study along these axes. We employ explicit substitutions
and small-step exponential cut-elimination. For the representation of variables
and axioms, instead, we depart from the literature and propose an alternative
approach, the use of hypergraphs. Hypergraphs allow at the same time to mimic
n-ary ?7-links and collapse axioms and cut links as if we were using interaction
nets. More precisely, we represent n-ary ?-links by allowing e-nodes to have
more than one incoming link. This choice overcomes some technicalities about
gluing and degluing of 7-links. Such technicalities are always omitted, but they
are in fact necessary to properly define subnets and cut-elimination. In particu-
lar, with n-ary ?-links subnets cannot be defined as subsets of links (because of
(de)gluing), that turns out to be technically quite annoying (unless one is delib-
erately less precise and forgets to deal with (de)gluing altogether). Of course,
everything we did here could be also done using n-ary ?-links and interaction
nets, it is rather a matter of taste.

We now list the works in the literature which are closer in spirit to ours, i.e.
focusing on the representation of A-calculi into proof nets (and thus we omit
many other interesting works, as for instance [31], which studies the represen-
tation of strategies, not of calculi).

The first such works were the PhD thesis of Vincent Danos [14] and Laurent
Regnier [30], that focused on the call-by-name (CBN) translation. Danos and
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Regnier avoid explicit substitutions, use m-ary contractions, explicit axioms,
and small-step exponential rules, see also [13]. They characterize the image
of the translation using the variant of the Danos-Regnier correctness criterion
requiring that any switching graph has #w + 1 connected components, where
#w is the number of weakenings. In [I5], Danos and Regnier use the CBV
translatiorﬂ Both translations are injective.

In 28 27] Olivier Laurent extends the CBN translation to represent (the
CBN) Ap-calculus. He does not use explicit substitutions nor n-ary ?-links,
while he employs explicit axiom links and micro-step exponential rules. His work
presents two peculiar points. First, the translation of A\u-terms is not injective,
because—depending on the term—the p-construct may have no counterpart
on proof nets. This induces some mismatches at the dynamic level. Second,
Laurent finds a simpler criterion (which is the one we used—adapted—in this
paper), exploiting the fact that the fragment encoding (the CBN) Ap-calculus
is polarized. In [27] Laurent also show how to represent the CBV Au-calculus.
However, such a representation does not use the same types as the boring trans-
lation, since A — B maps to ?!(A — B), and not to (A — B).

Lionel Vaux [40] and Paolo Tranquilli [38] [39] study the relationship between
the differential A-calculus and differential proof nets. Vaux also extends the
relationship to the classical case (thus encompassing a differential Ap-calculus),
while Tranquilli refines the differential calculus into a resource calculus that
better matches proof nets. They do not use explicit substitutions, nor n-ary
contractions, while they use interaction nets (so no explicit axioms and cut
link) and micro-step exponential rules. Both Tranquilli and Vaux rely on the
Danos-Regnier criterion, despite the fragment encoding their calculi is polarized
and can be captured using Laurent’s criterion by using boxes for coderelictions;
in the context of A-calculus such boxes do not reduce the parallelism of the
representation.

Delia Kesner and co-authors [12 16} 23] study the relationship with explicit
substitutions in the CBN case. The main idea here is that explicit substitutions
correspond to exponential cuts. They use explicit axiom links and micro-step
exponential rules, but they do not employ n-ary contractions (and so they need
additional rules and congruences). Because of explicit substitutions the trans-
lation is not injective: now different terms may map to the same proof net, as
in this paper. They do not deal with correctness criteria.

In none of these works the translation is an isomorphism of rewriting systems
nor a strong bisimulation. In [7] Stefano Guerrini and the author use a syntax
inspired by proof nets (and extended with jumps) to represent the CBN -
calculus with explicit substitutions. That work is the only one employing at the
same time (the equivalent of) n-ary ?-links and (the equivalent of) micro-step

9Let us point out that [I5] presents an oddity that we believe deserves to be clarified.
The authors show that an optimized geometry of interaction for the proof nets of the CBV-
translation is isomorphic to Krivine Abstract Machine (KAM): this is quite puzzling, because
the KAM is CBN, while they use the CBV translation.
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exponential rules. In [7] the correctness criterion is a variation over Lamarche’s
criterion for essential nets [25], which relies in an essential way on the use of
jumps. A reformulation in the syntactic style of this paper of both [7] and of
Danos and Regnier’s proof nets for the CBN A-calculus can be found in [I],
together with a detailed account of the strong bisimulation.

Last, a nice and detailed introduction to the relationship between A-terms
and proof nets is Guerrini’s [20].

8. Terms: Relating A, sup and Ayger

In this section we study the relationship between Ay gy and Ayger. The results
of this paper actually allow to read this section as if we were relating A, s, and
proof nets, given that A,ge. and proof nets are isomorphic. In particular, by
composing the (forthcoming) translation from A, sup t0 Apker and the translation
from Ayger to proof nets (Sect. [4]) one obtains a translation from A,y to proof
nets. We believe, actually, that our isomorphism between terms and proof nets
shines at its best here: having an algebraic language for proof nets we can relate
them to Aysup at a level of detail and rigor that would be impossible if we had
to deal directly with the graphical syntax.

8.1. Projecting Aysup 0N Apker

This subsection shows that A,sup has an interpretation inside Ayger-

Notation: when we want to stress that a term is in Ayge, We use capital
letters.

Any term M € A\ ger is a term of A,sup. Moreover, on A\yier terms the rules
of Aysup collapse on the rules of A\jger. Then, M —y Niff M —,.., N,
for any M € Ayger. Hence, Ayrer is a subcalculus of \,s,p which is stable by
reduction, and so

vker

Lemma 8.1. M € Ayker @8 Apker-strongly (resp. weakly) normalizing iff Apsub-
strongly (resp. weakly) normalizing.

However, there are terms of A, s,p Which are not terms of Ayge. The purpose
of this section is to show that these terms can be faithfully simulated in A,ge;
via an appropriate translation.

The translation ¥ : Aysup — Avker iS defined as follows:

Az.t)k = Ax.t*

tlxeslk = tK[zs]

(L(v)s)* == L<(v*s¥)

(L{ts)u)* = (au®)[zL(ts)¥] where z is fresh
() = ()

Liz<t]r = L¥az«t¥]
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There is a slight mismatch between reductions in A,syp and in Ayger. Some-
times a —y step in A\, syp is simulated by a single —, step in Ayger, while some-
times it requires an additional —, step. Consider ¢ := (Ax.\y.t)su, that trans-
lates to t* = (zu¥)[z(Az.\y.t¥)s¥] with z fresh. We have:

t —n (Ayt)|zeslu =
But
tr —=n uE) ey tB)zest]] —e (Mg tF)uk)[zest] = %

It is quite obvious that A\,ke, can simulate Ay, with only a linear overhead
(in terms of number of rewriting steps), because every step in A,sup can be
simulated by at most two steps in Ayge-. We shall however prove this formally
in the rest of this section. It is less obvious that any reduction sequence in A ger
can be extended with a linear number of steps so that it represents a reduction
sequence in A, sup. This will be shown in the next section, and will require some
commutation properties. The two results together will provide the equivalence
with respect to termination of A\,sup and Ayrer, as we will show in Sect. @

Lemma 8.2 (Properties of -¥). The translation -* has the following properties:

1. Values: t is a value iff t* is a value.
2. Substitutivity: t{z<v}* = t*{z<ov*}.

Proof.

1. It is immediate that v* is a value. If t¥ is a value then either t* = z and
thus t = z, or t* = Az.N, but by definition of the translation this is only
possible if + = Az.s and s¥ = N.

2. By induction on ¢. The variable case is trivial and the abstraction case
follows from the i.h.. The application case t = su splits into two subcases.
Notation: given L we define L{z+v} as follows {-}{xz<v} := (:) and
Lly«t] := L{z<v}[y<t{x<v}]. Moreover, to diminish the use of paren-
theses, we use t{z<s}* for (t{z+s})* (as in the statement of Point [2)).
Subcases:

The left subterm is a value in a substitution context, i.e. s = L{v').
Then:

t{zv}F (L{v"Yyu){z<v}* let I/ := L{z<v}
(L' (v'{z<v}u{zv})k let L' := L*{z<v*}
L”(v’imev}ku{xev}k>

ih. L"(v'k{xevk}uk{xevkh
LE( uk) {x—v®}

= te{z—v*}
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The left subterm is an application in a substitution context, i.e. s =
L{rp). Then:

t{z—v}* =

(L{rpyu){z<uv}* = let L' := L{z<v}
(L {r{zviplrev})u{zev})* =def. of * 1t y be fresh
(yu{zv}¥) [y« L' (r{z<v}p{x-uv})¥| =ih let L" := L*{x<0v¥}
(yu{z=v Py L (r{av*}p{av*})] =

(yu{z=v*}) [y L{rp)*{z-v*}] =

(yu)[y—L(rp)|{zv*} =

(L(rpyu){zv*} =

The next theorem relates the reductions of ¢ and ¢*.
Theorem 8.3 ((-)* and Reductions).

1. Projection of a —, step: t —n s implies t5 —p 55 or t*F —p—¢ s*.

2. Reflection of a —, step: if t* —, N then there exists s s.t. t —, s and
either s* = N or N — s*.

3. Projection and reflection of a —, step: t —¢ s iff t¥ —¢ s.

Proof. By induction on (-)¥. The variable case is trivial and the abstraction
case follows from the i.h.. The other cases:

Explicit substitution: t = u[z+r] and t* = u*[z<r¥]. If the reduction
takes place in u, r, u¥, or r*¥ then it follows from the i.h.. Note that —,

steps can only take place in subterms of ¢, so we have proved Point [1| and
Point Bl Point Bt

=) If r = L(v) then ¢t = ulz<L{v)] —¢ L{u{z<v}) = s and t* =
u¥[x<L¥(v*)]. By Lemma v¥isavalue and t* —, L*(u*{x<0v*}) =
N. Now, Lemma gives us s5 = N.

<) If ¥ = L(v) then 7 has the form L'(v') with v'* = v and L' = L,
and we conclude using the reasoning for the other direction.

Application: two subcases, depending on the shape of the left subterm:

The left subterm is a value in a substitution context: t = L{v)r and
tk = L*(v*r¥). If the reduction takes place in v, r, L, v*, r* or L*
then it follows from the i.h.. Otherwise:

1. Projection of a —y step. If v = Az.u then t = Lz.u)r —,
L(u[z<r]) = s and t* = L*(Az.ufr¥) —o L (u¥[zer¥]) = s5.

2. Reflection of a —, step. If v* = Az.u then v = lz.v/ with
u™® = u, and we repeat the same reasoning.
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3. Projection and reflection of a —. step. The reasoning is analo-
gous to the case t = u[zr].

The left subterm is an application in a substitution context: t =
L{up)r and t* = (yr¥)[y<L{up)¥], with y fresh. If the reduction
takes place in u, p, r, L, u¥, p*, v¥, or L* then it follows from the
i.h.. Otherwise:

1. Projection of a —y step. If u = L'(A\x.q) thent —, L(L'(q[x<p]))r

s and
o= (yr" )[y%L<L’<>\z )] =
(yr* )[yeLk<L’ (Az.g)p))]  —n
(yr)y=L™(L(g"[z<p*]))] = N

Now, there are two cases, depending on the shape of ¢:

(a) q is a value in a substitution context, i.e. ¢ = L"(v"). Then
s = L(L'{qlz<pl))r = L{L'(L"{v") [z<p]))r and

N = (yr®)y=LNL(L (W) [zp¥])]
= (yrk)[y*Lk<L’k<L”k< Y w—p])]
—e DXL (0 re) [wepH])) = s
(b) q is an application in a substitution context, i.e. w = L" {qgm):
then
= L(L'(L"{gm)[z<p]))r
and

N = (yr®) [y« L™ (L*(L" {qm)*[z<p¥]))] = s*

2. Reflection of a —q step. If t* = (yr®)[y<L*(u*p*)] has a m-
redex not contained in one of the subterms then necessarily u* =
L'(Az.Q) and so u = L"(\z.q) with ¢¢ = Q and L"”* = L'. Then
the proof repeats the reasoning of the previous point.

3. Projection and reflection of a —. step. The reasoning is analo-
gous to the case t = u[z<r].

]
An immediate consequence is:
Corollary 8.4 (Ayger Linearly Simulates )\Usub). Let t € Apsup and t %’/{“ub s.
Then there exists j s.t. k < j < 2k and t* — sk,

>\ yker
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8.2. Reflecting Apger Teductions in Aysup

Corollary projects reduction sequences in Aygyup ON sequences in Ayger-
Here we study the converse simulations, i.e. how to simulate an evaluation
sequence in Ayger iN Aysyb, Which is more complex because the relation between
m-steps may involve an additional step in Ayke-. Let us give a status to such
additional steps.

Definition 8.5 (Adjusting Reduction). The adjusting rewriting relation ¢ —.q;
s is defined as follows:

RULE AT ToP LEVEL
(zu)[x=L{v)] +aq; L(vu) with z ¢ fv(u)

CONTEXTUAL CLOSURE
C(t) —aay Cfs) iff t —aqj s

The relationship between —, steps in the two calculi (given by Point [1] and
Point [2[ of Theorem then becomes:

1. If t —y s then either t* —, s* or t* —p—aq5 &
2. If t* —, N then there exists s s.t. ¢ =y s and either s* = N or N —,q5 s*.

Let us explain the technical difficulty in reflecting reductions from A,ge, to
Avsub. Suppose that:

vker

1. % =5, 81 —qmr s is a reduction sequence whose first step t* — 51
requires an adjusting step s1 —aq; u in order to be the simulation of a
step t —n 7 0N Aygup (With 7% = u), and that

2. this adjusting step s; —aqj v is not the first step of the suffix s; %:\:k” s.
In terms of diagrams we have:

tk — 51 —s

‘Ld 3

Then we have to show that the reduction sequence s; —
step s1 —aqj U commute, i.e. that there exists p s.t.

+
Avker

s and the adjusting

tk — S1 — s
|
\

‘Ldj Yagj*

U--+D

i.e. that doing first the adjusting step we do not forbid the computation in the
suffix s; —>;\ruker s to take place (translated as a reduction sequence u —3 p).

However, to later relate termination properties of Aysup and Ayxe, we need a
bit more than that. In fact, commutation of —.4; and —»,, . is in itself trivial,
because —, commutes with — ,, and a —a45 step is a —. step. What we
need to show is that this commutation does not change the length of reduction
sequences in a way which may affect termination. Technically, this will be given
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by the fact that commutation with —.4; does not change the number of m-steps
(in contrast to commutation with —).

Lemma 8.6 (Commutations of —a45). Let t € Ayger. Then:

1. Span of —, and —aq;-

t— 51 t— 51

J implies that either s; = sg or exists u s.t. l J
adj adj adj *

S2 S92 —, u

* .

2. Span of —¢ and —3;:

t — 51 t— 51

J implies that either s; = so or exists u s.t. l J
adj * adj* adj *

S92 S — u

3. Span of =y, and —raq;:

t— 51 t — S1

l implies that exists u s.t. J J
adj adj adj

S2 §2 — U

*

4. Span of —y and —34;-

t—S1 t—S1

l implies that exists u s.t. l l
adj * adj * adj *

S92 S92 — u

Proof.

1. By induction on t = s1. The case s; = s5 is given by the case in which
the —¢ step is ¢ —aqj s2.

2. By induction on the length of ¢ —%4; s2, using Point

. By induction on t — s7.

4. By induction on the length of ¢ —74; s2, using Point [3]

w

We can now show the required commutation property.

Lemma 8.7 (Commutation of —y,, ., and —a45). Let t € Ayger. Then

t —¥s1 t —¥ s

l implies that exists u s.t. l l
adj * adj * adi *

S9 S9 — W

Moreover, the two deriations t —* s and s —=* u have the same number
of m-steps.
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Proof. Simple induction on k, using Lemma [8.6] O

Now, we are ready to lift reduction sequences from t* to t. As expected they
are lifted only modulo an extension by adjusting steps.

Lemma 8.8 (Lifting Reduction Sequences from #* to t). Let t € Aysup and

t5 =% N. Then there exists s s.t. t —>§Z1b s and N —7%4; s5. Moreover, the

. . <
derivations t* _>]§\'uker N and t —>;k , § have the same number of m-steps.

Proof. By induction on k. If k = 0 there is nothing to prove. Then let k£ > 0,
i.e. tf —y Up —>]§\:klw N. By Theorem there is a term s7 s.t. t — $1

vker

and either u; = s¥ or u; —aqj s§. Cases:

vsub

No need of an adjusting step, i.e. u; = s¥. Then by i.h. applied to s¥ =

ur —*1 N there exists s s.t. s1 ==F1 s, N =%, s5 and the two

adj ’
derivations s; —<*~! s and s = u; —*~! N have the same number of
m-steps. Then ¢ —,.., s1 =71 s has length < k and we conclude,

because the step t*¥ — uy is a m-step iff ¢t — s1 is.

vker vsub

An adjusting step is required, i.e. U1 —>aqj S;. Then both % —, — uy
and t — s1 are m-steps. By Lemma applied to u; —raqgj s¥ and
the suffix uq —>’§\v_k1w N there exists @ s.t. s% —>§Ukk:3 Q and N =74 Q,

. . <k-—1 —
and moreover both derivations s¥ _>ka Q and u; —% : N have the

vsub

same number of m-steps. Now, let’s apply the i.h. to s& —>§fk;1 Q: we

. <k—1
obtain s s.t. s —>;k )

<k—1
Avker

s and Q —345 s¥, and moreover both derivations

<k—
Q@ and s %;k

1 Lo
& — , § have the same number of m-steps, which is
veu

the same of u; %’;_kl N. We have proved the statement, because
k k.
L. N =4 Q and Q —3y; 8%, i.e. N =345 85

<k-1

2.t —p s1 “Xeus S has length < k, and
k—1

3. this derivation has the same number of m-steps of t* —, u; — N

vker

8.3. Relating Normalization Properties

Here we use the results of this section to relate termination properties in
Avsub and Ayger, in particular we show that the translation -* of A\ysup t0 Avker
preserves \,syp-strong normalization.

Theorem 8.9 (-¥ and Normalization). Let t € Aysup-

1. t is a normal form iff t* is a normal form.
2. t is strongly (resp. weakly) normalizing iff t* is strongly (resp. weakly)
normalizing.

Notations: we use d, e, f, g for derivations (i.e. reduction sequences), and
note |d|, (resp. |d|) the number of m-steps (resp. steps) in d.
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Proof.

1. By Theorem if ¢t has a redex then t*¥ has a redex, and viceversa.

2. =) we split strong and weak normalization:
Strong Normalization. Suppose that t* is not strongly normalizing.
Then there is an infinite derivation from #¥, i.e. there is a sequence of
derivations dj, : t* _>]>€\vker Ny, for any k € N. By Lemma there is
a sequence of derivations ey : t =% wu from t s.t. |eg|n = [dy|n for
k € N. Since —, is strongly normalizing we obtain that the sequence
{|di|n}ien cannot be bounded. But |e;| > |e;|n = |d;i|n, and so there
is an infinite derivation from t, absurd.
Weak Normalization. Let ¢ =Y w and u be a normal form. By
Corollary there is a reduction - =30, uS, and by Point [1| u* is
a normal form.

<) Analogously:

Strong Normalization. By Corollary any derivation d from ¢ in
Avsup induces a derivation e from t* in Ayger s.t. |d| < e, so there
cannot be infinite derivations from ¢.

Weak Normalization. Let t* =35 N a reduction to normal form.
By Lemma there is s s.t. ¢ =3 s and N —7y; s¥. But N is a
normal form, and so N = s*. By Point [1| s is a normal form.

O

Weak Reduction. In CBV an important notion of evaluation is weak reduction,
which contracts only the redexes which are not under abstractions. We now
show that Theorem holds also for weak reduction. Formally, a weak context
is given by:

W o= () | Wt [tW | Wzet] | [z=W]

Weak reduction —, is defined as the union of —,; and —., which are obtained
as the closure by weak contexts of —, and —,. Weak reduction — has the
diamond property [10], i.e. if $1 4 t —y s2 and s; # s2 then there exists u s.t.
51 =y U yé— Sa.

By looking at its proof it is easy to see that Theorem holds also if
any step in the statements is a weak step, because the map ¥ is defined on
abstraction as (Az.s)¥ := Az.s* and so any step under a \ in a term ¢ is mapped
to a step under a A in t*, and viceversa. In particular, t is a weak normal
form iff ¥ is (so also Theorem adapts to weak reduction). The lifting
lemma (Lemma is based on Theorem and the commutation property
of Lemma The diamond property of weak reduction is stronger than the
property in Lemma 8.7 thus the lifting lemma holds also with respect to weak
reductions.

Then, all the reasoning in Theorem is also valid with respect to weak
reductions and gives the following theorem (whose statement is simpler than
Theorem because the diamond property implies that strong and weak
normalization are equivalent for —):
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Theorem 8.10. Let t € Aysup. Then t has a weak normal form iff t* has a
weak normal form.

Stratified Weak Reduction. The main result of [I0] is that a term of A,gup is
solvable if and only if it has a normal form with respect to a notion of reduction
therein called stratified weak. A natural question is if such a characterization is
stable by -¥. Let us define stratified weak reduction. Define head contexts as:

H:= ()| Ht| \x.H | H[z+t]

Note that head contexts are not weak, as they go under abstractions. Now,
define stratified weak reduction — ¢, as the union of — g and —gye, defined as
follows

RULE AT ToP LEVEL CONTEXTUAL CLOSURE
L{\x.t)s ~n L{tlx<s]) H(W(t)) =y HW{(s)) iff t —ys
tlxL{v)] e L{t{z<v}) H(W(t)) —e HW(s)) iff tes

The idea is that stratified weak reduction allows weak reduction to go under
abstraction, but only under head abstractions.

While —4,-steps are reflected by -¥, it is easily seen that they are not pro-
jected. The -¥ translation may in fact place head abstractions into explicit
substitutions. For instance,

t = Az ((Ayt)s)ur —gm  (Az.(ty<s]))ur =:¢
But (with z fresh)
= )z (D t5)s%)]  Aam  (2rF) [z (Kly<s¥])] = t*

However, it is true that t € \ysup has a —>ge-normal form iff t* € \yier has a
—gw-normal form. The point is that in order to prove this result one needs to
pick a particular —g,-evaluation to normal form. Let us sketch the idea.

By using the axioms of [2], one can easily show that —, factors by levels:
any derivation ¢ =%, s can be reorganized so that one first reduces all the —g;-
redexes out of all abstractions, then those under the first head abstraction, and
so on. In particular, if there is a derivation to —g,-normal form then there is
one of this shape. Now, —¢,-derivations by levels to normal form do project via
X roughly because the counterexample we showed is ruled out (note that it lies
under a —rgy redex at a lower level).
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