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ABSTRACT 

A new oxynitride Ruddlesden-Popper phase K1.6Ca2Nb3O9.4N0.6.1.1H2O was synthesized by 

the topochemical ammonolysis reaction at 700 °C from the oxide Dion-Jacobson phase 

KCa2Nb3O10 in the presence of K2CO3. The oxynitride showed good stability with a little loss 

of nitrogen, even after a few months of exposure to air. Its crystal structure was solved by 

Rietveld refinement of X-ray powder diffraction data in space group P4/mmm and 

considering a two-phase mixture, due to the difference in the degree of hydration, with a = 

3.894(2) Å and c = 17.90(8) Å for the most hydrated phase and a = 3.927(6) and c = 17.09(2) 

for the less one. Optical band gaps were measured by diffuse reflectance UV-Vis indicating a 

red shift of Eg to the visible region.  The oxynitride layered perovskite was then protonated 

and exfoliated into nanosheets. TEM images and SAED patterns of the nanosheets proved that 

exfoliation was successful, showing lattice parameters quite compatible with the Rietveld 

refinement. 

Keywords: Oxynitride, topochemical reaction, Ruddlesden-Popper phase, Dion-Jacobson 

phase, exfoliation, photocatalyst. 



1. Introduction 

 Layered perovskite oxides have been extensively studied because they exhibit a range 

of interesting properties including ion-exchange [1], intercalation [2], electronic/protonic-

conductivity [3], superconductivity [4], dielectric behavior [5], photoluminescence [6] and 

photocatalytic properties [7–10]. These materials undergo exfoliation upon reaction with 

several organic bases producing two-dimensional nanosheets [2,9-11] that can be used as 

useful building blocks for preparing photocatalytic assemblies as a result of their high surface 

area and high versatility in chemical compositions [8,12]. 

 Several authors [10,13,14] claim that these nanosheets, due to their low thickness 

(0.7–1.5 nm), allow that photogenerated electron and hole pairs can reach their surface 

without encountering obstructions, avoiding ‘‘recombination’’ and ‘‘backward reaction’’. On 

the other hand some authors [9,15] call attention to compromise between particle size and 

crystallinity of a given photocatalyst, since the particle size can affect the number of surface 

reaction sites. According to them, the increase in the density of surface catalytic sites with a 

smaller particle size can be affected by the larger recombination probability induced by a 

lower degree of crystallinity.  

 It has been reported that nanosheets with triple perovskite blocks showed much higher 

photoactivity for H2 evolution from aqueous 2-propanol solution than two-layer perovskite 

nanosheets. Such results suggest that the reactivity of holes in the valence band with 

intercalated molecules varies with the thickness of perovskite layers. [8,9]  

 Although several works reported these compounds as good ultraviolet (UV) 

photocatalysts, their large band gaps (>3 eV) inhibit significant photoactivity in the visible 

spectrum. Due to its lower electronegativity, the substitution of nitrogen for oxygen in such 

large band gap semi-conductor oxides leads to the insertion of 2p(N) states above the 2p(O) 

states at the top of the valence band, thus reducing the band gap and red shifting the 



absorption. Many colored titanium, tantalum or niobium–based perovskite-type oxynitrides 

have been so far reported in the literature [16] and some such as LaTiO2N or BaTaO2N have 

been extensively studied as visible-light driven photocatalysts [17,18]. Using such strategy in 

a niobium based layered perovskite Dion–Jacobson phase can cause the reduction of the B-

site transition metal under the reductive ammonia atmosphere used for nitridation reaction 

[10], but  Schottenfeld and co-workers [7] have reported the preparation of colored oxynitride 

Ruddlesden–Popper phase with band gaps in the visible region from ammonolysis of the 

Dion–Jacobson phase compounds RbLaNb2O7 and RbCa2Nb3O10 in the presence of excess 

Rb2CO3. These new compounds appeared to be unstable versus air oxidation and hydrolysis. 

 In this work, therefore, the interconversion of an oxide Dion–Jacobson phase 

(KCa2Nb3O10) into an oxynitride Ruddlesden–Popper phase (K1+xCa2Nb3O10-xNx.yH2O), 

through topochemical reaction, is studied. This proposition is illustrated in Fig. 1. Moreover, 

the protonation and exfoliation of the new RP oxynitride are evaluated.  

2. Experimental 

2.1 Synthesis 

 The oxide Dion-Jacobson phase niobate KCa2Nb3O10 (KCN) was synthesized by the 

solid state reaction of CaCO3 (Alfa Aesar 99.95%), Nb2O5 (CBMM 99.9%) and K2CO3 

(Acros Organic 99+%). The reagents were thoroughly mixed in water with a 20 mol. % 

excess of potassium to compensate volatilization during heat treatments. The obtained 

mixture was dried at 85°C and then heated at 1100°C for 12 h in an alumina crucible. The 

product was water-washed and dried at 110°C overnight. The phase purity of this material 

was verified by X-ray powder diffraction (JCPDS 35-1294). 

 The oxynitride (KCN-N) was prepared by grinding the Dion-Jacobson phase with a 20 

mol. % stoichiometric excess of K2CO3 and by reacting the mixture under constant NH3 flow 



of approximately 30 sccm at 700°C (5°C min
-1

) for 30 minutes. A portion of the oxynitride 

was stored in a glove box while the rest was exposed to the atmospheric air and submitted to 

protonation and exfoliation.  

 The protonation of the lamellar materials was performed by soaking the samples with 

a 6M HNO3 aqueous solution under stirring for 3 days. The acid solution was renewed each 

day and then the material was then centrifuged, water-washed and dried. This sample was 

named HCN-N. The exfoliation was performed as reported in the literature [8,19,20], with a 

tetrabutylammonium hydroxide (TBAOH) aqueous solution at a molar ratio of 

TBAOH/HCa2Nb3O10 = 10, and stirred at reflux for about 21 days. After decanting overnight 

this mixture produced two phases. A solid one that was deposited in the bottom of the flask, 

named TBACN-N and a colloidal suspension composed by the exfoliated nanosheets, named 

NS-CN-N. 

2.2 Characterization 

 Powder X-ray diffraction (PXRD) was performed by using a Bruker AXS D8 Advance 

diffractometer with θ–2θ Bragg–Brentano geometry, and monochromatic CuKα1 radiation 

(λ = 1.5406 Å). The FullProf software [21] was used to compare the experimental diffraction 

patterns with the theoretical ones, and to refine the unit cell parameters. Thermogravimetric 

analyses (TGA) were carried out in a SDT 2960 TA instrument. The powdered samples were 

heated to 800°C in a Pt crucible in N2 flowing (3 L/h) at heating rate of 5°C/min. Diffuse 

reflectance UV-Vis spectroscopy were performed in a Varian Cary 100 spectrometer 

operating in the range 250–800 nm. The band-gap of the material (Eg) was extracted using the 

Kubelka-Munk formalism [22]; the error on the Eg value is estimated to be 0.05 eV. Nitrogen 

and oxygen contents were determined with a LECO® TC-600 analyzer using the inert gas 

fusion method and calibrated using Leco® standard oxides and Si2N2O. Scanning electron 

microscopy (SEM) was performed with a field emission gun Jeol JSM 6310F instrument 

http://www.sciencedirect.com/science/article/pii/S096697951400123X#bib14
http://www.sciencedirect.com/science/article/pii/S0022024814008100?np=y#bib25


working at 7 kV. Chemical composition of the samples was characterized by by energy 

dispersive X-ray spectroscopy (EDXS) by using a Jeol JSM 6400 instrument operating at 10 

kV equipped with an Oxford Inca EDS system. Transmission electron microscopy (TEM) was 

performed with a LaB6 Philips CM200 200 kV instrument and a LaB6 Jeol 2010 200 kV.  

3. Results and discussion 

 After ammonolysis, the white oxide Dion-Jacobson phase KCN produced a bright 

deep yellow powder, that became a little clearer after 30 minutes of air exposition (Fig. 2a and 

b), but remained stable afterwards. The protonation and the exfoliation steps did not promote 

significant changes in product color as illustrated in Fig. 2c and 2d. Tyndal effect (Fig. 2e) 

indicates that a colloidal suspension was obtained after exfoliation with TBAOH solution. 

 As depicted on Fig. 3a, a comparison of the XRD patterns of both oxide DJ phase and 

oxynitride RP phase confirms the topochemical interconversion during ammonolysis.  While 

KCN presented an orthorhombic symmetry with Cmcm space group [10,23], KCN-N belongs 

to P4/mmm space group [7]. 

 The evolution of the crystal structure of the KCN-N phase exposed to air was followed 

by PXRD analysis (Fig. 3b). The XRD sample was prepared in the glovebox and covered with 

a Kapton foil to avoid moisturization during the data collection. Then the Kapton foil was 

removed and the sample was exposed to air and XRD analyses were performed every 30 min 

for 4 h. The XRD profile of the sample which was not exposed to air confirms the formation 

of a tetragonal RP phase after nitridation but the diffraction peaks are broad and asymmetric. 

Upon exposure to air, the RP tetragonal structure type is retained but we observed a 

progressive evolution of the profile of the diffraction peaks as they became thinner and more 

symmetrical with time. A slight shift of the Bragg positions is also noticed indicating a 

progressive increase of the c lattice parameter while the a parameter remains constant. Such 

unexpected evolution of the lattice parameters is attributed to a rapid hydration of the 



oxynitride RP phase and intercalation of water in the interlamellar space resulting in an 

elongation of the crystal structure along the c axis as reported in the literature for some oxide 

RP phases such as K2Ca2Ta2TiO10.0.8H2O [11]. After a couple hours of air exposure, the XRD 

profile of the sample do not change significantly suggesting a good air stability of the 

hydrated oxynitride RP phase for several days as confirmed after 24 days by the XRD pattern 

on Fig. 3a. 

 The crystal structure was solved based on literature data for the oxynitride 

Ruddlesden-Popper phase Rb1.7Ca2Nb3O9.3N0.7·0.5H2O [7]. A few reflections corresponding 

to KNbO3 impurity phase were observed in XRD patterns. The Rietveld refinement was 

performed on a sample kept for six months in a pillbox and we noticed the appearance of 

shoulders on some diffraction peaks, in particular for 00l lines at the low angles region. This 

suggests a small decrease of the c lattice parameter for some of the crystallites attributed to an 

evolution of the degree of hydration in some parts of the sample (Fig. 4). So the Rietveld 

structural refinement of the oxynitride pattern was made in space group P4/mmm considering 

a mixture of two RP phases with close cell parameters with slightly different c lattice 

parameter. The more hydrated phase (KCN-N1) showed cell parameters a = 3.894(2) Å and c 

= 17.90(8) Å, while the second phase (KCN-N2) crystallizes with a = 3.927(6) Å and c = 

17.09(2) Å. In this refinement, it was assumed that all nitrogen atoms were uniformly 

distributed over the all the lattice anions sites and all O
2-

/N
3-

 sites were refined as oxygen 

atoms [7]. The refinement converged reasonably well to give Rp = 14.0%, Rwp = 17.9%, Rexp 

= 10.85% and Chi2 = 2.72. It is understood that high reliability factors are not only due to the 

presence of the perovskite impurity but particularly to the low crystallinity of the less 

hydrated phase (KCN-N2). The results are in reasonable agreement with those reported in the 

literature for other RP phases [7,24]. 



 Kubelka-Munk method [22] was used to the calculation of band gap energies (Eg) 

from UV-Vis diffuse reflectance spectra (Fig. 5). KCN-N and HCN-N samples had lower 

band gap energies relative to parent DJ oxide with Eg shifted to the visible region. 

 The TGA pictured on Fig. 6 indicates that while the KCN was thermally stable in the 

measured temperature range, the oxynitrides suffer weight loss, compatible with the literature 

[7,25]. At lower temperatures (up to 100 °C) evaporation of surface adsorbed or some 

interlayer water was observed. The second weight loss above 200 °C for the samples HCN-N 

and TBACN-N was attributed to a dehydroxylation. The sharp weight loss around 150 °C for 

TBACN-N sample was compatible with the oxidative decomposition of TBA cations, as 

observed in the literature [26]. 

 Water, nitrogen, potassium and niobium contents of samples obtained by combining 

the TGA
a
, elemental analyses

b
 and EDS

c
 results are summarized in Table 1. 

 If we consider a full topochemical conversion of the oxide DJ phase KCa2Nb3O10 into 

an oxynitride RP phase with the theoretical composition K2Ca2Nb3O9N, the as-prepared RP 

oxynitride presented a lower than expected nitrogen content. This is explained by a partial 

insertion of additional potassium within the interlayer as revealed by EDS analysis that is 

compatible with the K1+xCa2Nb3O10-xNx chemical composition. It can also be concluded that 

the protonation step of RP oxynitride occurred satisfactorily, in agreement with previous 

results for the protonation of DJ phase KCa2Nb3O10 [8,27], where residual K/Nb ratios of 

0.01-0.03 were reported. Furthermore protonation was responsible for partial elimination of 

nitrogen, although it still remains. From the results of Table 1 it was possible to propose the 

following molecular formulas for the KCN-N and HCN-N compounds respectively: 

K1.6Ca2Nb3O9.4N0.6.1.1H2O and H1.3Ca2Nb3O9.7N0.3.0.9H2O. 



 Fig. 7a-d show SEM images of KCN, KCN-N, HCN-N and TBACN-N samples. 

These micrographs confirm a typical layer structure stacked layer by layer, that has 

considerably evolved depending on the processing it has undergone. 

 After the treatment in tetrabutylammonium hydroxide aqueous solution, the exfoliated 

particles (NS-CN-N) have a very thin sheet shape with few hundred nanometers in lateral 

dimensions as observed in the TEM micrograph of Fig. 8. 

 The corresponding selected-area electron diffraction (SAED) pattern of the NS-CN-N 

sample shows that the material still retains crystallinity. The pattern corresponds to the [001] 

orientation, fully compatible with the P4/mmm space group of a RP phase. The determined 

lattice parameter is in agreement with the Rietveld refinement result (a = 3.9 Å).  

 Several authors have already worked with the protonation and exfoliation of RP phase 

oxides [11,24,28,29]. In general Ruddlesden-Popper phases are known to not intercalate 

organic bases [29] and without this ability of intercalation, the exfoliation cannot occur. 

According to Gopalakrishnan and co-workers this inability would be structural in nature, 

resulting from the staggered perovskite layers rather than the intrinsic acidity of the interlayer 

protons. On the other hand Schaak and Mallouk [11] concluded, by evaluating the influence 

of the acidity of different phases, that RP tantalates are more reactive with bases than their 

titanate or niobate counterparts. In their results Ruddlesden-Popper titanates and 

titanoniobates have weakly acidic interlayer protons and exfoliate only to a limited extent. 

Nevertheless regarding the literature there is so far no examples of RP phase oxynitrides 

successfully submitted to these reactions. 

5. Conclusions 

The topochemical ammonolysis of the Dion-Jacobson oxide KCa2Nb3O10 in the presence of 

K2CO3 succeeded in the synthesis of the Ruddlesden-Popper phase oxynitride 

K1.6Ca2Nb3O9.4N0.6.1.1H2O. The oxynitride showed good stability even after a long time of 



exposure to air. This material was successful protonated and exfoliated into nanosheets with 

reasonable cristallinity. This result fits this oxynitride as potential building blocks to new 

nanostructured materials. The measured band gap also makes these materials promising 

photocatalysts in the visible region of spectrum. 

Acknowledgments  

This work was supported by CAPES - Brazilian Federal Agency for Support and Evaluation 

of Graduate Education within the Ministry of Education of Brazil. The authors acknowledge 

F. Gouttefangeas and L. Joanny for SEM images and EDS analyses performed at CMEBA 

(ScanMAT, University of Rennes 1). TEM experiments were conducted at THEMIS facilities 

(ScanMAT, University of Rennes 1). CMEBA and THEMIS received a financial support 

from the Region Bretagne, Rennes  Metropole  and  the  European  Union  (CPER-FEDER 

2007 - 2014).  

References 

[1]  Y. Kobayashi, M. Tian, M. Eguchi, T.E. Mallouk, J. Am. Chem. Soc. 131 (2009)  9849. 

[2] M.A. Bizeto, A.L. Shiguihara, V.R.L. Constantino, J. Mat. Chem. 19 (2009) 2512. 

[3]  Y. Kobayashi, J.A. Schottenfeld, D.D. Macdonald,T.E. Mallouk, J. Phys. Chem. C 

 111 (2007) 3185. 

[4] M. Kato, Y. Imai, T. Kajita, Y. Takarabe, T. Minakawa, K. Nemoto, H. Tezuka, T. 

 Nojia, Y. Koike, Mater. Sci. Eng. B 148 (2008) 53. 

[5] S.-H. Kweon, M. Im, G. Han, J.-S. Kim, S. Nahm, J.-W. Choi, S.-J.  Hwang, J. 

 Eur. Ceram. Soc. 33 (2013) 907.  

[6] S. Ida, C. Ogata, M. Eguchi, W.J. Youngblood, T.E. Mallouk, Y. Matsumoto,  J. 

Am. Chem. Soc. 130 (2008) 7052. 

[7] J.A. Schottenfeld, A.J. Benesi, P.W. Stephens, G. Chen, P.C. Eklund, T.E.  Mallouk, J. 

Solid State Chem. 178 (2005) 2313 

[8] K. Maeda, T.E. Mallouk, J. Mater. Chem. 19 (2009) 4813. 

[9] K. Maeda, M. Eguchi, W.J. Youngblood, T.E. Mallouk, Chem. Mater. 21 (2009)  3611. 



[10] S. Ida, Y. Okamoto, S. Koga, H. Hagiwara, T. Ishihara, RSC Adv. 3 (2013) 

 11521. 

[11] R.E. Schaak, T.E. Mallouk, Chem. Mater. 12 (2000) 3427. 

[12] Y. Ebina, N. Sakai, T. Sasaki, J. Phys. Chem. B 109 (2005) 17212. 

[13] R.E. Schaak, T.E. Mallouk,  Chem. Mater. 12 (2000) 2513. 

[14] Y. Okamoto, S. Ida, J. Hyodo, H. Hagiwara and T. Ishihara, J. Am. Chem. Soc.,  133 

(2011) 18034. 

[15]  B. Ohtani, Y. Ogawa, S. Nishimoto, J. Phys. Chem. B 101 (1997) 3746. 

[16] R. Aguiar, D. Logvinovich, A. Weidenkaff, A. Rachel, A. Reller, S. G. Ebbinghaus, 

 Dyes and Pigments 76 (2008) 70. 

[17] A. Kasahara, K. Nukumizu, T. Takata, J. N. Kondo, M. Hara, H. Kobayashi, K. 

 Domen, J. Phys. Chem. B 107 (2003) 791 

[18] K. Maeda, K. Domen, J. Phys. Chem. C 111 (2007) 7851-7861]. 

[19] Y. Chen, X. Zhao, H. Ma, S. Ma, G. Huang, Y. Makita, X. Bai, X. Yang, J. of  Solid 

State Chem. 181 (2008) 1684. 

[20]  E.C. Carroll, O.C. Compton, D. Madsen, F.E. Osterloh, D.S. Larsen, J. Phys. 

 Chem. C 112 (2008) 2394. 

[21]  J. Rodriguez-Carvajal, Physica B 192 (1993) 55. 

[22] D. Kubelka, L. Munk, Z. Teck. Physik. 12 (1931) 593. 

 

[23] H. Fukuoka, T. Isami, S. Yamanaka, J. Solid State Chem. 151 (2000) 40. 

[24] R.E. Schaak, T.E. Mallouk, J. Solid State Chem. 155 (2000) 46.  

[25]  C. Sun, P. Peng, L. Zhu, W. Zheng, Y. Zhao, Eur. J. Inorg. Chem. 24 (2008)  3864. 

[26] N.-R. Lee, H. Jung, J. Phys.Chem. Solids 73 (2012) 1473. 

[27]  M. Fang, C.H. Kim, T.E. Mallouk, Chem. Mater. 11 (1999), 1519. 

[28] J. Gopalakrishnan, S. Uma, V. Bhat, Chem. Mater. 5 (1993) 132. 

[29] S. Uma, A.R. Raju, J. Gopalakrishnan, J. Mater. Chem. 3 (1993) 709. 

  



Figures and Tables 

 

Figure 1 : Synthetic scheme for the topochemical interconversion of KCa2Nb3O10 into the 

corresponding Ruddlesden–Popper oxynitride. Ow are the lattice water oxygens atoms. 

Figure 2 : Physical appearance of (a) KCN precursor, (b) KCN-N oxynitride, (c) HCN-N 

protonated oxynitride, (d) TBACN-N solid and (e) Tyndal effect on NS-CN-N colloidal 

suspension. 

Figure 3 : PXRD of (a) KCN and KCN-N samples, (b) KCN-N sample after different times of 

air exposition. (* KNbO3 impurity). 

Figure 4 : FullProf refinement of X-ray powder diffraction data for KCN-N showing observed 

(top black solid line) and calculated (top red circles) intensities, difference (bottom blue solid 

line) and allowed Bragg reflections (tick marks). 

Figure 5 : Diffuse reflectance UV-visible spectra of KCN, KCN-N and HCN-N samples and 

values of energy band gap (inset). 

Figure 6 :  TGA of KCN, KCN-N, HCN-N and TBACN-N samples. 

Figure 7 : SEM images of (a) KCN, (b) KCN-N, (c) HCN-N and (d) TBACN-N powders. 

Figure 8 : a) TEM brightfield image of a square-shaped layered NS-CN-N oxynitride 

nanosheet. b) Corresponding electron diffraction pattern along the [001] zone axis. 

 

Table 1 : Water, nitrogen, potassium and niobium contents (per formula unit) of KCN, KCN-

N and HCN-N samples. 
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Figure 8 

 
 

  



 

Table 1 
 

Sample 
Mols 

water a 
Mols 

nitrogen b 
Mols 

potassium c 
Mols 

niobium c 

KCN 0.00 ± 0.10 0* 1.09 ± 0.08 2.93 ± 0.08 

KCN-N 1.10 ± 0.10 0.58 ± 0.02 1.52 ± 0.08 2.97 ± 0.08 

HCN-N 0.86 ± 0.10 0.26 ± 0.02 0.08 ± 0.08 3,12 ± 0.08 
 * - Not measured 

 


