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ABSTRACT
We consider wireless downlink data channels where the trans-
mission power of each base station is time-shared between a
dynamic number of active users as in CDMA/HDR systems.
We derive analytical results relating user performance, in
terms of blocking probability and data throughput, to cell
size and traffic density. These results are used to address a
number of practically interesting issues, including the trade-
off between cell coverage and cell capacity and the choice of
efficient scheduling and admission control schemes.

Categories and Subject Descriptors
B.8 [Performance and Reliability]: Performance Analy-
sis and Design Aids

General Terms
Performance

Keywords
CDMA/HDR systems, flow-level analysis, dimensioning

1. INTRODUCTION
Data services are expected to constitute a significant part

of traffic in future CDMA networks. In this paper, we derive
analytical performance results for downlink data channels,
accounting for the random nature of traffic demand, and
show the practical interest of these results in dimensioning
cells and designing radio control algorithms.

To support high data rates, a number of new technologies
have been standardized, such as HDR (High Data Rate) sys-
tems [6], corresponding to the CDMA2000 1xEV-DO stan-
dard, and their 3GPP equivalent, HSDPA (High Speed Down-
link Packet Access) systems [1, 17]. Both systems are based
on an intra-cell interference cancellation principle: time is
slotted and the base station (BS) transmits at full power to
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only one user in each slot. It has been shown that, assum-
ing the feasible transmission rate is linear in the signal to
interference-plus-noise (SINR) ratio, this maximizes overall
throughput [18, 11, 4]. Note that this optimality principle
is not strictly valid when only a discrete set of data rates is
available [4].

A key component of such a TDMA-like scheme is the
scheduling, i.e., deciding which user should be served in each
time slot. In fact, it is not directly clear what a “good”
scheduling strategy is, as the potential data rate of a user
depends on her/his radio conditions, mainly determined by
the distance to the BS and fading effects. To transmit always
to the user with the highest potential rate maximizes overall
throughput but typically results in the starvation of distant
users. Another strategy, which realizes a reasonable trade-
off between efficiency and fairness, consists in transmitting
to the user with the highest potential rate proportionally to
her/his current mean data rate [23]. This algorithm, termed
Proportional Fair (PF) and implemented in HDR systems,
has indeed been shown to fairly share the transmission re-
source [10]. Many other scheduling algorithms have been
proposed and analyzed (see [8] and references therein).

As a general rule the evaluation of scheduling algorithms is
performed with an assumed static population of users (see,
e.g., [12]). We maintain that this may lead to misleading
conclusions since the actual set of active users is dynamic

and varies as a random process as new data flows are initi-
ated and others complete. In particular, while users are gen-
erally assumed to be uniformly distributed in the cell, the
location of active users in steady state does depend on the
scheduling employed. This is due to the inherent “elasticity”
of data transfers: the resource attributed to any user deter-
mines how long that user will stay active. Thus a scheduling
scheme that favors near users results in a large proportion
of active users being far from the BS.

A further issue when accounting for the statistical nature
of traffic is that of admission control: situations may arise
where it is preferable to block new demands rather than to
further degrade the performance of ongoing data flows. Ad-
mission control has already been proposed for data services
in a wireline context to preserve network efficiency in over-
load [5]. The design and evaluation of admission control
schemes for the considered wireless network are still largely
unexplored areas.

In evaluating scheduling and admission control it is im-
portant to understand how offered traffic impacts user per-
ceived performance, in terms of transfer delays and blocking



rates. Given the ever changing nature of data applications,
control mechanisms should be designed so that performance
depends mainly on an appropriately defined load factor, and
not on precise traffic characteristics like the distribution of
a typical transfer volume. This requirement underscores the
interest of analytical modeling tools, in addition to simu-
lation, in order to gain the necessary insight and identify
efficient design choices.

Regarding dimensioning issues, it is not straightforward
to define the traffic carrying capacity of a CDMA network
handling data. Resource consumption depends in particular
on the position of the users so that, in addition to the usual
notion of intensity, traffic also has a spatial component. It
is notably important to know how the capacity of a cell
depends on its size, in analogy with the known trade-off in
circuit switched CDMA networks [22, 25].

Related work. To our knowledge, very few papers address
the issue of user performance for wireless data channels,
accounting for the random nature of traffic and the inher-
ent “elasticity” of data transfers. Most existing models in-
deed represent data transfers as circuit services (see, e.g.,
[2]). A notable exception is the recent work of Borst for
CDMA/HDR systems [8]. User performance is explicitly
evaluated and shown to be insensitive to the flow size distri-
bution, with or without admission control, in a symmetric
scenario where all users experience the same fast fading and
the resource allocation is that realized by the PF scheduler.
The radio channel is modeled at flow level by a processor-
sharing queue which is indeed known to have the insensitiv-
ity property [20].

Contribution. In the present paper, we extend the analyt-
ical results of [8] to more general scheduling and admission
control schemes and, accounting for the spatial component
of offered traffic, apply them to a number of practical issues.
We notably define the notion of “cell capacity”, critical for
dimensioning purposes, and show that:

• sharing the transmission power in a fair way is efficient
with respect to user performance;

• the waste of radio resources due to the granularity of
feasible rates induced by coding constraints is typically
not significant;

• the so-called “cell breathing” effect arises at very high
loads only. In particular, a simple admission control
independent of user locations is sufficient in practice;

• the number of active users is typically rather small in
steady state. In particular, the impact of opportunistic
schedulers like PF that take advantage of fast fading
is typically much smaller than one would expect with
an assumed static user population.

Outline. In the next section, we present the model used to
derive the analytical results. In Sections 3 and 4, user per-
formance is evaluated in terms of throughput and blocking
rate. The following three sections are devoted to the impact
of non-linear data rate vs. SINR dependency, fast fading and
interference, respectively. Section 8 concludes the paper.

2. MODEL
In this section, we first present the model of the radio re-

source and the way this resource is shared. We then describe
the characteristics of offered traffic.

2.1 Radio resource
We consider a cell with a single downlink channel whose

resource is time-shared between active users. Denote by φb
u

the fraction of time base station (BS) b transmits to user u,
with

�
u

φb
u = 1. The data rate of user u is then:

Cu = C × φb
u, (1)

where C is the peak data rate, obtained in the absence of
any other user in the cell, i.e., for φb

u = 1.
In practice, the peak data rate depends in a complex way

on the radio environment and varies over time due to user
mobility, shadowing and multi-path reflections. Unless oth-
erwise specified, we ignore these fading effects, i.e., we as-
sume the peak data rate is approximately constant during
data transfer. Section 6 is devoted to the impact of fast fad-
ing. To simplify the presentation, we also assume that the
peak rate C depends on the distance r from BS b to user
u only. This last assumption is not essential and the the-
oretical results derived in the following still hold in a more
realistic radio environment, given any peak rate function of
user’s location in the cell. We denote by C0 the maximum
peak rate (which depends on channel bandwidth and coding
efficiency) and by r0 the maximum distance at which this
maximum peak rate is achieved:

C(r) = C0 for all r ≤ r0. (2)

Rate vs. SINR dependency. For numerical applications, we
use the peak rate function given by the following standard
model. Let W be the cell chip rate. If Pu denotes the power
received by user u from her/his BS, η the background noise
and Iu the interference due to other BS, the user’s signal to
interference-plus-noise ratio (SINR) and energy-per-bit to
noise density ratio are respectively given by [24]:

SINRu =
Pu

η + Iu

,
Eb

N0

=
W

C
× SINRu. (3)

Given a target error probability, it is necessary that Eb/N0 ≥
δ for some threshold δ, which is assumed to be the same for
all users. The peak data rate of user u is then the mini-
mum of C0 and W × SINRu/δ. In particular, it is linear in
the SINR up to the maximum peak rate C0. The assump-
tion of a constant Eb/N0 target is generally valid as long as
the same type of modulation is used for all data rates [15].
In HDR systems for instance, δ is approximately equal to
2.5dB for all data rates except for the three highest, with
a maximum value of 6.5dB [6]. The impact of such a rate-
dependent target δ resulting in a non-linear rate vs. SINR
dependency is evaluated in Section 5.

Propagation model. In the first part of the paper, we ne-
glect the interference term Iu, i.e., we consider a single cell
in isolation. Equivalently, we assume that interference is
constant over the considered cell. The impact of the inter-
ference generated by other BS is evaluated in Section 7. The
power Pu received by user u is equal to P × Γu where P is
the transmission power of the BS and Γu denotes the path



loss. In practice, path loss varies with respect to the user’s
location and radio conditions. Here we adopt a simple prop-
agation model where the path loss Γu is a function Γ of the
distance r from the BS to user u only:

Γ(r) =

�
1 if r ≤ ε,�

ε

r � α
otherwise,

where ε denotes the maximum distance at which the full
power P is received and α is the path loss exponent which
characterizes the radio environment (typical values of α are
between 2 and 5). Assuming that the maximum peak rate
C0 can be achieved (thus r0 > ε), it follows from (2) that
the peak rate function is:

C(r) = C0 ×

�
1 if r ≤ r0,�

r0

r � α
otherwise.

(4)

Coding constraints. Expression (4) corresponds to an ideal
case where the set of achievable peak rates is continuous. In
practice, coding constraints result in a discrete set of achiev-
able peak rates C0 ≡ c0 > c1 > . . . > cn. In view of (4),
these rates define a set of concentric “rings” of external ra-
dius r0 < r1 < . . . < rn corresponding to regions where
these rates are achievable. Table 1 below gives the rates
defined for HDR channels [6] with the corresponding radius
(normalized so that r0 = 1) evaluated from (4) with two
values of the path loss exponent.

Ring k Rate ck Radius rk Radius rk

(Kbit/s) (α = 4) (α = 2)

0 2457.6 1 1
1 1843.2 1.07 1.15
2 1228.8 1.19 1.41
3 921.6 1.28 1.63
4 614.4 1.41 2.00
5 307.2 1.68 2.83
6 204.8 1.86 3.46
7 153.6 2.00 4.00
8 102.6 2.21 4.90
9 76.8 2.37 5.61
10 38.4 2.82 7.94

Table 1: Rates and ring radius.

2.2 Traffic characteristics
We assume traffic demand is uniformly distributed in the

cell. Data flows arrive as a Poisson process of intensity λ×ds
in any area of surface ds. Flow sizes are independent and
identically distributed (i.i.d.). We denote by σ the corre-
sponding random variable and by ρ = λ × E[σ] the traffic
density (in Kbit/s per surface unit). The traffic intensity
generated by those users whose distance to the BS is be-
tween r and r + dr is dρ(r) = ρ × 2πrdr. We consider two
cases, depending on whether coding constraints are taken
into account or not.

No coding constraint. In the ideal case where a continuous
set of peak rates is achievable, the load generated by those
users whose distance to the BS is between r and r + dr is
the ratio dρ(r)/C(r) of their traffic intensity to their peak

rate. This corresponds to their demand on the radio resource
(here the time slot). Thus we define the load of a cell of
radius R as:

ρ̄ = � R

0

dρ(r)

C(r)
. (5)

Users experience quality of service through the duration of
data transfers. Note that, in view of (1), this does not only
depend on user characteristics such as her/his peak rate,
but also on the cell activity, i.e., on the dynamic number of
active users who share the transmission resource. We are
interested in the mean flow duration T (r) for a user whose
distance to the BS is r (recall that active users don’t move
during their data transfer in our model). Let dx(r) be the
mean number of active users whose distance to the BS is
between r and r + dr. Applying Little’s law [16], we get:

dx(r) = T (r)λ × 2πrdr.

Thus the flow throughput γ(r) of users whose distance to
the BS is r, defined as the ratio of the mean flow size E[σ]
to the mean flow duration T (r), is given by:

γ(r) =
dρ(r)

dx(r)
. (6)

This quantifies the average performance of data transfers at
a distance r from the BS.

Coding constraints. When the set of achievable peak rates
is discrete, the traffic intensity in ring 0 is given by:

ρ0 = ρπr2
0,

while the traffic intensity in ring k, k = 1, . . . , n, is given by:

ρk = ρπ(r2
k − r2

k−1).

As above, we define the cell load as:

ρ̄ =

n�
k=0

ρ̄k,

where ρ̄k = ρk/ck denotes the load of ring k. The shape and
the load contribution of each ring are illustrated in Figure 1
for the values given in Table 1 and n = 4, 7, 10, correspond-
ing to cells of radius r4, r7, r10, respectively1. We observe
that for large cells (corresponding to a large spectrum of
possible peak rates), most load is concentrated in the outer
ring.

We are interested in the mean flow duration Tk for a user
in ring k. Denote by xk the mean number of active users in
ring k. By Little’s law:

E[x0] = T0λ × πr2
0,

and for k = 1, . . . , n,

E[xk] = Tkλ × π(r2
k − r2

k−1).

We deduce the flow throughput for a user in ring k, defined
as the ratio of the mean flow size E[σ] to the mean flow
duration Tk:

γk =
ρk

E[xk]
. (7)

1The maximum cell radius obtained for α = 2 is in fact
almost three times larger than that obtained for α = 4; we
changed the scale between the two sets of cells of Figure 1
for sake of readability.



Path loss exponent α = 4

< 10% > 10% > 20% > 50%

Path loss exponent α = 2

< 10% > 10% > 20% > 50%

Figure 1: Ring shapes and load distribution.
(n = 4, 7, 10)

3. THROUGHPUT PERFORMANCE
(NO ADMISSION CONTROL)

In this section, we evaluate user performance in terms of
flow throughput in the absence of admission control, i.e.,
when the number of active users is not limited. We first as-
sume that the radio resource is fairly shared between active
users, i.e., φb

u = 1/x, when x users are active in the cell.
This is the allocation realized by the PF scheduler or a sim-
ple round-robin scheduler, for instance (these are equivalent
in the absence of fast fading). Other power allocations are
considered in §3.3.

3.1 A continuous set of peak rates
We first consider the ideal case where a continuous set

of peak rates is achievable. As the transmission resource
is fairly shared between active users, the number of active
users x evolves like the number of customers in a processor-
sharing queue with Poisson arrivals of intensity λπR2 and
i.i.d. service times [16]. Each service time is equal to the flow
duration in the absence of any other user in the cell, i.e.,
σ/C(r) for a user whose distance to the BS is r. Thus the
distribution of the random variable σ̄ representing a typical
service time is given by:

dσ̄(r) =
σ

C(r)

2rdr

R2
, r ≤ R.

In particular, the load of the processor-sharing queue corre-
sponds to the cell load:

λπR2 × � R

0

E[σ]

C(r)

2rdr

R2
= � R

0

ρ

C(r)
2πrdr ≡ ρ̄. (8)

We conclude that the number of active users x tends to
a finite stationary regime in underload (ρ̄ < 1), while it

grows indefinitely in overload (ρ̄ > 1). In the latter case,
the data rate C(r)/x tends to zero for all users, whatever
their distance to the BS: the cell is saturated.

Cell capacity. We may define the cell capacity as the max-
imum traffic intensity for which the cell is not saturated. In
view of (8), this is a function C̄ of the cell radius R:

C̄(R) = � � R

0

2rdr

C(r)R2 � −1

.

Note that C̄ is a decreasing function of R, equal to the max-
imum peak rate C0 for R ≤ r0. Figure 2 gives the cell ca-
pacity with respect to its radius (normalized values so that
C0 = 1, r0 = 1) for the peak rate function (4). We observe
that the cell capacity decreases suddenly when R ≥ r0. The
capacity of large cells is extremely small.
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Figure 2: Cell capacity – defined as the maximum
traffic intensity without saturation – with respect to
cell radius, for path loss exponents α = 2 and α = 4.

Flow throughput. To evaluate user performance in under-
load, we use a key property of the processor-sharing queue:
the stationary distribution of the number of customers is
insensitive to the distribution of service times. This follows
from the reversibility of the underlying Markov process [14,
20]. We deduce that the stationary distribution π of the
number of active users is insensitive to the flow size distri-
bution and given by:

π(x) = ρ̄x(1 − ρ̄). (9)

Note that the number of active users is typically rather small
in steady state: the probability having more than x active
users decreases geometrically with rate ρ̄. In addition, the
probability that the distance of an active user to the BS is
between r and r+dr is proportional to the load generated by
these users, namely dρ(r)/C(r). In particular, the density

of active users is inversely proportional to their peak rate
C(r). We deduce:

dx(r) =
dρ(r)

ρ̄C(r)
× E[x],

where, in view of (9), the mean number of active users is:

E[x] =
ρ̄

1 − ρ̄
.



It then follows from (6) that:

γ(r) = C(r)(1 − ρ̄).

Hence, the flow throughput is equal to the peak rate for
ρ̄ = 0 and decreases linearly in the cell load.

3.2 A discrete set of peak rates
We now consider the practically interesting case where

only a discrete set of peak rates is available. As above, the
number of active users evolves like the number of customers
in a processor-sharing queue with Poisson arrivals of rate
λπR2 and i.i.d. service times. The random variable σ̄ rep-
resenting a typical service time is now equal to σ/ck with
probability pk, k = 0, 1, . . . , n, with:

p0 =
r2
0

R2
, pk =

r2
k − r2

k−1

R2
, k = 1, . . . , n.

Again, the load of the processor-sharing queue corresponds
to the cell load:

λπR2 ×

n�
k=0

pk

E[σ]

ck

≡ ρ̄.

Path loss exponent α = 4
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Figure 3: Cell capacity – defined as the maximum
traffic intensity without saturation – with respect to
cell radius, with and without coding constraints.

Cell capacity. As above, we define the cell capacity as max-
imum traffic intensity for which the cell is not saturated:

C̄(R) = � n�
k=0

pk

ck � −1

.

Note that the cell capacity is always smaller than that ob-
tained in the ideal case considered in §3.1. Figure 3 gives
the cell capacity obtained for the values of Table 1. We ob-
serve that the difference with the ideal case is very small,
indicating that resource wastage due to coding constraints
is limited.

Flow throughput. The stationary distribution of the num-
ber of active users in each ring is that of the number of
customers in a processor-sharing queue with classes of re-
spective loads ρ̄0, . . . , ρ̄n:

π(x0, . . . , xn) =
(x0 + . . . + xn)!

x0! . . . xn!
ρ̄x0

0 . . . ρ̄xn
n (1 − ρ̄). (10)

Again, the probability having more than x active users de-
creases geometrically with rate ρ̄ = ρ̄0 + . . .+ ρ̄n. The prob-
ability an active user is in ring k is proportional to the load
ρ̄k = ρk/ck generated by these users. In particular, the den-

sity of active users is inversely proportional to their peak
rate, as in the absence of coding constraint. For instance,
for the values given in Table 1, the mean number of active
users per surface unit in ring 5 is always twice that in ring
4, whatever the values of the path loss exponent or the cell
load.

In view of (10), the mean number of active users in ring
k is:

E[xk] =
ρ̄k

1 − ρ̄
,

and from (7):

γk = ck(1 − ρ̄).

Again, the flow throughput decreases linearly in the cell
load. This is illustrated in Figure 4 for each ring of Table 1.

0

0.5

1

1.5

2

2.5

0 0.2 0.4 0.6 0.8 1

T
hr

ou
gh

pu
t (

M
bi

t/s
)

Cell load

Figure 4: Flow throughput with respect to cell load
for the 11 rings of Table 1.

3.3 Other power allocations
The allocation so far considered, referred to as “fair power”

sharing, has the practically interesting property that user



performance can be explicitly evaluated and is insensitive
to the flow size distribution. It may be considered as “un-
fair”, however, as the flow throughput experienced by a user
is proportional to her/his peak data rate (refer to Figure 4).

Fair rate sharing. Consider another allocation, referred to
as “fair rate” sharing, where the data rates of all active users
are made equal. This is realized if BS b transmits to user
u a fraction of time inversely proportional to her/his peak
rate:

φb
u =

1/C(r(u))
�

u′ 1/C(r(u′))
,

where r(u′) denotes the distance from BS b to user u′. The
number of active users then evolves like the number of cus-
tomers in a discriminatory processor-sharing queue [9] of
load ρ̄. Again, the cell is saturated in overload (ρ̄ > 1). In
underload (ρ̄ < 1), the number of active users x tends to
a finite stationary regime, but the stationary distribution is
sensitive to the flow size distribution.

For an exponential flow size distribution, we obtain using
[9] the results of Figure 5 for a 5-ring cell, with the values
of Table 1. We observe that the gain in flow throughput for
users in the outer ring is very limited. On the other hand,
the impact on the performance of users in the inner disk is
significant. This may be explained as follows. First, the fact
that active users have the same data rate does not imply
that users have the same flow throughput. When the cell
load ρ̄ is close to 0 for instance, an active user is typically
alone in the cell so that the flow throughput is equal to the
peak rate. Second, most load is concentrated in the outer
rings (refer to Figure 1): the performance experienced by
far users is essentially due to their own load and cannot
be significantly improved; the performance experienced by
near users, on the other hand, mainly depends on the load
generated by far users thus may be significantly worsened.
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Figure 5: Throughput of users in the inner disk (up-
per curves) and the outer ring (lower curves) with
respect to cell load in a 5-ring cell, for two different
power allocations.

Service-dependent allocations. Other possible allocations
are those which depend on the remaining or the processed
service, such as the “shortest remaining processing time” or
the “foreground-background” disciplines, respectively [16].

These allocations, which are known to outperform the pro-
cessor sharing discipline for a heavy-tailed service distribu-
tion, have been proposed to be implemented in Web servers
in a wireline context [3, 19] and more recently in scheduling
algorithms in a wireless context [13]. They would here exac-
erbate the discrimination against far users, whose processing
time is typically much higher than that of near users.

The above observations suggest that no significant gain is
achieved by those allocations which do not share the trans-
mission resource in a fair way and that the so-called “near-
far” unfairness (in terms of flow throughput) is inherent to
wireless data systems. The only way to achieve approxi-
mately fair throughput performance is to limit the cell size
so that all users can achieve high data rates. Finally, it is
worth noting that the key properties satisfied by the “fair
power” allocation (explicit performance evaluation and in-
sensitivity) still hold in the presence of admission control,
as shown in the next section. The impact of admission con-
trol on user performance is typically extremely difficult to
evaluate for other power allocations.

4. BLOCKING RATE
(WITH ADMISSION CONTROL)

In the absence of admission control, we have seen that the
cell is saturated in overload (ρ̄ > 1): the number of ongoing
transfers grows indefinitely and the data rate of each transfer
eventually tends to zero. Admission control is necessary to
guarantee a minimum data rate cmin for all users whatever
the cell load. For a given target rate cmin, 0 < cmin < C0, the
cell radius R cannot exceed Rmax, the maximum distance r
such that C(r) ≥ cmin.

In the presence of admission control, users experience
quality of service not only through flow throughput but also
through blocking rate. In this section, cell capacity is eval-
uated in terms of the maximum traffic intensity for given
minimum data rate cmin and target blocking probability.

4.1 Admission control based on the number of
active users

We first consider a simple admission criterion based on the
number of active users. For a cell of radius R, the minimum
rate cmin is guaranteed if the number of active users does
not exceed:

m =
C(R)

cmin

.

No coding constraint. We first consider the case where the
set of available peak rates is continuous. As the Markov pro-
cess associated with the unconstrained system considered in
§3.1 is reversible, the restriction of its stationary distribution
to admissible states gives the stationary distribution of the
Markov process associated with the constrained system [14].
In addition, the stationary distribution associated with the
constrained system remains insensitive to the service time
distribution. Assuming m is an integer for simplicity, it
then follows from (9) that the stationary distribution of the
number of active users is:

π(x) =
ρ̄x

1 + ρ̄ + . . . + ρ̄m
, 0 ≤ x ≤ m. (11)



Thus the blocking rate, which is independent of the user’s
distance to the BS, is given by:

B =
ρ̄m

1 + ρ̄ + . . . + ρ̄m
. (12)

In addition, the probability that the distance of an active
user to the BS is between r and r+dr is proportional to the
actual load generated by these users, namely:

(1 − B)
dρ(r)

C(r)
.

In particular, the density of active users is inversely propor-
tional to their peak rate C(r) as in the absence of admission
control (refer to §3.1). We also deduce:

dx(r) =
1

ρ̄

dρ(r)

C(r)
× E[x],

where, in view of (11), the mean number of active users is:

E[x] =
ρ

1 − ρ
×

1 − (m + 1)ρm + mρm+1

1 − ρm+1
. (13)

As the actual traffic intensity generated by those users whose
distance to the BS is between r and r + dr is (1 − B)dρ(r),
expression (6) becomes:

γ(r) = (1 − B)
dρ(r)

dx(r)
.

It then follows from (12) and (13) that:

γ(r) = C(r) ×
(1 − ρ)(1 − ρm)

1 − (m + 1)ρm + mρm+1
.

Hence, the flow throughput is equal to the peak rate for
ρ̄ = 0 and decreases to C(r)/m when the cell load ρ̄ tends
to infinity.

Coding constraints. The results are similar if the set of
available peak rates is discrete. For a cell of radius R = rn,
the maximum number of users is m = cn/cmin. The blocking
rate is the same in all rings and given by (12). The flow
throughput in ring k is:

γk = ck ×
(1 − ρ)(1 − ρm)

1 − (m + 1)ρm + mρm+1
.

Figure 6 gives the corresponding flow throughput for a 5-
ring cell with the values of Table 1 and a maximum number
of users m = 12, corresponding to a minimum data rate
cmin = 51 Kbit/s (cmin/C0 ≈ 0.02). The flow throughput
decreases from ck to ck/m for each ring k.

4.2 Admission control based on the minimum
data rate

We now consider an admission control based on the mini-
mum data rate: a new data transfer is accepted if and only
if its rate and the rate of ongoing transfers would be larger
than cmin. In particular, the admission decision now de-
pends on the location of users. The number of users cannot
exceed:

M =
C0

cmin

,

which corresponds to the best case where the distance from
the BS to any active user does not exceed r0.
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Figure 6: Flow throughput with respect to cell load
in each ring of a 5-ring cell when the number of
active users is limited to m = 12.

The objective here is to evaluate the gain in terms of
blocking probability compared to the admission control based
on a maximum number of active users m given by:

m =
C(R)

cmin

.

No coding constraint. For a continuous set of available
peak rates, admissible states are those for which

min1≤u≤x C(r(u))

x
≥ cmin,

where r(u) denotes the distance from the BS to active user
u. Assume M is an integer for simplicity. Let L = M − m,
and for j = 0, . . . , L, define Rj as the maximum distance r
such that:

C(r) ≥ (M − j)cmin.

Note that r0 ≡ R0 < R1 < . . . < RL ≡ R. Admissible
states are those for which there are less than m active users
or there are x = M−j active users and the distance from the
BS to any of these users does not exceed Rj , j = 0, . . . , L.

As in §4.1, the reversibility property implies that the sta-
tionary distribution π of the number of active users is insen-
sitive to the flow size distribution and given by the restric-
tion to admissible states of the stationary distribution (9)
associated with the unconstrained system. Noting that in
this unconstrained system, the probability that the distance
of an active user to the BS is less than Rj is equal to ρ̄→j/ρ̄,
where

ρ̄→j = � Rj

0

dρ(r)

C(r)
,

we deduce:

π(x) = π(0) ×

�
ρ̄x for x < m,
ρ̄M−i
→i for x = M − i, i = 0, . . . , L,

where

π(0) = � 1 + ρ̄ + . . . + ρ̄m−1 +
L�

i=0

ρ̄M−i
→i � −1

.



We also deduce the blocking rate Bj for users whose distance
to the BS is Rj , j = 0, . . . , L:

Bj =

L�
i=0

ρ̄M−i
→i −

L�
i=j+1

ρ̄M−i
→i−1

1 + ρ̄ + . . . + ρ̄m−1 +
L�

i=0

ρ̄M−i
→i

.

Noting that the blocking rate B(r) for users whose distance
to the BS is r is

B(r) = B0 if r ≤ R0,

and for j = 1, . . . , L,

B(r) = Bj if Rj−1 < r ≤ Rj ,

we get the mean blocking rate:

B = B0

R2
0

R2
+

L�
j=1

Bj

R2
j − R2

j−1

R2
. (14)

Figure 7 gives the corresponding cell capacity (normalized
values so that C0 = 1, r0 = 1) compared to that obtained
with the admission control based on a maximum number of
users m. We observe that no significant gain is achieved.
This is actually true for any reasonable values of the mini-
mum data rate (cmin < 0.1, say, corresponding to 246 Kbit/s
for HDR channels) and target blocking rates (B < 10%,
say). We explain this result in §4.3 below.
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Figure 7: Comparison of the cell capacity – defined
as the maximum traffic intensity for a minimum
data rate cmin = 0.02 and target blocking rates 1%
(lower curves) and 5% (upper curves) – obtained for
two different admission criteria, without coding con-
straints (path loss exponent α = 4).

Coding constraints. For a discrete set of peak rates, ad-
missible states are those for which

min
0≤k≤n

ck � {xk>0}

x
≥ cmin,

where xk denotes the number of active users in ring k. For
j = 0, . . . , L, define kj as the largest integer k such that:

ck ≥ (M − j)cmin.

Note that 0 ≡ k0 ≤ k1 ≤ . . . ≤ kL ≡ n. Admissible states
are those for which there are less than m active users or
there are x = M − j active users and the distance from the
BS to any of these users does not exceed rkj

, j = 0, . . . , L.
Again, it follows from the reversibility of the Markov pro-

cess associated with the unconstrained system considered in
§3.2 that the stationary distribution of the number of active
users is:

π(x) = π(0) ×

�
ρ̄x for x < m,
ρ̄M−i
→ki

for x = M − i, i = 0, . . . , L,

where

π(0) = � 1 + ρ̄ + . . . + ρ̄m−1 +
L�

i=0

ρ̄M−i
→ki � −1

,

and for k = 0, . . . , n,

ρ̄→k =
k�

j=0

ρ̄j .

The blocking rate in ring k is given by:

Bk =

L�
i=0

ρ̄M−i
→ki

−
L�

i=jk+1

ρ̄M−i
→ki−1

1 + ρ̄ + . . . + ρ̄m−1 +
L�

i=0

ρ̄M−i
→ki

,

where jk denotes the minimum integer j′ such that kj′ = k,
and the mean blocking rate is

B = B0

r2
0

R2
+

n�
k=1

Bk

r2
k − r2

k−1

R2
. (15)

Figure 8 is the analog of Figure 7 for the values of Table
1. Again, we observe that no significant gain is achieved
with the admission control based on the minimum data rate.
Furthermore, comparing Figures 7 and 8 indicates as in §3.2
that resource wastage due to coding constraints is limited.
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Figure 8: Comparison of the cell capacity – defined
as the maximum traffic intensity for a minimum data
rate cmin = 0.02 and target blocking rates 1% (lower
curves) and 5% (upper curves) – obtained for two
different admission criteria, with coding contraints
(path loss exponent α = 4).



4.3 Cell breathing
Previous results suggest that a simple admission control

based on the number of active users leads to a cell capacity
similar to that obtained with more complex schemes such as
that based on the minimum data rate where the admission
decision depends on user locations. As the blocking rate
B(r) obtained with the latter is an increasing function of
the distance r from the BS b to user u, one would expect
the cell to “breath”, i.e., the active users to be near the BS
when the cell load increases (refer to Figure 9).

Low load High load

> 50%

> 10%

< 5%

> 5%

Figure 9: Cell breathing: repartition of active users
with respect to cell load (α = 4).

This “cell breathing” effect indeed arises as for circuit ser-
vices [25], but at very high loads only (the results of Figure
9 were obtained for loads ρ̄ = 0.5 and ρ̄ = 100). This is
illustrated by Figure 10 which gives the mean blocking rate
and the blocking rate in each ring with respect to the cell
load for the values of Table 1 (α = 4): for a target mean
blocking rate smaller than 10%, the blocking rate is approx-
imately the same in all rings, and very well approximated
by expression (12).
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Figure 10: Blocking rate with respect to cell load for
the 11 rings of Table 1 with a minimum data rate of
19.2 Kbit/s (cmin = c10/2).

The above observation can be explained by the fact that
a significant part of the traffic intensity is generated in the
outer rings: if the blocking rate in these rings is close to
1, the mean blocking rate is necessarily high (larger than
the fraction of traffic intensity generated in these rings). At
nominal loads corresponding to mean blocking rates smaller
than 10%, the blocking rate is approximately the same for

all users whatever their location: the so-called “near-far”
unfairness (in terms of blocking rates) does not hold.

5. IMPACT OF NON-LINEAR
RATE VS. SINR DEPENDENCY

We have so far assumed that the target energy-per-bit to
noise density ratio δ is constant, resulting in a linear rate
vs. SINR dependency (up to the maximum peak rate C0).
As noted in §2.1, this assumption is not necessarily valid in
real systems. In this section, we study the impact of the
rate-dependent target δ of HDR channels.

5.1 Cell shape and load distribution
Table 2 below gives the target SINR for each data rate

defined in HDR systems [6]. As the chip rate is W = 1228.8
Kchip/s, we get from (3) the corresponding Eb/N0 target:
δ0 ≈ 6.5dB, δ1 ≈ 5.4dB, δ2 ≈ 3dB, and δk ≈ 2.5dB for all
rings k = 3, . . . , 10. Thus the Eb/N0 target is approximately
constant except for the highest peak rates. This can notably
be explained by the specific modulation used for these rates.

Ring Rate SINR Radius Radius
(Kbit/s) (dB) (α = 4) (α = 2)

0 2457.6 9.5 0.79 0.63
1 1843.2 7.2 0.91 0.82
2 1228.8 3.0 1.16 1.34
3 921.6 1.3 1.27 1.62
4 614.4 −1.0 1.45 2.12
5 307.2 −4.0 1.73 2.99
6 204.8 −5.7 1.91 3.64
7 153.6 −6.5 2.00 3.99
8 102.6 −8.5 2.24 5.02
9 76.8 −9.5 2.37 5.63
10 38.4 −12.5 2.82 7.95

Table 2: Rates, target SINRs and ring radius for
HDR channels.

In view of the propagation model of §2.1, the SINR is in-
versely proportional to rα (for r > ε). Table 2 gives the
corresponding external ring radius, normalized so that r0

would be equal to 1 if the Eb/N0 target were constant and
equal to 2.5dB. Comparing with the values of Table 1, we
verify that the rate-dependent target δ of HDR channels
essentially impacts the inner rings. In particular, the load
distribution remains approximately the same, most load be-
ing concentrated in outer rings.

5.2 Cell capacity
As the load distribution is not significantly affected by the

rate-dependent target δ, we expect the qualitative results of
Section 4 to hold. In particular, the “cell breathing” ef-
fect arises at very high loads only and an admission decision
based on the number of active users is sufficient. This is
confirmed by the results of Figure 11 for instance, which
show that no significant gain is achieved by an admission
control based on the minimum data rate. We also observe
that the impact of the rate-dependent target δ on cell ca-
pacity is mainly due to the reduction of inner rings (the cell
capacity for a constant Eb/N0 target is here defined for an
admission control based on the number of users).
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Figure 11: Comparison of the cell capacity – defined
as the maximum traffic intensity for a minimum data
rate cmin = 0.02 and a target blocking rate 1% – ob-
tained for a constant target energy-per-bit to noise
ratio and for HDR channels with two admission cri-
teria (path loss exponent α = 4).

6. IMPACT OF FAST FADING
We now study the impact of fast fading on cell capacity.

Fast fading is an extremely complex physical phenomenon
involving multi-path reflections [21]. Here we assume that
all users experience the same fast fading in the sense that
the SINR of user u at time t is ξu(t)×SINRu where ξu(t) are
i.i.d. copies of some stationary process ξ(t) with unit mean
and SINRu denotes the SINR user u would get in the ab-
sence of fast fading. For numerical applications, we take the
standard Rayleigh fading corresponding to an exponential
marginal distribution of the process ξ(t).

In the rest of the paper, we consider the ideal case where
a continuous set of peak rates is available; we have verified
as above that resource wastage due to coding contraints is
limited. We also consider an admission control based on the
number of users only; again, the impact on cell capacity of
an admission decision based on the minimum data rate is
limited.

6.1 Round-robin scheduling
We first consider a round-robin scheduling, that does not

take advantage of the time-varying radio conditions of each
user. Averaging over the fast fading variations, it follows
from (4) that the data rate a user would get at distance r if
she/he were alone in the cell is given by:

C(r) = E[C0 × min(ξ
�
r0

r � α

, 1)],

where ξ ≡ ξ(0) corresponds to the marginal distribution of
the fading process. In particular, the blocking rate is given
by (12), for the corresponding cell load:

ρ̄ = � R

0

dρ(r)

C(r)
.

As illustrated in Figure 12 for Rayleigh fading, the impact
of fast fading on cell capacity is significant for a cell radius
R ≈ 1 only (recall the convention r0 = 1). This can be
explained by the fact that, due to the maximum peak rate
C0, the positive effects of fast fading do not compensate

its negative effects for those users whose distance to the
BS is around r0. The nearest users almost always get the
maximum peak rate C0 while the farest users almost never
get the maximum peak rate C0: the former are insensitive
to fast fading while for the latter, the negative and positive
effects of fast fading cancel out.
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Figure 12: Impact of fast fading on the cell capac-
ity, defined as the maximum traffic intensity for a
minimum data rate cmin = 0.02 and a target blocking
rate 1% (Rayleigh fading, path loss exponent α = 4).

6.2 Opportunistic scheduling
A number of so-called “opportunistic” schedulers have

been proposed to take advantage of fast fading [23, 7]. The
principle is to transmit to the various users when their radio
conditions are relatively favorable, while ensuring fair access
to the transmission resource. A typical example is the PF
scheduler mentioned in Section 1. The impact of oppor-
tunistic scheduling on user performance has been evaluated
in [8] in a symmetric scenario where fast fading equally im-
pacts the data rates of active users. As observed above, fast
fading does not affect all users in the same way, however,
due notably to the maximum peak rate C0.

To simplify the analysis, we consider three user classes:

• near users, whose distance to the BS is r < r′ and for
which the peak rate is almost always equal to C0 (with
probability > 95%, say);

• far users, whose distance to the BS is r > r′′ and for
which the peak rate is almost never equal to C0 (also
with probability > 95%);

• the other users, whose distance to the BS is r ∈ [r′, r′′]
and for which the peak rate is equal to C0 with non-
negligible probability.

For instance, the impact of Rayleigh fading on SINR is less
than 4.8dB (resp. larger than −13dB) with probability >
95%: for a path loss exponent α = 4, we deduce the corre-
sponding distances: r′ ≈ 0.47, r′′ ≈ 1.3.

We denote by x the number of near users, x′′ the number
of far users, and x′ the number of other users. For near
users, we have C(r) ≈ C0 and there is no scheduling gain.
For far users, we have C(r) ≈ C0×( r0

r
)α and the distribution

of the feasible rate is approximately that of ξ × C(r). The



transmission rate of any user at distance r > r′′ from the
BS is then:

G′′ ×
C(r)

x + x′ + x′′
,

where G′′ denotes the scheduling gain. In the presence of
i far users, a conservative approximation of the scheduling
gain G′′(i) is what one would obtain in the absence of any
other users, corresponding to a symmetric scenario as con-
sidered in [8]. Denoting by ξ1, ξ2, . . . , ξi i.i.d. copies of ξ, we
deduce:

G′′(i) = E[max(ξ1, ξ2, . . . , ξi)].

For Rayleigh fading, we obtain [7]:

G′′(i) = 1 +
1

2
+ . . . +

1

i
.

For the other users, we assume that the distribution of
the feasible rate is approximately the same, given by:

ξ′ × C′ = � r′′

r′

C0 × min(ξ
� r0

r � α

, 1)
2rdr

r′′2 − r′2
,

where ξ′ is a unit mean random variable representing the
variations around the mean rate C ′. The transmission rate
of any user at distance r ∈ [r′, r′′] from the BS is then:

G′ ×
C′

x + x′ + x′′
,

where G′ denotes the scheduling gain. In the presence of i
such users, a conservative approximation of the scheduling
gain G′(i) is what one would obtain in the absence of any
other users, corresponding again to a symmetric scenario as
considered in [8]. Denoting by ξ′

1, ξ
′
2, . . . , ξ

′
i i.i.d. copies of ξ′,

we deduce:

G′(i) = E[max(ξ′
1, ξ

′
2, . . . , ξ

′
i)].

The stationary distribution of the number of active users
of each class is insensitive to the flow size distribution and
given by:

π(x, x′, x′′) = π(0)
(x + x′ + x′′)!

x!x′!x′′!
ρ̄x

x′�

i=1

ρ̄′

G′(i)

x′′�

i=1

ρ̄′′

G′′(i)
.

where π(0) follows from the usual normalizing condition and
ρ̄, ρ̄′ and ρ̄′′ denote the corresponding class loads:

ρ̄ = � r′

0

dρ(r)

C0

, ρ̄′ = � r′′

r′

dρ(r)

C′
, ρ̄′′ = � R

r′′

dρ(r)

C0 × ( r0

r
)α

.

Denoting by m the maximum number of users, the blocking
rate is independent of user location and given by:

B =

�
x+x′+x′′=m π(x, x′, x′′)

�
x+x′+x′′≤m

π(x, x′, x′′).
(16)

As illustrated in Figure 12 for Rayleigh fading, the impact
of opportunistic scheduling on cell capacity is relatively lim-
ited, especially for large cells. This is a rather counter-
intuitive result in view of the high scheduling gains (e.g.,
G′(i) ≈ 1.5 and G′′(i) ≈ 2.9 for i = 10). This may notably
be explained by the fact that, even in the absence of schedul-
ing gain and admission control, the number of active users
is typically rather small in steady state (cf. Section 3). The
number of active users is here further limited by admission
control, especially for large cells.

7. IMPACT OF INTERFERENCE
In order to assess the impact of interference on cell capac-

ity, we consider two types of homogeneous networks: linear
networks, where BS are equidistant and placed on a common
infinite line; hexagonal networks, where cells are hexagons of
the same size and cover the entire plane. In both cases, de-
note by 2×R the distance between two BS. We assume that
the BS are always active and transmit at the same power P .
The interference suffered by user u served by BS b is then:

Iu = P ×
�
b′ 6=b

Γ(rb′

u ),

where rb′

u denotes the distance from BS b′ to user u. Let
η̄ = η/P and Ī = Iu/P , and denote by r the distance from
BS b to user u. The peak data rate of user u is then the
minimum of C0 and:

W

δ
×

Γ(r)

η + Ī
.

To compare the results with those obtained for isolated cells,
we still denote by r0 the maximum distance at which this
maximum peak rate is achieved in the absence of interfer-
ence, i.e.,

C0 =
W

δ
×

Γ(r0)

η̄
. (17)

7.1 Linear networks
We first consider a linear network. A reasonable approxi-

mation consists in considering that interference is generated
by the 2 closest BS only. The interference term Ī is then:

Ī(r) = Γ(2R − r) + Γ(2R + r).

We deduce the peak rate function:

C(r) = min � C0,
W

δ
×

Γ(r)

η + Ī(r) � .

Figure 13: A linear network.

Note that, in view of (17), this function is entirely deter-
mined by the maximum peak rate C0, the distance r0 and
the ratio W/δ. Previous results still hold, with the cell load
given by:

ρ̄ = � R

0

ρ2dr

C(r)
. (18)

The cell capacity, defined as the maximum traffic intensity
without saturation, is given by:

C̄(R) = � � R

0

dr

C(r)R � −1

.

Figure 14 gives the cell capacity with respect to the cell
radius (normalized values C0 = 1, r0 = 1) for HDR param-
eters (W = C0/2, δ = 2.5dB) and negligible ε. This is a



decreasing function of the cell radius, with a maximum cell
capacity equal to:

C(0) ≈

�
0.86 for α = 4,
0.70 for α = 2.

Thus the impact of interference on cell capacity is significant,
especially for small cells. This is notably due to the fact
that, for HDR parameters, the maximum peak rate C0 is
achievable at a distance r strictly smaller than R, whatever
the cell radius R.
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Figure 14: Cell capacity in a linear network – de-
fined as the maximum traffic intensity without sat-
uration for path loss exponent α = 4 (lower curves)
and α = 2 (upper curves) – with and without inter-
ference.
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Figure 15: Cell capacity in a linear network – de-
fined as the maximum traffic intensity for a mini-
mum data rate cmin = 0.02 and target blocking rates
1% (lower curves) and 5% (upper curves) – with and
without interference.

In the presence of an admission control based on a max-
imum number of active users m = C(R)/cmin, the blocking
rate is given by expression (12) for the cell load (18). Fig-
ure 15 gives the corresponding cell capacity for a path loss
exponent α = 4. Again, we observe that the impact of in-
terference on cell capacity is significant.

7.2 Hexagonal networks
Now consider a hexagonal network. The interference suf-

fered by a user u served by BS b is almost entirely generated
by the 6 surrounding BS. A conservative approximation of
the interference term Ī is given by the following function of
the distance r from BS b to user u:

Ī(r)= Γ(2R − r) + 2Γ( � (R − r)2 + 3R2)

+2Γ( � (R + r)2 + 3R2) + Γ(2R + r).

This approximation is obtained assuming that user u is on
a segment from BS b to a neighbor BS b′. We deduce the
peak rate function:

C(r) = min � C0,
W

δ
×

Γ(r)

η + Ī(r) � .

Figure 16: A hexagonal network.
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Figure 17: Cell capacity in a hexagonal network
– defined as the maximum traffic intensity with-
out saturation for path loss exponent α = 4 (lower
curves) and α = 2 (lower curves) – with and without
interference.

For simplicity, we approximate the hexagonal cells by cir-
cular cells of radius R. Figure 17 compares the cell capacity
– defined as the maximum traffic intensity without satura-
tion – with and without interference. This is a decreasing
function of the cell radius, with a maximum cell capacity
equal to:

C(0) ≈

�
0.65 for α = 4,
0.29 for α = 2.
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Figure 18: Cell capacity in a hexagonal network –
defined as the maximum traffic intensity for a mini-
mum data rate cmin = 0.02 and target blocking rates
1% (lower curves) and 5% (upper curves) – with and
without interference.

In the presence of an admission control based on the num-
ber of active users, the blocking rate is given by expression
(12). Figure 18 gives the corresponding cell capacity for
a path loss exponent α = 4. Again, we observe that the
impact of interference on cell capacity is significant.

8. CONCLUSION
We have derived analytical results relating user perfor-

mance, in terms of blocking probability and data through-
put, to cell size and traffic density, accounting for the ran-
dom nature of traffic and the way the radio resource is
shared. We have notably shown that the performance of the
“fair power” sharing allocation (realized by a round-robin or
a PF scheduler) cannot be significantly improved. Further-
more, this allocation has the practically interesting property
that user performance can be explicitly evaluated, with or
without admission control, and is insensitive to detailed traf-
fic characteristics such as the flow size distribution.

We have observed that the impact of HDR feasible rate
constraints on cell capacity is generally negligible. We con-
clude that the optimality principle of a TDMA-like strategy
proved for a continuous set of available data rates remains
valid in a more realistic situation where only a discrete set
of data rates is available.

Another key observation is that, due to the relatively
small number of active users in steady state, the impact
of opportunistic schedulers that take advantage of fast fad-
ing is much more limited than one would expect from the
analysis of a static scenario with a fixed user population. In
particular, the cell capacity does not much differ from that
obtained with a simple round-robin scheduler, especially for
large cells.

Concerning admission control, we have studied the differ-
ence in terms of cell capacity between a scheme based on
the number of active users and another scheme based on
the minimum data rate. The former leads to a blocking rate
which does not depend on user locations, unlike the latter.
We have shown that provided the target blocking rate is not
too high (less than 10 % typically), these two schemes are
in fact equivalent: it is not necessary to base the admission
decision on user locations.

Some issues need to be further explored. For instance, we
assumed in Section 7 that BS are always active and observed
an important decrease of the cell capacity due to interfer-
ence. It would be useful to study how idle periods of BS
could improve capacity. Other interesting issues include the
impact of mobility and the integration of data services with
voice and video services.
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