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How Mobility Impacts the Flow-Level Performance 
of Wireless Data Systems 

T. Bonald*. S.C.  Borst', A. Proutiere"* 

.dbstracr-The potential for exploiting rate variations to in- 
creasp the capacity of wireless systems by opportunistic schedul- 
ing has been extensively studied at packet level. In the present 
paper, we examine hon slower, mobility-induced rate variations 
impact performance at flow level accounting for the random 
number of flows sharing the transmission resource. We identify 
hvo limit regimes, termed /hid and qttmi-smimoy. where the 
rate variations occur on an infinitely fast and an infinitely slow 
time scale, respectively. Using stochzstic comparison techniques, 
we show that these limit redmes provide simple performance 
hounds that only depend on essily calculated load factors. 
Additionally, we prove that for B broad clnss of fading pm- 
cesses, performance varies monotically with the s p e d  of the 
rate variations. These results are illustrsted through numerical 
erperiments. showing that the fluid and quasi-stationary bounds 
are remarkably tight in certain usual CBSCS.  

I. INTRODUCTIOX 
Nest-generation wireless nehvotks are expected to support 

a wide variety of high-speed data applications. in addition 
to comzentiod voice sewices and current low-bandwidth 
data services such as short messaging. The integration of 
these heterogeneous applications on a common transmission 
infrastmcture raises similar challenges as in wireline integrated 
network% In wireless emironments, these issues are further 
exacehated by interference problems: intrinsically limited 
bandwidth and highly variable and unpredictable propagation 
characteristics. Specifically, the channel quality may vruy 
widely among spatially distributed users due to diskmce- 
related attennation In addition the channel conditions for a 
given user may vary dramatically over time because of fading 
effects. 

Fading is an extremely comples physical phenomenon 
caused by the interaction between the propagation emironmen1 
and user mobility. It emerges in diverse forms and tqpically 
spans a wide range of time scales. Fast fading arises because 
of multi-path propagation effects. and as the word suggests, 
occurs at a relatively high pace. Slow fading manifests ifself at 
a more macroscopic level as a result of distance-related atten- 
nation and scattering due to obstacles and terrain conditions. 
and evolves over a longer time scale. 

Wireless circuit-switched voice networks rely on power 
control mechanisms for adjusting the transmit power to combat 
fading and maintain a fixed transmission rate. Various data 
applications on the other hand. such as Gle transfers and Web 
browsing sessions, are less sensitive to packet-level delays. 
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and do not have a stringent rate requirement. Such elastic 
applications are well-suited for rate control algorithm which 
dynamically adapt the transmission rate over time so as to 
match the fluctuations in channel quality. The resulting varia- 
tions in the transmission rates in fact open up the possibility 
of scheduling data transmissions to the various users when 
their channel conditions are relatively favorable. While fading 
is considered to have a predominantly adverse impact for 
voice connections, it thus provides the opportunity to achieve 
throughput gains for elastic data transfen. 

The performance gains from opportunistic scheduling rely 
on the rates vming snflicientl?- slowly to be tmcked with 
reasonable accnracy. but relatively rapidly compared to the 
delay tolerance of the users. High-frequency fading causes 
estimation and prediction problems. diminishing the scope for 
scheduling. Slow variations cannot be harnessed. or only at the 
expense of compromising the delay allowance of the users. For 
example. typical values of the time constant in the Proportional 
Fair algorithm for the CDMA IxEV-DO system [6]; [Il l .  
[I61 are between 10 and 1000 slots of 1.67 ms. This ensnres 
that stawation effects cannot pcnist for csccssive periods. but 
it also implies tlmt slower variations are not csploited. In 
practice, relatively low-mobility scenarios tend to provide the 
greatest potential for scheduling gains. 

While the performance of opportunistic scheduling algo- 
rithms has been thoroughly explored at packet level [2]. 
[91. 1141, [I!)], [23], [26], the impact of fading on flow- 
level performance has received remarkably little attention so 
far. In [SI, it was shown that when fading is relatively fast 
compared to flow dynamics. the system may in certain cases 
be representcd by a Processor-Shanng type model with a state- 
dependent service rate that accounts for the scheduling gains. 
This model provides explicit formulas for the distribution of 
the number of active Rows and of the mean transfer delay. In 
particular. performance is insens;t;ilee, in the sense that these 
fonnulas only depend on the characteristics of the system 
through an easily computed 'load' factor. The notion of 'cell 
capacity', critical for mmensioning purposes. can then be 
defined independently of precise statistics of offered traffic 

In the present paper. we focus on the impact of mobility- 
induced fading that evolves on a slower time scale and 
manifests itself in the form of independent rate variations at 
How level. Due to these slower rate variations. the insensitivity 
propelt). is lost, and performance depends in some complicated 
fashion on detailed rate statistics and uaffic characteristics 
of the system rendering exact analysis virmally impossible. 
Considering these complexities. we cornpm the performance 
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of the system with that in two limit regimes, tennedfluid 
and quasi-stationay. obtained when rate variations have the 
same instantaneous statistics, but occur on an infinitely fast 
and an infinitely slow time scale. respectively. Using stochastic 
comparison techniques, we show that the fluid and quasi- 
stationan. regimes yield optimistic and conservative perfor- 
mance estimates, respectively. These estimates are very usefuL 
since pelformance in the limit regimes is insensitive, and only 
depends on appropriately deIined load factors, thus providing 
simple bounds that render 11% detailed statistical character- 
istics of the system largely &levant. Numerical experiments 
indicate that these bounds are surprisingly tight in many cases. 

The above ordering results show that infinitely fast rate 
fluctuations yield best performance, while infinitely slow vari- 
ations produce worst performance. It is tempting to conjecture 
tllat performance improves monotonically as the fading pro- 
cess is speeded up. We demonstrate that this is indeed the 
case for a broad class or Malkov-type fading processes. It 
is worth observing that these results relate to a change in 
the time scale of the rate variations for given instantaneous 
m e  statistics. As mentioned above, the actual transmission 
rates inay be reduced at higher fading frequencies because of 
estimation and prediction problems, so for a given system 
a change in the time scale will also affect the marginal rate 
distributions to some extent. 

At a qualitative level, the finding that mobility-related rate 
variations improve performance resonates with the generic 
principle described earlier with respect to opportunistic 
scheduling. It also ties in with the observation in 1131 that 
mobility increases the capacity of ad hoc wireless networks. 
In the present context however. the performance improvement 
does not rely on opportunistic scheduling. Instead. mformally 
stated. it arises from the fact that flow-level performance 
measures behave as convex functions of the rate processes. 

The remainder of the paper is organiied as follows. In 
Section lI we present a detailed model description. In Sec- 
tion 111 we introduce the fluid and quasi-stationary regimes 
mentioned above. We establish a necessary and sufficient 
stability condition in Section IV. In Section V it is proved 
that the fluid and quasi-stationary regimes provide stochastic 
bounds for the performance of the actual system. For Markov- 
type fading processes. we demonstrate in Section VI that 
performance in fact monotonically varies with the time scale of 
rate fluctuations. In Section VI1 we discuss some numerical 
eqeriments performed to illusuate the analytical results. In 
Section W I  we make some concluding r e m a h .  

11. MODEL DESCRIPTION 

Consider a single base station whose transmission power 
is time shared by a dynamic number of elastic flows. Each 
flow is represented as a 'fluid' data transfer with a variable 
rate tlwt depends on the channel quality and the number of 
competing flows. Packet-level dynamics are implicitly repre- 
sented through the way flows share the transmission resource. 
as explained below. Each flow is characterized by its size (in 
bits) and its 'feasible' transmission rate that varies relatively 
slowly, due notably to user mobility. 

Specifically, we consider an arbitmy number K of flow 
classes, each class corresponding to given statistical flow size 
and rate variation characteristics. Class-k flows anive as a 
Poisson process of rate Xk. We denote by 4; the sue of the i- 
th aniving class-k flow and by Rk;(t) its feasible rate at time t_ 
corresponding to the actual transmission rate of this Bow if it 
were the only one in the system. (For notational convenience, 
we define R k , ( t )  for all values of t. Note however that the 
i-th class-k flow may not have anived yet or may already be 
completed at time t ,  in which case the value of Rh;( t )  is of 
no significance.) We assume tlut 4; and Rk;( t ) ,  i = 1,2,  . .~ 
are i.i.d. copies of a random variable Fk and a stationary 
and ergodic process Rk(t), respectively. The process Rk(t) 
is assumed to be bounded and right-continuous with left-band 
limits. 

Let Ck = EIRk(0)] be the time-average feasible rate of a 
class-k flow. We define = X k E  [Fk] /Ck as the traffic load 
associated with class k and denote by p = C,=l pk the total 
traffic load. It is not directly clear what the right concept of 
'load' is in view of the time-vqing transmission rates. In 
particular. the load as defined above does not coincide with 
the fraction of time that the base station is active. However, 
the results in Section IV will show that the abovedefined 
notion does provide a correct measure of load from a stability 
perspective. 

Assuming packet scheduling results in fair sharing at flow 
level. the actual transmission rate of the i-th aniving class-k 
flow: if present at time t_ is: 

K 

where n. denotes the lotal number of flows present at time L. 
The function C(n)  accounts for possible throughput gains 
from clwnnel-aware scheduling. In particular. the function 
G(n) with C(l) = 1 is increasing in n and tends lo some 
finite limit value G' for n i M. while the ratio G(n)/n is 
decreasing in n. 

Remark I :  Fair sharing trivially occurs in case of static 
round-robin scheduling for example, corresponding to G(n) = 
1, but it may also naturally arise in case of channel- 
a w m  scheduling. Specifically. in case R k ; ( t )  = Cr, the 
model reduces to that considered in [SI for the flow-level 
performance of a weight-based scheduling strategy which 
assigns weights wk = l / C k  to class-k uses. In case 
the users have statistically identical normalized rate varia- 
tions Yi: E,. . . at packet level, it may then be shown that 
G(n) = E [max{Yi,. . . ~ Y;}]. As may funher be deduced 
from [l]. [PI. [18]. [MI. the Proportional Fair algorithm for 
the CDMA 1.sEV-DO system would approximately behave like 
the weight-based strategy. provided the exponential smootlung 
window is suiliciently large. In case the feasible transmission 
rate R k i ( L )  is (slowly) timne-van.ing_ similar arguments suggest 
that a weight-based strategy which assigns a dynamic weight 
uik i  (1) = l / R k i ( t )  to the i-th class-k user. results in the actual 
transmission rate (1) at flow level. 

Remark 2: The comparison results to be derived in Sec- 
tions V and VI in fact remain valid under the even milder 
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assumption that the i-th class-k user receives service at rate 

Rki(t)Nk(ni, .  . . , n ~ ) .  (2) 

where 'nk denotes the number of active class-k flows and the 
function Hk( . )  is decreasing in each of the nk's. Unfortunately 
however. when the function Hk(.)  is not of the form G(n) /n  
with r~ = E,"=, ' n k  as in (1). the fluid and quasi-stationay 
regimes described below prove extremely difficult to analyze. 

111. DEFINITION OF FLUID A N D  QUASI-STATIONARY 
RECILIES 

The flow-level model defined by (1) corresponds to a 
Processor-Sharing type queue wheere the service rate of each 
customer is modulated by an independent stochastic process. 
Considering the extreme difficult?. of analyzing such a system, 
we introduce hvo limit regimes, termed puid and quasi- 
sfafionarv_ where the rate processes evolve on an infinitely fast 
and an infinitely slav time scale, respectively. Formally, let us 
consider a family- of systems. parameterized by s E (0: 03)- 

where the generic rate process for class-k flows is R t ) ( t )  E 

Rl;(st). Thus the parameter s represents the 'speed' of the 
rate process. In case Rs(t)  is a Makov process, the process 
R t ' ( t )  may be obtained by scaling the transition rates~with s. 

When the parameters grows large. the rate process appmx- 
imately averages out over the time scale of the How dynamics. 
In the limit for s - 03, the variations completely vanish and 
the rate process reduces to a constant. giving rise to the 'fluid 
regime with @(t) RiW)(t)  = C k .  On the other hand 
as the value of s becomes small, the fading process remains 
roughly constant over the tune scale of the flow dynamics. In 
the limit fors  - 0. the changes completely disappear, and the 
rate process freezes in same .initial state. yielding the 'qnasi- 
stationary' regime with RF(t) R f ) ( t )  = R k ( O ) ,  where 
Rk(0) has the stationay marginal distribntion of the process 
Rk(t). 

Accordingly, we define the class-k traffic loads in the 
fluid and quasi-stationary regimes: pg = XkE [Fk] /C ,  and 
p y  = XkEIFk/Rk(0)] = X k E [ F k ] / q .  where = 
E[l/Rk(O)]-'. Note that these load factors depend on tbe 
rate statistics only through the arithmetic and harmonic means. 
respectively. By Jensen's inequality, we hn;c p! I p r .  Denote 
finally by pR E p y  the toral traffic loads 
in the fluid and quasi-statiomy regimes. respectively. Recall 

As mentioned earlier. the fluid and quasi-stationay regimes 
are particularly relevant, because their performance can be ex- 
plicitly evaluated. Based on the results of [Z], it can bc shown 
that a neccssary and sniiicient condition for stabifit?. of the 
&id (ESP. quasi-stationary) regime is pR < G' (resp. pq" < 
G'). In case of stabiliv, the stationary distributions irA and 
irqs of the numbers (nl ,  . . . ~ . n K )  of on-going flows of each 
class in the fluid and quasi-statiormy regimes depend on the 
tr&c and rate statistics through the loads pg and py only: 

-. 

p; and pqs E 

that p c p f l .  

where ~ ~ ( 0 )  and nq5(0) are determined by the nonnalizng 
condition and n = Et=, n k .  By Little's law. we obtam the 
mean response time of class-k flows: 

Alternatively, the performance can be naturally measured in 
terms ofpow, fhmrighpur: 

When G(n)  
regimes. respectively: 

1. we obtaiR for the fluid and qnasi-statiormy 

7: = G(l- p f l )  and TF = q ( 1 -  pq"): (3) 

IV. ST-ABILITY CONDITION 

We say that the system described in Section I1 is stable if. 
starting from any initial state. it converges to a finite statiomy 
regime. It follows from the stochastic bounds to be derived in 
Section V that the condition pR < G' is necessary for stability, 
while the condition pq" < G' is sufficient. Note that when the 
number of on-going Bows tends to oo_ each flow stays a long 
time in the system so that the rate process tends to average 
out over the flow duratioh i.e.. the system behaves as in the 
fluid regime. Thus we expect the condition p = pR < G' to 
be both necessary and sufficient for stability. This is indeed 
the case in view of the following result, proved in Appendix 
A. 

Theorem I: If p < G*, then the system is stable 

Remark 3: The assumption of fair sharing is crucial for 
the above stability condition to hold. This condition may be 
relaxed by giving priority to those flows with the highest 
feasible rates. In a high mobility scenario, the BS would 
then transmit to a user only when shehe is close to the BS, 
a strategy closely related to that considered in [I31 in the 
context of ad hoc nemorks. In the present contea however. 
fast variations in the feasible rates are already exploited at the 
packet level by oppomnistic scheduling and slower variations 
cannot be exploited without severe impact on user performance 
due to starvation effects (refer to Section I). 

v. COMPARISON WlTlI FLUID AND QUASI-STATIONARY 

REGIMES 

We now compare the performance of the system with that 
in the fluid and quasi-statio- regimes. using the notion of 
stochastic ordering (see for instance [21]). 

Definirion I: (s t  and icc orderings) Let X and Y' be hV0 
r.v.'s on W". Write X Ist Y' (resp. X Y) if and only 
if E [ f ( X ) ]  5 E [ f ( Y ) ]  for all increasing (resp. increasing 
and convex) functions f : W" + I3 for which the previous 
expectations exist. 

Note that these orderings are particularly relevant. since 
X Y allows thecomparison of the distributions of X and 
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Y, i.e._ Pr [X 5 z] 2 Pr [Y 5 z] for all T.  whereas X si.. Y 
implies all moments of X ars less than the respective moments 
of Y. 

Assume that the system is empty at time 0 and denote by 
N k ( t )  the number of active class-k flows at time t. For i = 
1,. . . , Nk( t ) ,  let &(t) be the remaining size of active class-k 
flow i at time t. We define the total workload at time t as: 

Theorem 2 below. proved in Appendix B, states that perfor- 
mance improves (resp. deteriorates) in terms of the number 
of active flows. the workload and the response time T of an 
Aitrar?. flow. when the rate processes of some flows satisfs-ing 
Assumption 1 below are replaced by the corresponding fluid 
(resp. quasi-stationary) versions as described in Section III. 

Assrrmption I: The cumulative distribution function (c.d.f.) 
P(.) = Pr [F < .] associated with the random flow size F is 
concave. 

Note that Assumption 1 is satisfied by a broad class of distri- 
butions. including qmnential. hyper-expnential or Weibull. 
In particular, it is possible to represent the highly variable flow 
size distribution of typical data networks. 

Theorem 2: We have, for all k = 1:.  . . , K .  

Wfl(t) <Icz U/(t) si.. I v y t ) ,  
I W t )  <,t Ndt) I s t  N m ) .  

(4) 

( 5 )  

Tfl 2.t T < a t  ps, (6) 
where the superscript fl (resp. q") refers to the system where the 
rate processes of some set of flows satisfying Assumption 1: 
are replaced by the corresponding fluid (resp. quasi-stationary) 
processes. 

The above comparison results are also valid when the system 
is in equilibrium. Denote by W(m), N k ( m )  and Tk(cu) 
the workload, the number of active class-k flows and the 
response time of class-k flows in steady state. respectively. We 
deduce the inequalities (8) and (9) in the next corollaly from 
Theorem 2 and the stability of the st-order by limits [Zl]. The 
inequality (7) results from (4) and a classical monotonicity 
properly of the Loynes' constrnction as explained in [j. 

page 2811. 
Corolloq~ I: Let C c { l > .  ... I<}  be an ahi tmy subset 

of classes that satisfs- Assumption 1. We have, for all k = 
1,. . . , K :  

(7) 

(8) 

(9) 
where the superscript (resp. q") refers to the system where 
the rate processes of the flows of the classes in C are replaced 
by the corresponding fluid (ESP. quasi-stationary) processes. 
Note that the above fluid and quasi-stationary regimes corre- 
spond to those defined in Section I11 when C = {l, . . . , K} 
in which case they provide tractable upper and low-er perfor- 
mance bounds. 

I.I'fl(oo) sicz 1V(m) < C C Z  I'l/qs(oo), 

N,R(m) Id N d 4  I s t  lVY(C4, 

T,R(4 < s t  T k ( 4  < a t  T 3 4 ,  

VI. IMPACT OF THE SPEED 
OF RATE VARIATIONS 

In this section we investigate how performance varies with 
the time scale of the rate processes. In order to do so, we 
suppose that the processes Rk(t) for some users are repiaced 
by processes Rr)( t )  Rk(st) for some constant s > 1. 
The constant s may be interpreted as an acceleration factor. 
Although one might conjecture that performance impmves 
when the rate process is speeded up, this result does not hold 
in certain ve? specific cases [22]. However, the monotonity 
property can be established when the rate process satisfies the 
following assumption 
Assumption 2: The rate process is a homogeneous station- 

ary Markov process. The transition kernels Q and Qr of 
the Markov process and of the corresponding time-reversed 
Markov process are <,,-monotone. Recall that Q is SL- 
monotone if and only if, for all increasing functions f- the 
function z U Jf(t)&(z, d t )  is also increasing [21]. 

Assumption 2 is satisfied by a broad class of processes. 
including birthdeath processes and Markov processes with a 
mscrete state space and a genemtor Q = ( q i j )  such that q i j  

does not depend on i [ 5 ] .  
The next theorem. proved in Appendix B. states that perfor- 

mance improves when the rate processes of some set of flows 
satisfying Assumptions 1 and 2 are accelerated. Speeding up 
some users (or equivalently their rate process) improves the 
performance for all flows. 

Theorem 3: We have. for all s > 1 and all k = 1 : .  ..~li: 

CV(3)(t) si.. W(t)> (10) 

NP)( t )  I s t  A u t ) ,  (11)  

T(") Ist T, (12) 

where the superscript refers to the system where the rate 
processes of some set of flows satisfying Assumptions 1 and 2, 
are speeded up by a factor s. 

The next corollary presents the connterparl of Corollary 1 

Coro//oty 2: Let C c { 1 , .  . . , I<}  be an arbitmy subset 
of classes that satisfy Assumptions 1 and 2. We have. for all 
s > 1 and all k = 1,. . . ~ K :  

VV(")(m) sicz bV(m),  (13) 

Nf):S)(m) I s t  -wk(oo), (14) 

%"'(CO) S L  Z x X ) ,  (W 

where the superscript (') refers to the system where the rate 
processes of the flows of the classes in C are sped up by a 
factor s. 
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Ring j Rate c j  Radius rj 
(Kbitis) (a = 4) 

In the following. we consider a circular cell of external 
radius R = T L  corresponding to L + 1 rings. Flows anive 
uniformly in the cell according to a Poisson process of 

SINR 
(dB) 

intensity A. The probability p j  that a new flow stats its 
sewice in ring j is proportional to the surface of this ring. 
i.e.. pl  = (T: - r j - l ) / R 2 ,  The flow tluoughputs in the limit 
regimes are given by (3). Simulation results are obtained for 
exponentially distributed flow sizes of unit mean and Markov 
rate processes with values in {CO, CI, . . . , CL}. We make the 
natural assumption that the rate process can only jump between 
adjacent states. so that for each class. the Markov rate process 
is a birthdeath process. Note that Assumptions 1 and 2 are 
satisfied. 

.4. Low mobilip 
In the low-mobility scenario. the feasible rate of a user 

typically evolves in a set of 2 to 5 consecutive rates: roughly 
corresponding to SINR variations of 5 to 12 dB (sec Table I). 
Rather than fitting a log-normal distribution. we simply assume 
that the feasible rate of each user takes a fixed number of 
values, a_ and that all transitions rates of the corresponding 
birthdeath process are equal. We performed simulations not 
reported here to verify that performance depends on shadowing 
mainly through its amplitude and not on its precise distrihu- 
tion. We consider a cell of radius R = 1.86 (thus L = 6) and 
evaluate performance in the following two cases: . Shadowing with low amplitude (a = 3). There are 

5 nser classes. Class-k usem are located in ring k. k = 
1,. . . 6. and their feasible rates are c k - l :  c k ,  C ~ + I  with 
corresponding marginal probabilities i, ?: i. . SlBdowing with Iugh amplitude ( a  = 5). There are 3 nser 
classes. Class-k usen are located in ring k. k = 2 _ .  . . .4. 
andtheirfeasible r a t e s a r e c ~ ~ ~ , ~ ~ - ~ ~ c ~ . c l i + ~ . ~ ! l i + ~ ~ v i t h  
corresponding marginal probabilities 6: i, i, i, Q. 

Figure 1 presents the throughput of flows of classes 1 and 5 as 
a function of cell load in case of shadowing with low amplitude 
(a = 3) and with different values of the speed s. In Figure 2, 
we present the throughput of flows of classes 1 and 3 in case 
of shadowing with high amplitude ( a  = 5). 

Fluid regime - 

speed = 0.1 
1.6 "i 

f 1.4 .. .? -% .\ QS regime 

" 
0 0.2 0.4 0.6 0.8 1 

Tranic load 

Fip. 1. 
curves) in c a e  of shadowing of low amplitude (a = 3). 

Throughput of Rows of elms 1 (upper curves) and cIm 5 (lower 

As expected in view of Corollaries 1 and 2. the fluid and 
quasi-statiow regimes provide optimistic and conservative 
estimates of the throughput. respectively. and speeding up the 
rate processes improves performance. Funher ObSeNe that the 
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0 0.2 0.4 0.6 0.8 1 
Tranie load 

Throughput of flows of clasis 1 (upper C U N ~ S )  and class 3 (lower Fig. 2. 
curves) in case of shadowing of high amplitude (a = 5). 

- 
Y 

limit regimes only differ significantly in case of shadowing 
with high amplitude. 

E. High mob;/;@ 
We MW consider a high-mobility scenario where the vari- 

ations in path loss cannot be ncglccted. We assume that a 
fraction /3 of the usem move across the entire cell whilc 
the others are static. We do ~t account for shadowing_ i.e.. 
G, . Class-k users. for k = 0: . . . ~ L. are static in ring k. i.e.. 

Rh(t) Ck = ck for all t. The load associated with this 
class is p k  = (1 - p ) X p k / C k .  
Class-(L+ 1) users move in rings 0 : .  . . , L according to a 
birthdeath process with marginal distribution PO,. . . ~ p ~ ,  
corresponding to isotropic motion in the cell. so that 
CL+I = C k p k c k .  The load associated with tlus class 

Figure 3 gives, for a cell of radius R = 2 (thus L = 7) where 
all usem move (p  = 1). the flow throughput as a function of 

1. There are h' = L + 2 user classes: 

is pL+1= P W L + I .  

.~ '+. .\a, 

Speed =0.1 0.8 
OS regime ~~~~~~ 

0.6 

OS regime ~~~~~~ 

0.6 

0.4 

0 
0 0.2 0.4 0.6 0.8 1 

Trait load 
0 0.2 0.4 0.6 0.8 1 

Trait load 

Fix. 3. 
in a cell of radius R = 2. 

Flow throughput as n function of tmffic load when all u e n  move 

r - 0.4 

0.3 
c 

9 0.2 e r 
s 0.1 
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Fig. 4. Flow throughput as a function of speed for a fixed traffic load p = 0.5 
when all wen move in a cell of radius R = 2. 

total traflic load for mfferent values of thespeed s. The impact 
of speed on 00w throughput for fixed load p = 0.5 is shown 
in Figure 4. Figure 5 is the analog of Figure 3 for a cell of 
radius R = 1.19 (thus L = 2). Note that for large variations in 
the feasible rate (see Figure 3). performance is very sensitive 
to speed. whereas for limited variations (see Figure 5),  the 
fluid and quasi-stationary bounds are vey  close, indicating *- Speed = 10 

kb speed=0.1 
- 
3 \.\ OS regime a 1.5 k\ 

that performance is approximately insensitive. 
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Figure 6 gives the flow throughput of static users in ring 0 
and of moving users. when the proportions of static and 
moving users are the same (fl = 0.5). 

0 0.2 0.4 0.6 0.8 1 
Traliic bad 

Fig. 6.  
moving UCR (lower curves) in B cell of radius R = 2. 

Flow throughput of static users in ring 0 (upper curves) and of 

The numerical results suggest that performance is sensitive 
to the speed of the fading process only when Tanations in the 
feasible rates of those users representing a significant part of 
the total traffic load are of highamplitnde. When the amplitude 
is lowy performance is almost insensitive. i.e.. essentially 
depending on the traffic and fading statistics through the traffic 
load of each class only. In this case. the quasi-stationary 
regime provides an accurate consewative estimate of flow- 
level performance. 

VIII. CONCLUSION 

We have examined the impact of slow. mobility-induced 
rate variations on the flow-level performance of a wireless 
data system. We have compared the performance of the 
system with that in two limit regimes. termed fluid and quasi- 
stationary. where rate variations occur on an infinitely fast and 
an infinitely slow time scale. respectively. The fluid and quasi- 
stationary regimes provide explicit performance estimates, 
which are provably optimistic and conservative, respectively. 
Besides, the performance of the limit regimes is insensitive. 
and only depends on an appropriately defined load factor. thus 
yielding bounds that only involve simple first-order system 
parameters For a broad class of Makov-type fading processes. 
we further proved that performance varies monotonically with 
the time scale of the rate variations: 

At a qualitative level. the finding. that mobility-related 
rate variations impmve performance resembles the generic 
principle underlying opportunistic scheduling. In the present 
context> hoivever. the performance improvement does not 
rely on opportunistic scheduling. Instead. informally stated. 
it arises from the fact that flow-lmel performance measures 
behave as convex functions of the rate processes. 

From a practical perspective, when the traflic load generated 
by those users with large rate variations is limited. the quasi- 
s t a t io~w regime provides an accurate conservative estimate 
of flow-level performance. This allows the development of 
simple dimensioning d e s  os cf users were static, as derived 

in [7]. In cases where moving users with large rate variations 
reptesent a significant part of the total tratfic load. performance 
becomes sensitive to the precise traflic and fading statistics. It 
may then be necessary to take mobilit?. and shadowing effects 
into account. 

Note finally that the positive impact of mobility relies here 
on the assumption of perfect rate predictions. Tlus is reflected 
in the model by the fact that the inarginal distributions of the 
feasible rates do not depend on the time scale of rate variations. 
It would be very interesting to study the extent to which the 
estimation and prediction problems due to high-frequency fad- 
ing countetbalance the performance improvements established 
in the present paper. 

APPENDIX 
A. Stobiiiiy condition 

Pmof of Theorem I: We prove the result for Cox flow size 
distributions which are known to form a dense subset of the set 
of all distributions with non-negative support. Specifically! we 
assume that class-k flows have i.i.d. exponential sizes of mean 
l / p k >  and generate a new class4 Bow with probability pkl 
when completed. By creating additional classes and dividing 
each random flow size into a random number of exponential 
phases. the model is then sufficiently general to cover a v  flow 
size distribution. The total tratfic load is given by: 

p=x(I -P)- l (b&C)-1 ,  

where X = (A,) is a row vector, I is the identity matrix. 
P = ( p k ~ ) ,  and p = ( @ e ) .  C = (Ck) are diagonal matrices. 
Similarly, we assume that the rate process R k t ( t )  is a function 
of a finite-state Markov process m k l ( t ) .  By increasing the 
number of states, such a Markov process can approximate any 
stationary and ergodic process. 
The stochastic process { N ( t ) ,  m ( t ) }  where N ( t )  and u(t) 

denote the row vectors ( N e ( t ) )  and ( u k i ( t ) ) ,  k = 1,. . . , I < >  
i = 1,. . . ~ Nk( t ) ,  respectively, is an irreducible M&ov 
process. Define the workload at time t as: 

W ( t )  = JN(t)( I  - P)-1(pC)-lI 

Assume that p < G' and let t o  
sequence of initial states { ~ ( j J ( o ) > u ( J ) ( ~ ) } j  with 

l/(G* - p).  For any 

= 1: lim ~ 

3-00 j 
I.V(J) (0) 

we will pmve that the sequence of workload processes 
{ I V ( J J ( L ) } ,  satisfies for any t < t o :  

As the workload defines a Lj-apunov function for the Markov 
process {X( t ) .o( t j } ,  the proof then follows from Foster's 
stability criterion [20]. 

Denote by A(tj. B ( t )  and D(t) ,  respectively. the row vec- 
tors of the number of exogenous arrivals. endogenous amvals 
and departures of class-k flows up to time t ,  k = 1.. . . , I C .  
We have: 

N(t) = N(0) +A(t)  + B(t)  - D ( t ) .  (17) 
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Let D'(t)  be the row vector of the maximum number of 
depamres of class-k Rows up to time t ,  thus assuming these 
flows are sewed at the rate S k  G* supt R k ( t ) .  Similarly, 
let B'(t) be the row vector of the maximum number of 
endogenous arrivals of chss-k Bows up to time t .  We get: 

Writing 

&(v) - D,(u) 5 
M.(u,v)  

C*Ck( 1 t E ) ( .  - U )  
i=l 

' { F k i S  lm(w v)l W(t)  5 " ( 0 )  t J(A(t)+B'(t))(l-P)-l(f iC)-ll .  (IS) 
Denoting by e the row vector (1:.  . . ,1) and by S the diagonal 

that: 

+ MF"' 
matrix (Sk), it follows from the strong law of large numbers i=l 

it follows from the strong law of large numbers that: B'(jt) 
+ efiPSt, 

&(U) - D k ( U )  5 Xfk(U,U) A(jt) 2 ".Si - 
j j 3 

G'Ck( I t .)(U - .U) when j - W. In particular, there exists for any sequence of 
initial states {N(Jj(O), u ( ~ ) ( O ) } ~  satisfying (16) a subsequence 
denoted by indices j '  such that for any t < to:  Since this inequality holds for any E > 0: we deduce: 

1 -  b v q j n )  a.J - W(t).  - &(U) - B k ( u )  5 Mk(u,v)Pr 
j '  

Similarly. using the fact that 
The function Cs/(.) is usually referred to as a 'Ruid limit' due 
to the time-space scaling [U]. As D(t)  6 iD'(t)l and B(t)  5 
B'( t ) .  there exists a subsequence of j ' .  denoted by in&ces j " ,  
and continuous functions B and D such that for any t < t o :  

- D(t )  when j" + CO. 

- D ~ ( u )  2 

B(j ' ' )( j"t)  8.1. - ~ ( j " ) ( j l ~ t )  a,S, ~ 

we obtain: + B(t),  j , ,  
j"  

C * C ~ ( I J  - 71.) 

jAyf(u:w)l 
&(w) - &(U) 2 Nk(u)Pr It then follows from (17) lhat: 

N(j")(j"t) a.l. - -, N ( t ) .  when j" - CO. Using the latter inequalities and the fact that &I(U,U) and 
m(u,v) tend to N ( u )  when v tends to U. we deduce: j r r  

d f i  N ( 4  
N ( t )  = N ( 0 )  t Xt + B(t )  - D(t) .  (1% dt I N 4  

d a  Nu) 
d t  I w 4  I 

w l ~ r e  fi is the continuous function given by: 
-(U) = G*-pC. 

Now as flow sizes are i.i.d. exponential, the number of MlogouslY, One "V Prove that: 
depamres of class-k flows during the time intewal [ u , ~ ]  

-(U) = G*-fiCP. 

Now it follows frOm(l9) that for any t < to  suchthat Ifi(t)l > 
satisfies: 

bS'(t) = /iv(t)(I - P)-l(/LC)-'I, where hf(u,v) = N ( u )  + A(u)  ~ A(?&) t B(u) ~ B(u)  
and m ( ~ . v )  = N(u)  - D(u) + D(u) CO~SpOnd to the 
row vectors of the ma?iimum and the minimum number of 
active class-k Rows during [uu ] ,  respectively. Analogously. 

we obtain for any t < to such that m(t) > 0. 
dLV 
T ( t )  = p - G'. 

2 Im(u,v)l(l -:) a.s. 

and by the ergodicity of the process Rk(t). 
Finally. the sequence of r.v.'s { q } j  is uniformly 
integmble in view of (IS), so that: 
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B. Stochastic comparisons 
1) Pmof of Theorem I: We first prove (4) and ( 5 )  for the 

following slotted system. The intend (0: t)  i s  divided into 
L slots such that the feasible rate of each flow is constant 
during each slot and equal to the feasible rate at the beginning 
of the slot. We also assume that when a How is present at the 
beginning of a slot, it remains in the system during the entire 
slot. The proof of (4) and ( 5 )  for a non-slotted system then 
follows from the fact that for L = 2p,  p 2 1. the workload 
and the number of class-k flows in a slotted system where the 
feasible rate of a flow during a slot is fixed at its maximum 
in the slot (respectively; its minimum) converge monotonically 
to W ( t )  and N k ( t ) .  respectively. when p tends to 00. 

The proof is based on the notion of supermodular functions 
(see. e.g.- 1211) and on Lore& inequality 1251: 

Definition 2: (Supermodular functions) f : E" -t W is 
supermodular if and only if for all z, g E E", f(z v y) + 
f(z A y) 2 f(z) + f(y), where (L V y), = z, V yi and 
(z A;y), =xi Ayi, for all i = 1: .  . . ;n. 

Lenima I: (Lorentz inequality) Let 21,. .. , Z ,  be iden- 
tically distributed r.v.'s. For all supermodular functions f. 

Consider an arbitmy flow, say flow I _  that anived at the 
beginning of slot 1 E (1:. . . , L } .  Assume without loss of 
generality that flow 1 is of class 1. We fix the anival process 
up to slot L. the rate processes of all flows except flow 1. 
and the sizes of aU flow except flow 1. We denote by z j  the 
feasible rate of flow 1 during slot j _  by F, the size of flow 1, 
and by E1 the expectation with respect to the random variable 
Fl. Let CVL and Nk,L be the workload and the number of 
class-k flows at the end of slot L. respectively. The key result 
is: 

Letnnia 2: For all k = 1,. IC_ E1 [ ~ ( W L ) ]  and 
E1 C ( N ~ , L ) ]  are supermodular and comrex functions of 
(2,:. . . , z L ) ,  for all increasing and convex functions f and 
all increasing functions g. 

PmoJ Let nj be the number of flows present during slot j ,  
assuming that How 1 is present during this slot. Note that these 
numbers do not depend on (xi, . . . , ZL) nor on FI.  Let W; 
be the workload due to flow 1 at the end of slot L, i.e.. the 
remaining size of How 1 divided by C1. As the transmission 
rate of flow 1 in slot j is xjG(nj)/nj, we have: 

EIf(Z1,. .. , & ) I  5 E[f(Z1: .. , ZI)]. 

which composed with an increasing and convex function, is 
known to be supermodular and convex in ( 2 1 . .  . . . ZL) 141. 
Now let w j  and be the wokload and the number of active 
class-k flows at the end of slot L. respectively, assuming flow I 
leaves the pstem at the end of slot j .  Note that these quantities 
do not depend on (z,, . . . , XI,) nor on F , .  We have: 

If 4 5 z,G(nl)/n,, CVL = wl and N ~ , L  = 'nk,,: . for 1' = 1 + 1,. . . , L - 1, if 
zjG(nj) /nj ,  WL = ?U,, and N ~ , L  = n k , ~ ;  

z j c (n j ) /n j  4 5 

if Fl > C:::xjG(nj)/nj, r.1'~ = w~ + 1.V; and 

Averaging with respect to the size of flow 1, we obtain for all 
increasing and convex functions f :  

IV, = .nk,L.  

where PI denotes the c.d.f. of 4. Note that the sum of the 
last two terms in the latter expression is simply equal to 
E1 [ f ( w ~  + CV;)], which is a supermodular and convex func- 
tion of (21.. . . , ZL).  In addition it follows from Assumption 1 
that for all m = 1,. . . , L - 1. the function 

as the composition of an affine function and a convex function 
is supermodular and convex [4]. As G(n)/n decreases in n. 
we have w, 5 . . . 5 WL so that E1 [ ~ ( W L ) ] .  as the sum 
of supermodular and convex functions. is supermodular and 
convex. 

Similariy. we have for all increasing functions g: 

f d n k , L )  

As G(n)/n decreases in n; we have nk.1 5 ... 5 n k , L .  

Thus El b(iVk,~)], as the sum of supermodular and convex 
0 functions, is supermodular and convex. 

Now. for any function f, we have: 

E [f(J.l'fl)] = E [El [~(T'VL)]  (E [.I] , . . . ; E  [ x i ] ) ]  

E[f(r'V~)l = E [E1 [f(bi '~)]  (Q,. . . ? Z L ) ]  : 

E [f (bv71)]  =E[EI [f(J'V~)](z,,...,z,)]~ 

where '' (resp. qsl) denotes the fluid (resp. quasi-stational?.) 
regime with respect to flow 1. Similar relations hold for 
the number of class-k flows. Using the independence of 
the rate processes. we deduce from Lemma 2 and the fact 
that (E[z,], . . . ~ E[z,]) sicz ( ~ 1 , .  . . , z ~ )  131 that for all 
increasing and convex functions f, all increasing functions g; 
and all k = 1,. ..~IC: 

E [f(l,Vil)] 5 E[f(bV~)l> E [dN&)] 5 E[s(~V~,L)I ,  
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Similarly, using the independence of the rate processes, it 
follows from Lemma 2 and Lorentz inequality that: 

E I ~ W L ) ]  5 E [f(W?')] E [ ~ % L ) ]  5 E [ d K 3 ]  . 
We obtain (4) and ( 5 )  by applying successively the same 
reasoning to an abitraxy set of flows satisfying Assumption 
1. 

We now prove inequality (6). Let TL be the t h c  spent 
by an arbitrary tlow in the slottcd system up to slot L. We 
prove exactly as in Lemma 2 that that for all increasing 
functions g, E1 [ g ( T L ) ]  is a supermodular and convex function 
of (ZI, . . . , ZL). We deduce as above that: 

E [&)I 5 E [ ~ ( T L ) ]  5 E [dT?)l> 

E [s(T(t)')] 5 E [ g ( W ) l  5 E [s(Wq")1 
where T(t) denotes the time spent by an ah i t ray  flow in the 
non-sloned system up to time t. We obtain (6)  by letting t 
tend to M. 

2) Proof of Theorem 3: The proof is based on the following 
recent result by Hu & Pan [15] (a similar result had bccn uscd 
by Chang, Chao & pinedo [lo]). 

Leninia 3: Let {Z(t),t  E B} be a process satisfving As- 
sumption 2.  For all integers R_ all (q , .  . . ~ rn) and (SI, . . . , s") 
such that T~ 5 SI and r; - ' r - l  5 si - s,-1 f o r i  = 2 , .  . . ,n. 
we have: 

and by letting L tend to M, 

I? [ f (Z(TI ) .  . - .  . Z(T,))] 2 E[f(Z(SI), - . - ,  Z(sn))l  

for all supermodular functions J : En - R such that the 
previous exptations esist. 

We give the proof of (10) and (11) only (the proof of (12) 
is then similar to that of (6)) .  Agais it is sufficient to 
prove these inequalities for a slotted system. Consider some 
ahitrary flow 1 satisfying Assumptions I and 2. Denote by 
y = Rl(t  x j / L )  (resp. = Rl(st  x j / L ) )  the rate of 
flow 1 during slot j in the actual system (resp. when its rate 
process is accelerated by a factor s > 1). It follows from 
the independence of the rate processes, Leinmas 2 and 3, 
that for all increasing and convex functions J ,  all increasing 
functions 8. and all k = 1.. . . ~ K :  

E [f(1'v!:)')] 5 E[f(bv~)l> E [Y(@?)] 5 E[g(Nk,~) l ,  

where refers to the system where the rate process of 
flow 1 is accelerated by a factor s. We obtain (IO) and (11)  
by applying successively the same reasoning to an arbitmy 
set of Bows satisfying Assumptions 1 and 2. 
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