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How Mobility Impacts the Flow-Level Performance
of Wireless Data Systems

T. Bonald*, S.C. Borst!, A. Proutiere™

Abstract—The potential for exploiting rate variations to in-
crease the capacity of wireless systems by opportunistic schedul-
ing has been extensively studied at packet level. In the present
paper, we examine how slower, mobility-induced rate variations
impact performance at flow level, accounting for the random
number of flows sharing the transmission resource. We identify
two limit regimes, termed fluid and quasi-stationary, where the
rate variations occur on an infinitely fast and an infinitely slow
time scale, respectively. Using stochastic comparison techniques,
we show that these limit regimes provide simple performance
bounds that only depend on easily calculated load factots.
Additionally, we prove that for a broad class of fading pro-
cesses, performance varies monetically with the speed of the
rate variations. These results are illustrated through numerical
experiments, showing that the fluid and quasi-stationary bounds
are remarkably tight in certain usual cases.

I. INTRCDUCTION

Next-generation wireless networks are expected to support
a wide vanety of high-speed data applications, in addition
to conventional voice services and current low-bandwidth
data services such as short messaging. The integration of
these heterogencous applications on a common transmission
infrastmicture raises similar challenges as in wireline integrated
networks. In wireless environments. these issues are further
exacerbated by interference problems, intrinsically limited
bandwidth, and highly variable and unpredictable propagation
characteristics. Specifically, the channel quality may vary
widely among spatially distributed users due to distance-
related attenuation. In addition, the channel conditions for a
given user may vary dramatically over time because of fading
effects.

Fading is an extremely complex physical phenomenon
caused by the interaction between the propagation environment
and user mobility. It emerges in diverse forms and tvpically
spans a wide range of time scales. Fast fading arises because
of multi-path propagation effects. and as the word suggests,
occurs at a relatively high pace. Slow fading manifests ifself at
a more macroscopic level as a result of distance-related atten-
uation and scatiering due to obstacles and terrain conditions.
and evolves over a longer time scale.

Wireless circuit-switched voice networks relv on power
control mechanisms for adjusting the transmit power to cornbat
fading and maintain a fived transmission rate. Various data
applications on the other hand, such as file transfers and Web
browsing sessions, are less semsitive to packet-level delays,
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and do not have a siringent rate requirement. Such elastic
applications are well-suited for rate control algorithms which
dynamically adapt the transmission rate over time so as to
match the fluctuations in channel quality, The resuiting varia-
tions in the transmission rates in fact open up the possibility
of scheduling data transmissions to the vartous users when
their channel conditions are relatively favorable. While fading
is considered to have a predominantly adverse impact for
voice connections, it thus provides the opportunity to achieve
thronghput gains for elastic data transfers.

The performance gains from opportunistic scheduling rely
on the rates varving sufficiently slowlv to be tracked with
reasonable accuracy, but relatively rapidly compared to the
delay tolerance of the uvsers. High-frequency fading causes
estimation and prediction problemns, diminishing the scope for
scheduling. Slow variations cannot be hamessed. or only at the
expense of compronusing the delay allowance of the users. For
example, typical values of the time constant in the Proportional
Fair algorithm for the CDMA 1xEV-DO system [6]. [1k].
[16] are between 10 and 1000 slots of 1.67 ms. This ensures
that starvation effects cannot persist for cxcessive periods. but
it also implies that slower variations are not cxploited. In
practice, relatively low-mobility scenarios tend to provide the
greatest potential for scheduling gains.

While the performance of opportunistic scheduling algo-
rithms has been thoronghly explored at packet level [2].
[0]. §14], [19], (23], [26], the impact of fading on flow-
level performance has received remarkably little attention so
far. In [8]. it was shown that when fading is relatively fast
compared to flow dynamics, the system may in certain cases
be represented by a Processor-Sharing type model with a state-
dependent service rife that accounts for the scheduling gains.
This model provides explicit formulas for the distribution of
the number of active flows and of the mean transfer delay. In
particular, performance is insensitive, in the sense that these
formulas only depend on the characteristics of the system
through an easily computed “load’ factor, The notion of “cell
capacity’, critical for dimensioning purposes. can then be
defined independently of precise statistics of offered traffic
[7].

In the present paper. we focus on the impact of mobility-
induced fading that evolves on a slower time scale and
manifests itseif in the form of independent rate variations at
flow level. Due to these slower rate variations, the insensitivity
property is lost, and performance depends in some complicated
fashion on detailed rate statistics and traffic characteristics
of the system. rendering exact analysis virtually impossible.
Comnsidering these complexities, we compare the performance
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of the system with that in two limit regimes, termed fluid
and quasi-stationary, obtained when rate variations have the
same instantaneous statistics. but occur on an infinitely fast
and an infinitely slow time scale, respectively. Using stochastic
comparison techniques, we show that the fluid and quasi-
stationary regimes yield optimistic and conservative perfor-
mance estimates, respectively. These estimates are very useful,
since performance in the limit regimes /s insensitive, and only
depends on appropriately defined load factors, thus providing
simple bounds that render the detailed statistical character-
istics of the system largely irrelevant. Numerical experiments
indicate that these bounds are swrprisingly tight in mamny cases.

The above ordering results show that infinitely fast rate
fluctuations yield best performance, while infinitely slow vari-
ations produce worst performance. It is templing to conjecture
that performance improves monotonically as the fading pro-
cess is speeded up. We demonstrate that this is indeed the
case for a broad class of Markov-type fading processes. It
is worth observing that these results relate to a change in
the time scale of the rate variations for given instantancous
rate statistics. As mentioned above, the actnal transmission
rates may be reduced at higher fading frequencies because of
estimation and prediction problems, so for a given system,
a change in the time scale will also affect the marginal rate
distributions to some extent.

At a qualitative level, the finding that mobility-related rate
variations improve performance resonates with the generic
principle described earlier with respect to opportunistic
scheduling. Tt also ties in with the observation in {13] that
mobility increases the capacity of ad hoc wireless networks.
In the present context, however, the performance improvement
does not rely on opportunistic scheduling. Instead, informally
stated, it arises from the fact that flow-level performance
measures behave as convex functions of the rate processes.

The remainder of the paper is organized as follows. In
Section 1T we present a detailed model description. In Sec-
tion [II we introduce the fluid and quasi-stationary regimes
mentioned above. We establish a necessary and sufficient
stability condition in Section IV. In Section V it is proved
that the fluid and quasi-stationary regimes provide stochastic
bounds for the performance of the actual system. For Markov-
type fading processes, we demonstrate in Section VI that
performance in fact monotonically varies with the time scale of
rate fluctuations. In Section VII we discuss some numerical
experiments performed to illustrate the analytical results. In
Section VIII we make some concluding remarks.

II. MODEL DESCRIPTION

Consider a single base station whose transmission power
is time shared by a dynamic number of ¢lastic flows. Each
flow is represented as a ‘fluid’ data transfer with a variable
rate that depends on the channel quality and the number of
competing flows. Packet-level dynamics are implicitly repre-
sented through the way flows share the transmission resource,
as explained below. Each flow is characterized by its size (in
bits) and its ‘feasible’ transmission rate that varies relatively
slowly, due notably to user mobility.

0-7803-8355-9/04/520.00 ©2004 IEEE.

Specifically, we consider an arbitrary number K of fow
classes, each class corresponding 10 given statistical flow size
and rate variation characteristics. Class-k flows amrive as a
Poisson process of rate A,. We denote by Fy; the size of the i-
th arriving class-& flow and by Ry, (£) its feasible rate at time Z,
corresponding to the actual transmission rate of this flow if it
were the only one in the system. (For notational cornvenience,
we define Ry;(t) for all values of ¢. Note howgver that the
1-th class-k flow may not have arrived yet or may already be
completed at time ¢, in which case the value of Ry;(t) is of
no sigmificance.) We assume that Fj; and Ry;{f), i =1,2, .,
arc i.id. copics of a random variable F}, and a stationary
and ergodic process Ry (t), respectively. The process Ry(t)
is assumed to be bounded and right-continuous with lefi-hand
limiss.

Let Oy = E[R,(0)] be the time-average feasible raie of a
class-k flow. We define py, = A E [Fy] /Cy as the traffic load
associated with class & and denote by p = Zle pr the total
traffic load. It is not directly clear what the right concept of
‘load’ is in view of the time-varying transmission rates. In
particular, the load as defined above does not coincide with
the fraction of time that the base station is active. However,
the results in Section IV will show that the above-defined
notion does provide a correct measure of load from a stability
perspective.

Assuming packet scheduling results in fair sharing at flow
level, the actual transmission rate of the i-th arriving class-k
flow, if present at time ¢, is:

A

(I

where n denotes the total number of flows present at time <.
The function ((n) accounts for possible throughput gains
from channel-aware scheduling. In particular, the function
G(n) with G(1) = 1 is increasing in n and tends o some
finite limit value G* for n — oo, while the ratio G(n)/n is
decreasing in n,

Remark 1: Fair sharing trivially occurs in case of static
round-robin scheduling for example, corresponding to G{n) =
1, but it may also naturally arise in case of channel-
aware scheduling Specifically, in case By;(t) = Ci, the
model reduces to that considered in [8] for the fow-level
performance of a weight-based scheduling sirategy which
assipns weights w, = 1/Cy to class-k users. In case
the users have statistically identical normalized rate vara-
tions ¥7,Y%,... at packet level, it may then be shown that
G(n) = Elmax{Y1,...,Y,}]. As may further be deduced
from [1], [8]. [18], [24]. the Proportional Fair algorithm for
the CDMA 1xEV-DQ system would approximately behave like
the weight-based strategy. provided the exponential smoothing
window is sufficiently large. In case the feasible transmission
rate Rzi(L) is (slowly) time-varying, similar arguments suggest
that a weight-based strategy which assigns a dynamic weight
Wi (t) = 1/ Ryi(t) to the i-th class-k user, results in the actual
transmission rate (1) at flow level.

Remark 2: The comparison results to be derived in Sec-
tions V and VI in fact remain valid under the even milder
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assumption that the i-th class-k user receives service at rate

Rki(t)H}é(nh' . '1nK)s (2)

where 7 denotes the number of active class-k flows and the
function Hy(-) is decreasing in each of the ny’s. Unfortunately
however, when the function Hy(-) is not of the form G(n)/n
with » = Y77 ny as in (1), the fluid and quasi-stationary
regimes described below prove extremely difficult to analyze.

111. DEFINITION OF FLUID AND QUAS[-STATIONARY
REGIMES

The flow-level model defined by (1) corresponds to a
Processer-Sharing tvpe queue where the service rate of each
customer is modulated by an independent stochastic process.
Considering the extreme difficulty of analyzing such a system,
we introduce two limit regimes, termed fivid and quasi-
stationarv, where the raie processes evolve on an infinitely fast
and an infinitely slow time scale, respectively. Formally, let us
consider a family- of systems. parameterized by s € (0, c0),
where the generic rate process for class-k flows is R(S)(t) =
Ry(st). Thus the parameter s represents the ‘speed’ of the
rate process, In case Ry(t) is a Markov process, the process
REj) (t) may be obtained by scaling the transition rates Wwith s.

When the parameter s grows large, the rate process approx-
imately averages out over the time scale of the flow dvnamics.
In the limit for s — oo, the variations completely vanish, and
the rate process reduces to a constanl giving rise to the ‘fluid’
regime with Rf(#) = R{™)(t) = Ci. On the other hand,
as the value of s becomes small, the fading process remains
roughly constant over the tiine scale of the flow dyvnamics. In
the limit for 5 — 0. the changes completely disappear, and the
rate process freezes in sore initial state viclding the ‘quasi-
stationary’ regime with R°(¢) = R (£) = Ri(0), where
Ry (0) has the stationary marginal dlsmbunon of the process
R (1).

Accordingly, we define the class—k traffic loads in the
fluid and quasi-stationarv regimes: pf = M\E[F] /Ck and
oF = MEF/Re(0)] = ME([F]/CE, where CF =
E[1/Rx(0)] '. Note that these load factors depend on the
rate statistics onl\ through the anthmeuc and harmonic means,
respecmelv By Jensen s incquality, we hme pl < ¥ Denote
finally by p" = 3, pll and p®° = 3~ pi° the total traffic loads
in the fluid and quasi-stationary regimes, respectively. Recall
that p = pfl.

As mentioned earlier, the fluid and quasi-stationary regimes
are particutarly relevant, because their performance can be ex-
plicitly evaluated. Basecd on the results of [8], it can bc shown
that a neccssary and sufficient condition for stability of the
fluid (resp. quasi-stationary) regime is pf < G* (resp. /% <
(*). In case of stability, the stationary distributions 7% and
7% of the numbers (ni,...,nx) of on-going flows of each
class in the fluid and quasi-stationary regimes depend on the
traffic and rate statistics through the loads pf and p}° only:

K

Ht— G( k 1

ﬂ)nk

afl(ny, ... Hk) =7(0)

0-7803-8355-9/04/520.00 ©2004 IEEE.

qs Tk

qs (
) iy O)Hl__ G(i) H p

where 7f(0) and 7% (0) arc determined by the normalizing
condition. and n = S_;_, n. By Liule’s law, we obtain the
mean response time of class-& flows:
E [ry]
A

Alternatively, the performance can be naturally measured in
termms of flow throughpur:

_ E{F] _ #:Ch

S BT T Bl
When G(n) = 1. we obtain, for the fluid and quasi-stationary
regimes, respectively:

!

E[T:] =

W=Coll=p") and 4 =CFL-p™) )

IV, STABILITY CONDITION

We say that the system described in Section II is stable if,
starting from any initial state, il coimverges to a finite stationary
regime. It follows from the stochastic bounds to be derived in
Section V that the condition pl < (* is necessary for stability,
while the condition p% < (* is sufficient. Note that when the
mumber of on-going flows tends to oo, each flow stays a long
time in the system so that the rate process tends to average
out over the flow duration, i.c., the system behaves as in the
tluid regime. Thus we expect the condition p = pf! < G* to
be both necessary and sufficient for stability. This is indeed
the case in view of the following result, proved in Appendix
A,

Theorem 1: If p < G*, then the system is stable.

Remark 3: The assumption of fair sharing is crucial for
the above stability condition to hold. This condition may be
relaxed by giving priority to those flows with the highest
feasible rates. In a high mobility scenario, the BS would
then transmit to a user only when she/he is close to the BS,
a strategy closely melated to that considered in [13] in the
comtext of ad hoc networks. In the present context, however,
fast variations in the feasible rates are already exploited at the
packet level by opportunistic scheduling and slower variations
cannot be exploited without severe impact on user performance
due to starvation effects (refer to Section I).

V. COMPARISON WITH FLUID AND QUASI-STATIONARY
REGIMES

We now compare the performance of the system with that
in the fluid and quasi-stationary regimes, using the notion of
stochastic ordering (see for instance [21]).

Definition 1: (st and icx orderings) Let X and Y be two
rv.’s on R™. Wrte X <, ¥ (resp. X <. Y) if and only
if E[f(X)] € E[f(Y))] for all increasing (resp. increasing
and convex) functions f : R® — R for which the previous
expectations exist.

Note that these orderings are parucula:]y relevant. since
A <5 Y allows the comparison of the distributions of X and
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Y.ie,Pr[X <z] > Pr[Y < z| forall z. whereas X <;;; ¥
implies all moments of X are less than the respective moments
of Y.

Assume that the svstem is empty at time 0 and denote by
Ny (t) the number of aclive class-%k flows at time ¢. For ¢ =

1,-.., Nk(i), let Fy(1) be the remaining size of active class-k
flow ¢ at time £. We define the total workload at time ¢ as:
K Ne(®)
Fri(t)
Wit) = —_—
0= 20

Theorem 2 below, proved in Appendix B, states that perfor-
mance improves (resp. deteriorates) in terms of the number
of active flows, the workload and the response time T of an
arbitrary flow, when the rate processes of some flows satisfying
Assumption 1 below are replaced by the corresponding fluid
(resp. quasi-stationary) versions as described in Section IIL

Assumption I: The cumulative distribution function (¢.d.f.)
P(-) = Pr[F < -] associated with the random flow size F is
concave.

Note that Assumption 1 is satisfied by a broad class of distri-
butions, including exponential, hyper-exponential or Weibull.
In particular, it is possible to represent the highly variable flow
size distribution of iypical data networks.

Theorem 2: We have, forall k= 1,... K,

W) iow W) <iox W), W
NME) <o Nelt) <o NF(2), (5
T8 <, T <, T, (6)

where the superscript # (resp. 9°) refers to the system where the
rate processes of some set of flows satisfying Assumption 1,
are replaced by the corresponding fluid (resp. quasi-stationary)
processes.

The above comparison results are also valid when the system
is in equilibrium. Denote by W (oo}, Ni(oo) and Ti{co)
the workload, the number of active class-k flows and the
response time of class-& flows in steady state, respectively. We
deduce the inequalities (8) and (9) in the next corollary from
Theorem 2 and the stability of the st-order by limits [21]. The
inequality (7) results from (4) and a classical monotonicity
property of the Loynes™ construction as explained in [3,
page 281].

Corollary I: Let £ C {1,...,K} be an arbitrary subset

of classes that satisfy Assumption 1. We have, for all £ =
1,...,K:

LVﬂ (DO) Sier I’V(OO) Sicr I/Vqs(oo), (7)
N}?(OO) <ot Nip(00) <ot NF(00), (8)
T (00) <ut Ti(oo) <at TF(00), o)

where the superscript i (resp. %) refers to the system where
the tate processes of the flows of the classes in £ are replaced
by the corresponding fluid (resp. quasi-stationary) processes.

Note that the above fluid and quasi-stationary regimes corre-
spond to those defined in Section Il when £ = {1,...,K}
in which case they provide tractable upper and lower perfor-
mance bounds.

0-7803-8355-9/04/$20.00 ©2004 IEEE.

VI. IMPACT OF THE SPEED
OF RATE VARIATIONS

In this section, we investigate how performance varies with
the time scale of the rate processes. In order to do so, we
suppose that the processes £ (%) for some users are replaced
by processes R,(f) (1) = Rp(st) for some constant 5 > 1.
The constant s may be interpreted as an acceleration factor.
Although one might conjecture that performance improves
when the rate process is speeded up, this result does not hold
in certain very specific cases [22]. However, the monotonity
property can be established when the rate process satisfies the
following assumption.

Assumprion 2: The rate process is a homogeneous station-
ary Markov process. The transition kemels @ and @, of
the Markov process and of the comesponding time-reversed
Markov process are <g--monotone. Recall that Q is <g-
monotene if and only if, for all increasing functions f, the
function = — [ f(t)Q(z, dt) is also increasing [21].

Assumption 2 is satisfied by a broad class of processes,
including birth~death processes and Markov processes with a
discrete state space and a generator @ = (g;;) such that ¢;;
does not depend on ¢ [5].

The next theorem. proved in Appendix B, states that perfor-
mance improves when the rate processes of some set of flows
satisfying Assumptions 1 and 2 are accelerated. Speeding up
some users (or equivalently their rate process) improves the
performance for all flows.

Theorem 3: We have. forall s> 1andall k=1,..., K:

W () <yen W(E), (10)
N () <oe Nil2), (11)
T <, T, (12)

where the superscript ) refers to the system where the rate
processes of some set of flows satisfying Assumptions 1 and 2,
are speeded up by a factor s.

The next corollary presents the counterpart of Corollasy 1.

Corollary 2: Let £ < {1,...,K} be an arbitrary subset
of classes that satisfy Assumptions 1 and 2. We have, for all
s>land all k=1,... K:

Wi ow) <ier W(oe), 13)
N (00) <ot Nigloo), 149
TN 00) <4p Th{o0), (15)

where the superscript () refers to the system where the rate
processes of the flows of the classes in £ are sped up by a
factor s.
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VII. NUMERICAL EXPERIMENTS

We now present some numerical experiments to illusirate
the theoretical results presented above. The feasible rate of a
user is a complex function depending on both fast and slow
fading. For the sake of simplicity in simulations, we ignore
fast fading. Slow fading may be viewed as the result of two
different phenomena: shadowing and variations in path loss.
Thus, we assume that the feasible rate R(f) of a user behaves
as:

R(t) o« G4(t) x T'(t),

where G,(¢) and I'(#) denote the shadowing component (of
unit mean) and the path loss, respectively. Shadowing typically
arises when the variation in the distance to the base station
is of the order of 10-100 m, depending on the propagation
enviromment. Empirical studies suggest that shadowing has a
log-normal distribution, with standard deviation between 5 and
12 dB. Path loss usually varies over larger distances. Here we
assume that T'(£) is proportional to (£} ~*, where r{t) denotes
the distance to the base station and « is the path loss exponent.

Based on these observations, we consider the following two

mobility scenarios:

« Low mobility, where the typical distance covered by a
moving user during the flow transfer is less than 100 m,
Variations in the feasible rate are then mainly due to
shadowing and result from varations of 5 to 12 dB in
the received signal.

o High mobility, where a user can move across the entire
cell during the flow transfer. In this case. fluctuations in
the feasible rate are mainly due to variations in path loss.

In the CDMA IXEV.DO system. 11 feasible rates are

defined, ¢ > ¢; > ... > ¢, with corresponding target signal
to interference-plus-noise ratios (SINR). In case of a constant
shadowing component G,{¢) = 1, these mates correspond to a
set of concentric rings of radius rp < 7y < ... < 710, Such
that when r(¢) € {r;_;,7;), the feasible rate is ¢; (with the
convention r_; = 0) [7]. We give the ning radius (normalized
so that 79 = 1) corresponding to a path loss exponent o = 4
in Table L.

Ring j | Rate ¢; | Radius r; | SINR
(Kbivs) | (x=4) | (dB)
0 2457.6 1 9.5
i 1843.2 1.07 7.2
2 12288 1.19 3.0
3 921.6 1.28 1.3
4 614.4 1.41 —1.0
5 307.2 1.68 —4.0
6 204.8 1.86 —5.7
7 133.6 2.00 —6.5
8 102.6 2.21 —8.5
9 76.8 2.37 -9.5
10 38.4 2.82 —i2.5
TABLE I

RATES, RING RADIUS AND SINR FOR CONSTANT SHADOWING

In the following. we consider a circular cell of external
radius R = r; corresponding to L + 1 rings. Flows arrive
uniformly in the cell according to a Poisson process of

0-7803-8355-9/04}'520.06 ©2004 TEEE.

intensity A. The probability p; that a new flow starts its
service in n'ng J is proportional to the surface of this ring,
ie. p;=(r? —r? ;)/R? The flow throughputs in the limit
regimes are given by (3). Simulation results are obtained for
exponentially distributed flow sizes of unit mean and Markov
rate processes with values in {cg, 1, ..., ¢ }. We make the
natural assumption that the rate process can only jump between
adjacent states, so that for each class, the Markov rate process
is a birth-death process. Note that Assumptions 1 and 2 are
satisfied.

A. Low mobility

In the low-mobilitv scenario. the feasible rate of a user
typically evolves in a set of 2 to 5 consecutive rates, roughly
corresponding to SINR variations of 5 to 12 dB (sec Table I).
Rather than fitting a log-normal distribution, we simply assume
that the feasible rate of cach user takes a fixed number of
values, o, and that all transitions rates of the corresponding
birth-death process are equal. We performed simulations not
reported here to verify that performance depends on shadowing
mainly through its amplitude and not on its precise distribu-
tion, We consider a cell of radius R = 1.86 (thus L = 6) and
evaluate performance in the following two cases:

« Shadowing with low amplitude (¢ = 3). There are

5 user classes. Class-k users are located in ring &, &k =
1,...,5, and their feasible rates are ck 1 Ck, Cp+1 With
corresponding marginal probabilities 1, 1, 1.

+ Shadowing with high amplitude (& = 5). There are 3 user
classes. Class-k users are located innng &k, k= 2,.. ., 4,
and their fea51ble rates are Cx-2, Ci—1. ck Chp1, € ;,,_._2 with

HEEE A 8
Figure 1 presents the throughput of flows of classes | and 3 as
a function of cell toad in case of shadowing with low amplitude
(e = 3) and with different values of the speed s. In Figure 2,
we present the throughput of flows of classes 1 and 3 in case
of shadowing with high amplitude (a2 = 5).

18 5 ‘ ' Fluid regime

16 g 5 eedd= 1(1) 4

B8 r N peed = * A
ial RN Speed=01 o

Qs regime --——-—

Flow throughput (in Mbit/s)

0 0.2 0.4 0.6 0.8 1
Traftic load

Fig. 1. Throughput of flows of class 1 {upper curves) and class 5 (lower
curves) in case of shadowing of low amplitude (a = 3).

As expected in view of Corollaries 1 and 2, the fluid and
quasi-stationary regimes provide optimistic and conservative
estimates of the throughput. respectively, and speeding up the
rate processes improves performance. Further observe that the
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14

Fluide regime
Speed =10 =
o f pead=1 1
2 Speed=0.1 =
= Qs regime ———
£
=
[=9
=~
o 4
2
g
= ]
=
2
w 4
0 L L 1
& 02 0.4 0.6 0.8 1
Traffic load
Fig. 2. Throughput of flows of class 1 (upper curves) and class 3 (lower

curves) in case of shadowing of high amplitude (g = 5).

limit regimes only differ significantly in case of shadowing
with high amplitude.

B. High mobilitv

We now consider a high-mobility scenario where the vari-
ations in path loss cannot be neglected. We assume that a
fraction 8 of the users move across the entire cell while
the others are static. We do not account for shadowing, i.c.,
G, = 1. There are K = L + 2 user classes;

+ Class-k users, for k =0, ..., L, are static in ning %, i.e.,
Ry (t) = Cy, = ¢y, for all £. The load associated with this
class is pg = (1 — 3)Apr/Ck.

o Class-(L+1} users move in rings O, .. ., L according to a
birth-death process with marginal distribution py, .. ., pr.
corresponding to isotropic motion in the cell, so that
Cri1 = >, Prck. The load associated with this class
is PLy1 = ﬁ.\/CL+1.

Figure 3 gives, for a cell of radius R = 2 (thus L = 7) where
all users move (5 = 1), the flow throughput as a function of
fotal traffic load for different values of the speed s. The impact
of speed on flow throughput for fixed load p = .5 is shown
in Figure 4. Figure 5 is the analog of Figure 3 for a cell of
radius R = 1.19 (thus L. = 2). Note that for large variations in
the feasible rate (see Figure 3), performance is very sensitive
to speed. whereas for limited variations (see Figure 3), the
fluid and quasi-stationary bounds are very close, indicating
that performance is approximately insensitive.
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Fig. 3. Flow throughput as a function of traffic load when all users move
in a cell of radius R = 2.
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Figure 6 gives the flow throughput of static users in ring 0
and of moving users, when the proportions of static and
moving users are the same (5 = 0.3).
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0 0.2 0.4 06 0.8 1
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Fig. 6.  Flow throughput of static users in ring O (upper curves) and of
moving users (lower curves) in a cell of radius R = 2.

The numerical results suggest that performance is sensitive
to the speed of the fading process only when variations in the
feasible rates of those users representing a significant part of
the total traffic load are of high amplitude. When the amplitude
is low, performance is almost insenmsitive, i.e.. essentially
depending on the traffic and fading statistics through the traffic
load of each class only. In this case. the quasi-stationary
regime provides an accurate conservative estimate of flow-
level performance.

VIII. CONCLUSION

We have examined the impact of slow. mobility-induced
rate variations on the flow-level performance of a wireless
data system. We have compared the performance of the
system with that in two limit regimes. termed fluid and quasi-
stationary, where rate variations occur on an infinitely fast and
an infinitely slow time scale, respectively. The fluid and quasi-
stationary regimes provide explicit performance estimates,
which are provably optimistic and conservative, respectively.
Besides, the performance of the limit regimes is insensitive,
and only depends on an appropriately defined load factor, thus
vielding bounds that only involve simple first-order system
parameters For a broad class of Markov-tvpe fading processes.
we further proved that performance varies monotonically with
the time scale of the rate variations,

At a qualitative level, the finding that mobility-related
rate variations improve performance resembles the generic
principle underlying opportunistic- scheduling. In the present
context, however, the performance improvement does not
relv on opportunistic scheduling. Instead, informally stated,
it arises from the fact that flow-level performance measures
behave as convex functions of the rate processes.

From a practical perspective, when the traffic load generated
by those users with large rate varations is limited, the quasi-
stationary regime provides an accurate conservative estimate
of flow-level performance. This allows the development of
simple dimensioning rules as if users were static, as derived

0-7803-8355-9/04/320.00 ©2004 IEEE.

in [7]. In cases where moving users with large rate variations
represent a significant part of the total traffic load, performance
becomes sensitive to the precise traffic and fading statistics. It
may then be necessary to take mobility and shadowing effects
inio account.

Note finally that the positive impact of mobility relies here
on the assumption of perfect rate predictions. This is reflected
in the model by the fact that the marginal distributions of the
feasible rates do not depend on the time scale of rate variations.
It would be very interesting to study the extent to which the
estimation and prediction problems due to high-frequency fad-
ing counterbalance the performance improvements established
in the present paper.

APPENDIX
A. Stability condition

Proof of Theorem [: We prove the result for Cox flow size
distributions which are known to form a dense subset of the set
of all distributions with non-negative support. Specifically, we
assume that class-% flows have ii.d. exponential sizes of mean
I/, and generate a new class-/ flow with probability py;
when completed. By creating additional classes and dividing
each random flow size into a random number of exponential
phases, the model is then sufficiently general to cover any flow
size distribution. The total traffic load is given by:

p=XMI—P) 1 pC)™,

where A = (Ag) is a row vector, I is the identity matrix,
P = (pwi), and p = (p), € = (Cr) are diagonal matrices.
Similarly, we assume that the rae process fi;(t) is a function
of a finite-state Markov process ox;(t). By increasing the
number of states, such a Markov process can approximate any
stationary and ergodic process.

The stochastic process {N(t), o(t}} where N(t) and o(t)
denote the row vectors (Vi (¢)} and {ori(t)), k=1,...,K,
i = 1,...,Ni(2), respectively, is an irreducible Markov
process. Define the workload at time ¢ as:

W(t) = |N(@)}(I - P)~!{(pC) Y.
Assume that p < G* and let to = 1/(G* — p). For amy
sequence of initial states { N0 (0), ) (0)}; with
W
lim —( ) =1

. (16)
PRI |
we will prove that the sequence of workload processes
{0 (¢)}; satisfies for any ¢ < fo:
E W@
im ——[ - (7 H

J—oa

As the workload defines a Lyapunov function for the Markov
process {N(t),o{t)}, the proof then follows from Foster's
stability criterion [20].

Denote by A(t), B(t) and D(t), respectively, the row vec-
tors of the mumber of exogenous arrivals, endogenous arrivals
and departures of class-k flows up to time ¢, k= 1,..., K.
We have:

N(t) = N(0) + A(t) + B(t) — D(). a7
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Let D'(t) be the row vector of the maximum number of
depanures of class-k flows up to time t, thus assuming these
flows are served at the 1ate Sy = G sup, Ry(¢). Similarly,
let B'(t) be the row vector of the maximum nmumber of
endogenous artivals of class-% flows up to time ¢. We get:

W(t) < W(0) + (At} + B'(t)(T ~ P) HuC) . (18)

Denoting by e the row vector (1,.. ., 1} and by S the diagonal
matrix {S;}, it follows from the strong law of large numbers
that:

when j —co. In particular, there exists for any sequence of
mnitial states { N4)(0), 0¢/2(0)}; satistying (16) a subsequence
denoted by indices j' such that for any ¢ < to:

WU () as. -
— W),

The function W (-} is usually referred to as a ‘fluid limit’ due
to the time-space scaling [12}. As D(t) < {D'(t)| and B(%) <
B'(t). there exists a subsequence of 5. denoted by indices 7,
and continuous functions B and D such that for any ¢ < ty:

BU' )(J t)as % B(e), (”t)ms

It then follows from (17) that.
N(i”)(j”t) as.

j.”
where /V is the continuous function given by:

N(t) = N(0) + X\t + B(t) — D(t).

D(t) when 7" — oo.

N(t), when 7" — oo,

(19)

Now as flow sizes are i.id exponential, the number of
departures of class-k flows during the time interval [u, ]
satisfies:

Dyp(v) = Dplu) <
My (u,v)

hS! G v -
{Fkifmfﬂ Rk*(”df}

where M{x,v) = N{u} + A(v) — Alu) + B(v) — Blw)
and m(u,v) = N(u) -~ D{v) + D{(u) correspond to the
row vectors of the maximum and the minimum number of
active class-k flows during [u, v], respectively. Analogously,
we define M(u,v) = N('tl) + My - u) + B(v) — B(w)
and mfu,v) = N{w) — D(v) + D{w). For any v such that
IN{u)| > 0, we have |m(u,v)| > O for sufficiently small
v > . For any < > 0, there exists [ such that for all j” > I,
SN ) = DY)+ DI )
> [m(u,v)|(1 —<) as.

and by the ergodicity of the process Fg(t).
1 v c
Pr |sup { —— Rp(t)dt » > 1+¢)) €«
jz‘?{J(U—u) fju +0) } k( ) -
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Writing
Di(v) — Dy(u) <
M (u,v)
1 . B
; Fi < G*Cr(1 +2)(v — u)
o, o)
My (u,v)
+ 1 v ,
; {viu'[ Rki(t)dt s Ck(1+s)}

it follows from the strong law of large numbers that:
Dy (v) — Di(u) < Mi(w,v)
G'C’k(L+s)(v—u)} )
x| Pr|F; < — +e].
( [ [hfu, v)|(1 - <)
Since this inequality holds for any < > 0, we deduce:
G*Crv — u)
RIOSIT

Dy(v) — Dr(u) < My (u,v)Pr [Fk <

Similarly, using the fact that
Dy (v) — Dy(u) =2

N (u)
B o S [ )

we obtain:
_ _ - G*Crlv — u)
D - Dy, > Nep(uw)PrijF, < —————
k(v) = Di(u) 2 Ne(u) r[ TV TEY
Using the latter inequalities and the fact that A7(u,v) and
m(u,v) tend to N(w) when v tends to «, we deduce:

ab, . .. N{u)
A T
Analogously, one may prove that:
B : (u)
Et—(u) G IN ) pCP.

Now it follows from (19) that for any ¢ < to such that | N (£)] >
0

pC.

dN , N{b)

@ V=2 gt = P
Using the fact that:

W() = NI - P)7HpC) Y,

we obtain for any ¢ < to such that W{t) > 0,

dW ,
— W) =p-G".
We know that W(0) = 1 in view of (16), so that W(t) =
1 — (G* — p)t for any © < fo. In particular, the function W(-)
is uniquely defined for any ¢ < £, and
W (g _
—% 22 W) whenj - oo
Finally, the sequence of rv.’s {M }; is uniformly
1ntegrdble in view of (18), so that:
E [WW(¢ -

j—oa
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B. Stochastic comparisons

I} Proof of Theorem 2: We first prove (4) and (3) for the
following slotted system. The interval {0, ¢} is divided into
L slots such that the feasible rate of each flow is constant
during each slot and equal to the feasible rate at the beginning
of the slot. We also assume that when a flow is present at the
beginning of a slot, it remains in the system during the entire
siot. The proof of (4) and (5) for a non-slotted system then
follows from the fact that for . = 2F, p > 1. the workload
and the number of class-k flows in a slotted system where the
feasible rate of a flow during a slot is fixed at its maximum
in the slot (respectively, its minimum) converge monotonically
to W{t) and Ny (f). respectively. when p tends to co.

The proof is based on the notion of supermodular functions
{see, ¢.g., [21]) and on Lorentz inequality [25]:

Definition 2: (Supermodular functions) f : B® — R is
supermodular if and only if for all z,y € R™, fz vy) +
Fany) = [(@) + Jly). where (@ V) = = Vy; and
(zAy)i=zi Ay, foralli=1,... . n

Lemma I: (Lorentz inequality) Let Z,,...,7Z, be iden-
tically distributed rv’s. For all supermodular functions f,
E{f(le-"vzﬂ)] S E[f(Z1~ "',Zl)]-

Consider an arbitrary flow, sav flow 1. that arrived at the
beginning of slot I € {1,...,L}. Assume without loss of
genenality that flow 1 is of class 1. We fix the arrival process
up to slot L, the rate processes of all flows except flow 1.
and the sizes of all flows except flow 1. We denote by x; the
feasible rate of flow 1 during slot 7, by F) the size of flow 1,
and by E; the expectation with respect to the random variable
Fy. Let Wi and Ny be the workload and the number of
class-k flows at the end of slot L, respectively. The key result

s

Lemma 2: For all k¥ = 1,... K, E[f{W;)] and
E; [g{Ny,1)] are supermodular and comvex functions of
(z4,...,2r), for all increasing and convex functions f and
all increasing functions g.

Proof. Let n; be the number of flows present during slot j,
assuming that tlow 1 is present during this slot. Note that these
mmmbers do not depend on (i, ...,zr) nor on Fy. Let W}
be the workload due to flow 1 at the end of slot L, ie.. the
remaining size of flow 1 divided by C;. As the transmission
rate of flow 1 in slot j is z;G(n;) /n;, we have:

L

W'E = —1- max | 0, F} — Z:sj

G(ny)
C, ;

LTS

i=t
which, composed with an increasing and convex function, is
known to be supermodular and convex in (g, ....z5) (4]
Now let w; and nx. ; be the workload and the number of active
class-& flows at the end of slot L, respectively, assuming flow 1
leaves the svstem at the end of siot 7. Note that these quantities
do not depend on (=, ..., x;) nor on Fy. We have:

o If Fl < .TgG(ng)/'n,g, LVL = 1wy and Nk,L = N, 1;

e forl' =1+1...,L—Lif ¥\ a;Glny)/n; < AL <

Z?:z z;G(n;)/n;, Wi, = wp and Ny 1, = ngrr;

0-7803-8355-9/04/$20.00 ©2004 IEEE.

o if Fl > Z;;il ﬂ?jG(ﬂj)/ﬂj, W, = wy + VVLl{ ang
Nyp =ng L.
Averaging with respect to the size of flow 1, we obtain for all
increasing and convex functions f:

By [f(W1)] = (F (wr) — f(wran)) P (zz Gg:l))

-1
o+ (flwno) = flwn)) Py ij'%

i=t 7

L-1 .
i) b | 3 S0
i= g

1 ap |
(P st e 20y |

+Fy [f(wL + W}
Ty

where P denotes the ¢.d.f. of Fy. Note that the sum of the

last two terms in the latter expression is simply equal to

E; [f(wy, + W})], which is a supermodular and convex func-

tion of {x;, ..., z1). In addition, it follows from Assumption 1

that for all m=1,..., L — 1, the function

m
G(ny)
(g, .., xL) = —P ;mJT

as the composition of an affine function and a convex function,
is supermodular and convex [4]. As G(n)/n decreases in n,
we have w; < ... < wy so that By [f(W)], as the sum
of supermedular and convex functions, is supermodular and
COnvex.

Similarly. we have for all increasing functions ¢:

Er [9(Ne,1)) = (9(r ) — 9(nmar)) Py (iﬂz Gg:z))

-1 Cln,)
_1}— gl P g
+.. 4+ {glnk-1) — glngL ) P1 ;I; e
+ g(n&,L)-
As G(n)/n decreases in n, we have n,; < ... < ngg.

Thus E; {g(Nk,.)]. as the sum of supermodular and cotvex
functions, is supermodular and corvex. O

Now, for any function f, we have;
E[f(¥]))] = EE [f (W) (Elzd ... . Ela)],
E[f(Wo)] = E[Ey [f(We)] (@, ..., zL)],
B0V = BE: POV (i, 2],

where it (resp. 95!) denotes the fluid (resp. quasi-stationary)

regime with respect to flow 1. Similar relations hold for .
the mumber of class-k flows. Using the independence of

the rate processes. we deduce from Lemma 2 and the fact

that (Elz], ..., Elz]) <ice {(xr,-..,2r) [3] that for all

increasing and convex functions f, all increasing functions g,

and all k = 1,...,K:

E[A(wiY] <EF(WL)I, E[g(NL)] < Elg(Ne,)],
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Similarly, using the independence of the rate processes, it
follows from Lemma 2 and Lorentz inequality that:

BV < B [FVE]L Elg(Men) <E[ovi)]

We obtain (4) and (5) by applying successively the same
reasoning to an arbitrary set of flows satisfying Assumption
1.

We now prove inequality (6). Let 77 be the time spent
by an arbitrary flow in the stotted system up to slot L. We
prove exactly as in Lemma 2 that that for all increasing
functions g, E; [¢(7%)] is a supenmodular and convex function
of (x1,...,xr). We deduce as above that:

E [g(ZD)] < E[o(T1)) < Elg(I7)],
and by letting L tend to oo,

E [o(T(M")] < Elg(T )] < B{g(T(®)*)],

where T'(z) denotes the time spent by an arbitrary flow in the
non-slotted system up to time ¢. We obtain (6) by letting ¢
tend to co.

2) Proof of Theorem 3: The proof is based on the following
recent result by Hu & Pan [15] (a similar result had been used
by Chang, Chao & Pinedo [10}).

Lemma 3: Let {Z(t),t € R} be a process satisfving As-
sumption 2. For all integers n, all {ry,...,7,) and (s1,...,8,)
suchthat y < sjandry —r_; < 8;,— 8, fori=2,...,n,
we have:

Eif(Z(r).. ... Zru ] 2 BIf(Z(s1),- .-, Z(sn))]

for all supermodular functions f : E™ — R such that the
previous expectations exist.

We give the proof of (10) and (11) only (the proof of (12)
is then similar to that of (6)). Again, it is sufficient to
prove these inequalities for a slotted system. Comnsider some
arbitrary flow 1 satisfying Assumptions 1 and 2. Denote by
z; = Ryt x j/L) (resp. :1:;-5) = Ry{st x §/L)) the rate of
flow 1 during slot 7 in the actual system {resp. when its rate
process is accelerated by a factor s > 1). It follows from
the independence of the rate processes. Lemmas 2 and 3,
that for all increasing and convex functions f, all increasing
functions g, and all k =1,..., K

E[#wWi] S B0V E[o(NED)] < Bla(Ve,),

where (9! refers to the system where the mate process of
flow 1 is accelerated by a factor 5. We obtain (10) and (11)
by applving successively the same reasoning to an arbitrary
set of flows satisfying Assumptions 1 and 2.

0-7803-8355-9/04/320.00 ©2004 IEEE.
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