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.dbstracr-The potential for exploiting rate variations to increasp the capacity of wireless systems by opportunistic scheduling has been extensively studied at packet level. In the present paper, we examine hon slower, mobility-induced rate variations impact performance at flow level accounting for the random number of flows sharing the transmission resource. We identify hvo limit regimes, termed /hid and qttmi-smimoy. where the rate variations occur on an infinitely fast and an infinitely slow time scale, respectively. Using stochzstic comparison techniques, we show that these limit redmes provide simple performance hounds that only depend on essily calculated load factors. Additionally, we prove that for B broad clnss of fading pmcesses, performance varies monotically with the s p e d of the rate variations. These results are illustrsted through numerical erperiments. showing that the fluid and quasi-stationary bounds are remarkably tight in certain usual CBSCS.

I. INTRODUCTIOX

Nest-generation wireless nehvotks are expected to support a wide variety of high-speed data applications. in addition to comzentiod voice sewices and current low-bandwidth data services such as short messaging. The integration of these heterogeneous applications on a common transmission infrastmcture raises similar challenges as in wireline integrated network% In wireless emironments, these issues are further exacehated by interference problems: intrinsically limited bandwidth and highly variable and unpredictable propagation characteristics. Specifically, the channel quality may vruy widely among spatially distributed users due to diskmcerelated attennation In addition the channel conditions for a given user may vary dramatically over time because of fading effects.

Fading is an extremely comples physical phenomenon caused by the interaction between the propagation emironmen1 and user mobility. It emerges in diverse forms and tqpically spans a wide range of time scales. Fast fading arises because of multi-path propagation effects. and as the word suggests, occurs at a relatively high pace. Slow fading manifests ifself at a more macroscopic level as a result of distance-related attennation and scattering due to obstacles and terrain conditions. and evolves over a longer time scale.

Wireless circuit-switched voice networks rely on power control mechanisms for adjusting the transmit power to combat fading and maintain a fixed transmission rate. Various data applications on the other hand. such as Gle transfers and Web browsing sessions, are less sensitive to packet-level delays. of scheduling data transmissions to the various users when their channel conditions are relatively favorable. While fading is considered to have a predominantly adverse impact for voice connections, it thus provides the opportunity to achieve throughput gains for elastic data transfen.

The performance gains from opportunistic scheduling rely on the rates vming snflicientl?-slowly to be tmcked with reasonable accnracy. but relatively rapidly compared to the delay tolerance of the users. High-frequency fading causes estimation and prediction problems. diminishing the scope for scheduling. Slow variations cannot be harnessed. or only at the expense of compromising the delay allowance of the users. For example. typical values of the time constant in the Proportional Fair algorithm for the CDMA IxEV-DO system [6]; [Ill. [I61 are between 10 and 1000 slots of 1.67 ms. This ensnres that stawation effects cannot pcnist for csccssive periods. but it also implies tlmt slower variations are not csploited. In practice, relatively low-mobility scenarios tend to provide the greatest potential for scheduling gains.

While the performance of opportunistic scheduling algorithms has been thoroughly explored at packet level [2].

[91. 1141, [I!)], [START_REF] Shakkollai | Scheduling algorithms fora miflure of mal-timr and non-real time data in HDR[END_REF], [26], the impact of fading on flowlevel performance has received remarkably little attention so far. In [SI, it was shown that when fading is relatively fast compared to flow dynamics. the system may in certain cases be representcd by a Processor-Shanng type model with a statedependent service rate that accounts for the scheduling gains. This model provides explicit formulas for the distribution of the number of active Rows and of the mean transfer delay. In particular. performance is insens;t;ilee, in the sense that these fonnulas only depend on the characteristics of the system through an easily computed 'load' factor. The notion of 'cell capacity', critical for mmensioning purposes. can then be defined independently of precise statistics of offered traffic

In the present paper. we focus on the impact of mobilityinduced fading that evolves on a slower time scale and manifests itself in the form of independent rate variations at How level. Due to these slower rate variations. the insensitivity propelt). is lost, and performance depends in some complicated fashion on detailed rate statistics and uaffic characteristics of the system rendering exact analysis virmally impossible.

Considering these complexities. we cornpm the performance
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of the system with that in two limit regimes, tennedfluid and quasi-stationay. obtained when rate variations have the same instantaneous statistics, but occur on an infinitely fast and an infinitely slow time scale. respectively. Using stochastic comparison techniques, we show that the fluid and quasistationan. regimes yield optimistic and conservative performance estimates, respectively. These estimates are very usefuL since pelformance in the limit regimes is insensitive, and only depends on appropriately deIined load factors, thus providing simple bounds that render 11% detailed statistical characteristics of the system largely &levant. Numerical experiments indicate that these bounds are surprisingly tight in many cases.

The above ordering results show that infinitely fast rate fluctuations yield best performance, while infinitely slow variations produce worst performance. It is tempting to conjecture tllat performance improves monotonically as the fading process is speeded up. We demonstrate that this is indeed the case for a broad class or Malkov-type fading processes. It is worth observing that these results relate to a change in the time scale of the rate variations for given instantaneous m e statistics. As mentioned above, the actual transmission rates inay be reduced at higher fading frequencies because of estimation and prediction problems, so for a given system a change in the time scale will also affect the marginal rate distributions to some extent.

At a qualitative level, the finding that mobility-related rate variations improve performance resonates with the generic principle described earlier with respect to opportunistic scheduling. It also ties in with the observation in 1131 that mobility increases the capacity of ad hoc wireless networks. In the present context however. the performance improvement does not rely on opportunistic scheduling. Instead. mformally stated. it arises from the fact that flow-level performance measures behave as convex functions of the rate processes.

The remainder of the paper is organiied as follows. In Section lI we present a detailed model description. In Section 111 we introduce the fluid and quasi-stationary regimes mentioned above. We establish a necessary and sufficient stability condition in Section IV. In Section V it is proved that the fluid and quasi-stationary regimes provide stochastic bounds for the performance of the actual system. For Markovtype fading processes. we demonstrate in Section VI that performance in fact monotonically varies with the time scale of rate fluctuations. In Section VI1 we discuss some numerical eqeriments performed to illusuate the analytical results. In Section W I we make some concluding r e m a h .

MODEL DESCRIPTION

Consider a single base station whose transmission power is time shared by a dynamic number of elastic flows. Each flow is represented as a 'fluid' data transfer with a variable rate tlwt depends on the channel quality and the number of competing flows. Packet-level dynamics are implicitly represented through the way flows share the transmission resource.

as explained below. Each flow is characterized by its size (in bits) and its 'feasible' transmission rate that varies relatively slowly, due notably to user mobility. Specifically, we consider an arbitmy number K of flow classes, each class corresponding to given statistical flow size and rate variation characteristics. Class-k flows anive as a Poisson process of rate Xk. We denote by 4; the sue of the ith aniving class-k flow and by Rk;(t) its feasible rate at time t_ corresponding to the actual transmission rate of this Bow if it were the only one in the system. (For notational convenience, we define R k , ( t ) for all values of t. Note however that the i-th class-k flow may not have anived yet or may already be completed at time t , in which case the value of Rh;(t) is of no significance.) We assume tlut 4; andRk;(t), i = 1,2, . . ~ are i.i.d. copies of a random variable Fk and a stationary and ergodic process Rk(t), respectively. The process Rk(t) is assumed to be bounded and right-continuous with left-band limits.

Let Ck = EIRk( 0)] be the time-average feasible rate of a class-k flow. We define (2)

= X k E [Fk] /Ck
where 'nk denotes the number of active class-k flows and the function H k ( . ) is decreasing in each of the nk's. Unfortunately however. when the function H k ( . ) is not of the form G ( n ) / n with r~ = E,"=, ' n k as in (1). the fluid and quasi-stationay regimes described below prove extremely difficult to analyze.

DEFINITION OF FLUID A N D QUASI-STATIONARY

RECILIES

The flow-level model defined by (1) corresponds to a Processor-Sharing type queue wheere the service rate of each customer is modulated by an independent stochastic process. Considering the extreme difficult?. of analyzing such a system, we introduce hvo limit regimes, termed puid and quasi-sfafionarv_ where the rate processes evolve on an infinitely fast and an infinitely slav time scale, respectively. Formally, let us consider a family-of systems. parameterized by s E (0: 03)where the generic rate process for class-k flows is R t ) ( t ) E Rl;(st). Thus the parameter s represents the 'speed' of the rate process. In case Rs(t) is a Makov process, the process R t ' ( t ) may be obtained by scaling the transition rates~with s.

When the parameters grows large. the rate process appmximately averages out over the time scale of the How dynamics.

In the limit for s -03, the variations completely vanish and the rate process reduces to a constant. giving rise to the 'fluid regime with @(t) RiW)(t) = C k . On the other hand as the value of s becomes small, the fading process remains roughly constant over the tune scale of the flow dynamics. In the limit fors -0. the changes completely disappear, and the rate process freezes in same .initial state. yielding the 'qnasistationary' regime with

RF(t) R f ) ( t ) = R k ( O ) ,
where Rk(0) has the stationay marginal distribntion of the process Rk(t).

Accordingly where ~~( 0 ) and nq5(0) are determined by the nonnalizng condition and n = Et=, n k . By Little's law. we obtam the mean response time of class-k flows:

Alternatively, the performance can be naturally measured in terms ofpow, fhmrighpur:

When G ( n )

regimes. respectively:

1. we obtaiR for the fluid and qnasi-statiormy 7: = G ( lpfl) and TF = q ( 1pq"):

(3)

IV. ST-ABILITY CONDITION

We say that the system described in Section I1 is stable if.

starting from any initial state. it converges to a finite statiomy regime. It follows from the stochastic bounds to be derived in Section V that the condition pR < G' is necessary for stability, while the condition pq" < G' is sufficient. Note that when the number of on-going Bows tends to oo_ each flow stays a long time in the system so that the rate process tends to average out over the flow duratioh i.e.. the system behaves as in the fluid regime. Thus we expect the condition p = pR < G' to be both necessary and sufficient for stability. This is indeed the case in view of the following result, proved in Appendix A.

Theorem I: If p < G*, then the system is stable

Remark 3:
The assumption of fair sharing is crucial for the above stability condition to hold. This condition may be relaxed by giving priority to those flows with the highest feasible rates. In a high mobility scenario, the BS would then transmit to a user only when shehe is close to the BS, a strategy closely related to that considered in [I31 in the context of ad hoc nemorks. In the present contea however. fast variations in the feasible rates are already exploited at the packet level by oppomnistic scheduling and slower variations cannot be exploited without severe impact on user performance due to starvation effects (refer to Section I).

v. COMPARISON WlTlI FLUID AND QUASI-STATIONARY

REGIMES

We now compare the performance of the system with that in the fluid and quasi-statio-regimes. using the notion of stochastic ordering (see for instance [21]).

Definirion I: (st and icc orderings) Let X and Y' be hV0

r.v.'s on W". Write X Ist Y' (resp. X Y) if and only if E [ f ( X ) ] 5 E [ f ( Y ) ]
for all increasing (resp. increasing and convex) functions f : W" + I 3 for which the previous expectations exist.

Note that these orderings are particularly relevant. since X Y allows thecomparison of the distributions of X and Note that Assumption 1 is satisfied by a broad class of distributions. including qmnential. hyper-expnential or Weibull. In particular, it is possible to represent the highly variable flow size distribution of typical data networks.

Theorem 2: We have, for all k = 1:. . . , K .

Wfl(t) <Icz U/(t) s i . . I v y t ) , I W t ) <,t Ndt) I s t N m ) . (4) 
( 5 )

Tfl 2.t T < a t ps, (6) where the superscript fl (resp. q") refers to the system where the rate processes of some set of flows satisfying Assumption 1: are replaced by the corresponding fluid (resp. quasi-stationary) processes.

The above comparison results are also valid when the system is in equilibrium. Denote by W(m), N k ( m ) and Tk(cu) the workload, the number of active class-k flows and the response time of class-k flows in steady state. respectively. We deduce the inequalities ( 8) and ( 9 ... I<} be an ahitmy subset of classes that satisfs-Assumption 1. We have, for all k = 1,. . . , K :

(7) (8) (9)
where the superscript (resp. q") refers to the system where the rate processes of the flows of the classes in C are replaced by the corresponding fluid (ESP. quasi-stationary) processes. Note that the above fluid and quasi-stationary regimes correspond to those defined in Section I11 when C = {l, . . . , K} in which case they provide tractable upper and low-er performance bounds. In this section we investigate how performance varies with the time scale of the rate processes. In order to do so, we suppose that the processes Rk(t) for some users are repiaced by processes R r ) ( t ) Rk(st) for some constant s > 1.

The constant s may be interpreted as an acceleration factor. Although one might conjecture that performance impmves when the rate process is speeded up, this result does not hold in certain ve? specific cases [START_REF] Proutiire | Imsnsinvrly and stmhostic comparisons in quruamg networks[END_REF]. However, the monotonity property can be established when the rate process satisfies the following assumption Assumption 2: The rate process is a homogeneous stationary Markov process. The transition kernels Q and Qr of the Markov process and of the corresponding time-reversed Markov process are <,,-monotone. Recall that Q is S Lmonotone if and only if, for all increasing functions fthe

function z U Jf(t)&(z, d t ) is also increasing [21].
Assumption 2 is satisfied by a broad class of processes.

including birthdeath processes and Markov processes with a mscrete state space and a genemtor Q = ( q i j ) such that q i j does not depend on i [5].

The next theorem. proved in Appendix B. states that performance improves when the rate processes of some set of flows satisfying Assumptions 1 and 2 are accelerated. Speeding up some users (or equivalently their rate process) improves the performance for all flows.

Theorem 3: We have. for all s > 1 and all k = 1 : . ..~li:

CV(3)(t) s i . . W ( t ) >

(10) where the superscript refers to the system where the rate processes of some set of flows satisfying Assumptions 1 and 2, are speeded up by a factor s.

N P ) ( t ) I s t A u t ) ,

The next corollary presents the connterparl of Corollary 1

Coro//oty 2: Let C c { 1 , . . . , I<} be an arbitmy subset of classes that satisfy Assumptions 1 and 2. We have. for all s > 1 and all k = 1,. . . ~ K : intensity A. The probability p j that a new flow stats its sewice in ring j is proportional to the surface of this ring.

VV(")(m) sicz bV(m), ( 
i.e.. pl = (T: -r j -l ) / R 2 , The flow tluoughputs in the limit regimes are given by [START_REF] Baccelli | r V d q[END_REF]. Simulation results are obtained for exponentially distributed flow sizes of unit mean and Markov rate processes with values in {CO, CI, . . . , CL}. We make the natural assumption that the rate process can only jump between adjacent states. so that for each class. the Markov rate process is a birthdeath process. Note that Assumptions 1 and 2 are satisfied.

.

Low mobilip

In the low-mobility scenario. the feasible rate of a user typically evolves in a set of 2 to 5 consecutive rates: roughly corresponding to SINR variations of 5 to 12 dB (sec Table I). Rather than fitting a log-normal distribution. we simply assume that the feasible rate of each user takes a fixed number of values, a_ and that all transitions rates of the corresponding birthdeath process are equal. We performed simulations not reported here to verify that performance depends on shadowing mainly through its amplitude and not on its precise distrihution. We consider a cell of radius R = 1.86 (thus L = 6) and evaluate performance in the following two cases:

. Shadowing with low amplitude (a = 3). There are 5 nser classes. Class-k usem are located in ring k. k = 1,. . . -Y limit regimes only differ significantly in case of shadowing with high amplitude.

E. High mob;/;@

We MW consider a high-mobility scenario where the variations in path loss cannot be ncglccted. We assume that a fraction /3 of the usem move across the entire cell whilc the others are static. We do ~t account for shadowing_ i.e.. G, . Class-k users. for k = 0: . . . ~ L. are static in ring k. i.e..

Rh(t) Ck

= ck for all t. The load associated with this class is

p k = (1 -p ) X p k / C k .
Class-(L+ 1) users move in rings 0 : . . . , L according to a birthdeath process with marginal distribution PO,. . . total traflic load for mfferent values of thespeed s. The impact of speed on 00w throughput for fixed load p = 0.5 is shown in Figure 4. Figure 5 is the analog of Figure 3 for a cell of radius R = 1.19 (thus L = 2). Note that for large variations in the feasible rate (see Figure 3). performance is very sensitive to speed. whereas for limited variations (see Figure 5 The numerical results suggest that performance is sensitive to the speed of the fading process only when Tanations in the feasible rates of those users representing a significant part of the total traffic load are of highamplitnde. When the amplitude is lowy performance is almost insensitive. i.e.. essentially depending on the traffic and fading statistics through the traffic load of each class only. In this case. the quasi-stationary regime provides an accurate consewative estimate of flowlevel performance.

VIII. CONCLUSION

We have examined the impact of slow. mobility-induced rate variations on the flow-level performance of a wireless data system. We have compared the performance of the system with that in two limit regimes. termed fluid and quasistationary. where rate variations occur on an infinitely fast and an infinitely slow time scale. respectively. The fluid and quasistationary regimes provide explicit performance estimates, which are provably optimistic and conservative, respectively.

Besides, the performance of the limit regimes is insensitive. and only depends on an appropriately defined load factor. thus yielding bounds that only involve simple first-order system parameters For a broad class of Makov-type fading processes.

we further proved that performance varies monotonically with the time scale of the rate variations: At a qualitative level. the finding. that mobility-related rate variations impmve performance resembles the generic principle underlying opportunistic scheduling. In the present context> hoivever. the performance improvement does not rely on opportunistic scheduling. Instead. informally stated. it arises from the fact that flow-lmel performance measures behave as convex functions of the rate processes.

From a practical perspective, when the traflic load generated by those users with large rate variations is limited. the quasis t a t i o ~w regime provides an accurate conservative estimate of flow-level performance. This allows the development of simple dimensioning d e s os cf users were static, as derived in [7]. In cases where moving users with large rate variations reptesent a significant part of the total tratfic load. performance becomes sensitive to the precise traflic and fading statistics. It may then be necessary to take mobilit?. and shadowing effects into account.

Note finally that the positive impact of mobility relies here on the assumption of perfect rate predictions. Tlus is reflected in the model by the fact that the inarginal distributions of the feasible rates do not depend on the time scale of rate variations. It would be very interesting to study the extent to which the estimation and prediction problems due to high-frequency fading countetbalance the performance improvements established in the present paper.

Let D'(t) be the row vector of the maximum number of depamres of class-k Rows up to time t, thus assuming these flows are sewed at the rate S k G* supt R k ( t ) . Similarly, let B'(t) be the row vector of the maximum number of endogenous arrivals of chss-k Bows up to time t. We get:

Writing

&(v) -D,(u) 5 M.(u,v) C*Ck( 1 t E ) ( . -U ) i=l ' { F k i S lm(w v)l

W ( t ) 5 " ( 0 ) t J(A(t)+B'(t))(l-P)-l(fiC)-ll. (IS)

Denoting by e the row vector (1:. . . ,1) and by S the diagonal that:

+ MF"' 1b v q j n ) a.J -W ( t ) .

-

&(U) -B k ( u ) 5 Mk(u,v)Pr j '
Similarly. using the fact that The function Cs/(.) is usually referred to as a 'Ruid limit' due to the time-space scaling [U]. As D ( t ) 6 iD'(t)l and B ( t ) 5 B'(t). there exists a subsequence of j'. denoted by in&ces j " , and continuous functions B and D such that for any t < t o :

-D ( t ) when j" + CO.

-D ~( u ) 2 B(j'')(j"t) 8.1. - ~( j " ) ( j l ~t ) a,S, ~ we obtain: + B(t), j , , j" C * C ~( I J -71.) jAyf(u:w)l &(w) -&(U) 2 Nk(u)Pr
It then follows from (17) lhat: N(j")(j"t) a.l. --, N ( t ) . when j" -CO.

Using the latter inequalities and the fact that &I(U,U) and m(u,v) tend to N ( u ) when v tends to U. we deduce: we obtain for any t < to such that m(t) > 0.

dLV

T ( t ) = p -G'. 2 Im(u,v)l(l -: ) a.s.
and by the ergodicity of the process Rk(t).

Finally. the sequence of r.v.'s { q } j is uniformly integmble in view of (IS), so that: 1) Pmof of Theorem I: We first prove (4) and ( 5 ) for the following slotted system. The intend (0: t) is divided into L slots such that the feasible rate of each flow is constant during each slot and equal to the feasible rate at the beginning of the slot. We also assume that when a How is present at the beginning of a slot, it remains in the system during the entire slot. The proof of (4) and ( 5 ) for a non-slotted system then follows from the fact that for L = 2p, p 2 1. the workload and the number of class-k flows in a slotted system where the feasible rate of a flow during a slot is fixed at its maximum in the slot (respectively; its minimum) converge monotonically to W ( t ) and N k ( t ) . respectively. when p tends to 00.

The proof is based on the notion of supermodular functions (see. e.g.-1211) and on Lore& inequality 1251:

Definition 2: (Supermodular functions) f : E" -t W is supermodular if and only if for all z, g E E", f(z v y) + f ( z A y) 2 f(z) + f(y)
, where ( L V y), = z, V yi and (z A;y), =xi Ayi, for all i = 1:. . . ;n. Lenima I: (Lorentz inequality) Let 21,. .. , Z , be identically distributed r.v.'s. For all supermodular functions f. Consider an arbitmy flow, say flow I _ that anived at the beginning of slot 1 E (1:. . . , L } . Assume without loss of generality that flow 1 is of class 1. We fix the anival process up to slot L. the rate processes of all flows except flow 1. and the sizes of aU flow except flow 1. We denote by z j the feasible rate of flow 1 during slot j _ by F, the size of flow 1, and by E1 the expectation with respect to the random variable are supermodular and comrex functions of (2,:. . . , z L ) , for all increasing and convex functions f and all increasing functions g.

PmoJ Let nj be the number of flows present during slot j , assuming that How 1 is present during this slot. Note that these numbers do not depend on (xi, . . . , ZL) nor on FI. Let W ;

be the workload due to flow 1 at the end of slot L, i.e.. the remaining size of How 1 divided by C1. As the transmission rate of flow 1 in slot j is x j G ( n j ) / n j , we have:

EIf(Z1,. .. ,&)I 5 E[f(Z1: .. , ZI)].

which composed with an increasing and convex function, is known to be supermodular and convex in ( 2 1 . . . . . ZL) 141.

Now let w j and be the wokload and the number of active class-k flows at the end of slot L. respectively, assuming flow I leaves the pstem at the end of slot j . Note that these quantities do not depend on (z,, . . . , XI,) nor on F , . We have: as the sum of supermodular and convex functions. is supermodular and convex.

Similariy. we have for all increasing functions g:

f d n k , L )
As G ( n ) / n decreases in n; we have nk.1 5 ... 5 n k , L .

Thus El b(iVk,~)], as the sum of supermodular and convex 
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  6. and their feasible rates are c k -l : c k , C ~+ I with corresponding marginal probabilities i, ?: i. . SlBdowing with Iugh amplitude ( a = 5). There are 3 nser classes. Class-k usen are located in ring k. k = 2 _ . . . .4. andtheirfeasible r a t e s a r e c ~~~, ~~-~~c ~. c l i + ~. ~! l i + corresponding marginal probabilities 6: i, i, i, Q.

Figure 1

 1 Figure 1 presents the throughput of flows of classes 1 and 5 as a function of cell load in case of shadowing with low amplitude (a = 3) and with different values of the speed s. In Figure 2, we present the throughput of flows of classes 1 and 3 in case of shadowing with high amplitude ( a = 5).

  c a e of shadowing of low amplitude (a = 3). Throughput of Rows of elms 1 (upper curves) and cIm 5 (lower As expected in view of Corollaries 1 and 2. the fluid and quasi-statiow regimes provide optimistic and conservative estimates of the throughput. respectively. and speeding up the rate processes improves performance. Funher ObSeNe that the of clasis 1 (upper C U N ~S ) and class 3 (lower Fig. 2. curves) in case of shadowing of high amplitude (a = 5).

Fig. 4 .

 4 Figure 3 gives, for a cell of radius R = 2 (thus L = 7) where all usem move (p = 1). the flow throughput as a function of

  -8355-9/04/s20.00 Q2W I E E .

Figure 6 Fig. 6 .

 66 Figure 6 gives the flow throughput of static users in ring 0 and of moving users. when the proportions of static and moving users are the same (fl = 0.5).

  ) = N ( 0 ) t Xt + B(t) -D(t).

  e fi is the continuous function given by: -(U) = G*-pC. Now as flow sizes are i.i.d. exponential, the number of MlogouslY, One "V Prove that: depamres of class-k flows during the time intewal [ u , ~] -(U) = G*-fiCP. Now it follows frOm(l9) that for any t < to suchthat Ifi(t)l > satisfies: bS'(t) = /iv(t)(I -P)-l(/LC)-'I, where hf(u,v) = N ( u ) + A(u) ~ A(?&) t B(u) ~ B ( u ) and m ( ~. v ) = N ( u ) -D(u) + D(u) CO~SpOnd to the row vectors of the ma?iimum and the minimum number of active class-k Rows during [ u u ] , respectively. Analogously.

  Fl. Let CVL and Nk,L be the workload and the number of class-k flows at the end of slot L. respectively. The key result is: Letnnia 2: For all k = 1,. IC_ E1 [ ~

If 4 4 5

 44 5 z,G(nl)/n,, CVL = wl and N ~, L = 'nk,,:. for 1' = 1 + 1,. . . , L -1, if z j G ( n j ) / n j , WL = ?U,, and N ~, L = n k , ~; z j c ( n j ) / n j if Fl > C:::xjG(nj)/nj, r.1'~ = w~ + 1.V; andAveraging with respect to the size of flow 1, we obtain for all increasing and convex functions f :IV, = .nk,L.where PI denotes the c.d.f. of 4. Note that the sum of the last two terms in the latter expression is simply equal to E1 [ f ( w ~ + CV;)], which is a supermodular and convex function of (21.. . . , ZL). In addition it follows from Assumption 1 that for all m = 1,. . . , L -1. the function as the composition of an affine function and a convex function is supermodular and convex[START_REF] B&rrlc | Inequalities for stta.hustic models via supermodular orderings[END_REF]. As G ( n ) / n decreases in n.we have w, 5 . . . 5 W L so that E1 [ ~( W L ) ] .

0

  functions, is supermodular and convex. Now. for any function f, we have:E [f(J.l'fl)] = E [El [ ~( T ' V L ) ] . ; E [ x i ] ) ] E[f(r'V~)l = E [E1 [f(bi'~)] (Q,. . . ? Z L ) ] : E [f(bv71)] =E[EI [f(J'V~)](z,,...,z,)]~ where '' (resp. qsl) denotes the fluid (resp. quasi-stational?.) regime with respect to flow 1. Similar relations hold for the number of class-k flows. Using the independence of the rate processes. we deduce from Lemma 2 and the fact that (E[z,], . . . ~ E[z,]) sicz ( ~1 , . . . , z ~) 131 that for all increasing and convex functions f, all increasing functions g; and all k = 1,. ..~IC: E [f(l,Vil)] 5 E[f(bV~)l> E [dN&)] 5 E[s(~V~,L)I, 0-7803-8355-9/041$20.00 @ Z W IEEE.

  such that for any t < to: Since this inequality holds for any E > 0: we deduce:

	matrix (Sk), it follows from the strong law of large numbers	i=l
	B'(jt) -+ efiPSt, 3 when j -W. In particular, there exists for any sequence of A(jt) 2 ".Si j j initial states {N(Jj(O), u ( ~) ( O ) } ~ satisfying (16) a subsequence	it follows from the strong law of large numbers that: &(U) -D k ( U ) 5 Xfk(U,U) G'Ck( I t .)(U -.U)
	denoted by indices j '	
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APPENDIX A. Stobiiiiy condition

Pmof of Theorem I: We prove the result for Cox flow size distributions which are known to form a dense subset of the set of all distributions with non-negative support. Specifically! we assume that class-k flows have i.i.d. exponential sizes of mean l / p k > and generate a new class4 Bow with probability pkl when completed. By creating additional classes and dividing each random flow size into a random number of exponential phases. the model is then sufficiently general to cover a v flow size distribution. The total tratfic load is given by:

where X = (A,) is a row vector, I is the identity matrix.

and p = ( @ e ) . C = (Ck) are diagonal matrices. Similarly, we assume that the rate process R k t ( t ) is a function of a finite-state Markov process m k l ( t ) . By increasing the number of states, such a Markov process can approximate any stationary and ergodic process.

The stochastic process { N ( t ) , m ( t ) } where N ( t ) and u(t) denote the row vectors ( N e ( t ) ) and ( u k i ( t ) ) , k = 1,. . . , I < > i = 1,. . . ~ N k ( t ) , respectively, is an irreducible M&ov process. Define the workload at time t as:

we will pmve that the sequence of workload processes { I V ( J J ( L ) } , satisfies for any t < to:

As the workload defines a Lj-apunov function for the Markov process { X ( t ) . o ( t j } , the proof then follows from Foster's stability criterion We have:

0-7803-8355-9iO4/%20.W 82004 Em.

Similarly, using the independence of the rate processes, it follows from Lemma 2 and Lorentz inequality that:

We obtain (4) and ( 5 ) by applying successively the same reasoning to an abitraxy set of flows satisfying Assumption

1.

We now prove inequality (6). Let TL be the t h c spent by an arbitrary tlow in the slottcd system up to slot L. We prove exactly as in Lemma 2 that that for all increasing functions g, E1 [ g ( T L ) ] is a supermodular and convex function of (ZI, . . . , ZL). We deduce as above that:

where T(t) denotes the time spent by an ahitray flow in the non-sloned system up to time t. We obtain (6) by letting t tend to M.

2) Proof of Theorem 3: The proof is based on the following recent result by Hu & Pan [15] (a similar result had bccn uscd by Chang, Chao & pinedo [lo]). Leninia 3: Let {Z(t),t E B} be a process satisfving Assumption 2. For all integers R _ all ( q , . . . ~ rn) and (SI, . . . , s") such that T~ 5 SI and r; -' r -l 5 sis,-1 f o r i = 2 , . . . ,n. We give the proof of ( 10) and (11) only (the proof of (12) is then similar to that of (6)). Agais it is sufficient to prove these inequalities for a slotted system. Consider some ahitrary flow 1 satisfying Assumptions I and 2. Denote by y = Rl(t x j / L ) (resp.

= Rl(st x j / L ) ) the rate of flow 1 during slot j in the actual system (resp. when its rate process is accelerated by a factor s > 1). It follows from the independence of the rate processes, Leinmas 2 and 3, that for all increasing and convex functions J , all increasing functions 8. and all k = 1.. . . ~ K :

where refers to the system where the rate process of flow 1 is accelerated by a factor s. We obtain (IO) and (11) by applying successively the same reasoning to an arbitmy set of Bows satisfying Assumptions 1 and 2.