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Wireless Data Performance in Multi-Cell Scenarios

T. Bonald, S. Borstf, N. Hegde?, A. Proutiére*

ABSTRACT

The performance of wireless data systems has been exten-
sively studied in the context of a single base station. In the
present paper we investigate the flow-level performance in
networks with multiple base stations. We specifically exam-
ine the complex, dynamic interaction of the number of active
flows in the various cells introduced by the strong impact
of interference between neighboring base stations. For the
downlink data transmissions that we consider, lower service
rates caused by increased interference from neighboring base
stations result in longer delays and thus a higher number of
active flows. This in turn results in a longer duration of
interference on surrounding base stations, causing a strong
correlation between the activity states of the base stations.
Such a system can be modelled as a network of multi-class
processor-sharing queues, where the service rates for the var-
ious classes at each queue vary over time as governed by the
activity state of the other queues. The complex interac-
tion between the various queues renders an exact analysis
intractable in general. A simplified network with only one
class per queue reduces to a coupled-processors model, for
which there are few results, even in the case of two queues.
We thus derive bounds and approximations for key perfor-
mance metrics like the number of active flows, transfer de-
lays, and flow throughputs in the various cells. Importantly,
these bounds and approximations are insensitive, yielding
simple expressions, that render the detailed statistical char-
acteristics of the system largely irrelevant.
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1. INTRODUCTION

Next-generation wireless networks are expected to sup-
port a wide variety of high-speed data applications, in addi-
tion to conventional voice services and current low-bandwidth
data services such as short messaging. The integration of
these heterogeneous applications on a common transmis-
sion infrastructure raises similar challenges as in wireline
integrated networks. In wireless environments, these issues
are further exacerbated by interference problems, the in-
trinsically limited bandwidth, and the highly variable and
unpredictable propagation characteristics. Specifically, the
channel quality may vary widely among spatially distributed
users due to distance-related attenuation. In addition, the
channel conditions for a given user may vary dramatically
over time because of fading effects.

Wireless circuit-switched voice networks rely on power
control mechanisms for adjusting the transmit power to com-
pensate for the varying channel quality and maintain a fixed
transmission rate. Various data applications on the other
hand, such as file transfers and Web browsing sessions, are
less sensitive to packet-level delays, and do not have a strin-
gent rate requirement. Such elastic applications are well-
suited for rate control algorithms which dynamically adapt
the transmission rate over time so as to match the fluc-
tuations in the channel quality and available transmission
resources (transmit power and time slots). In addition, the
fraction of transmission resources allocated to the individ-
ual data users can be adapted as the number of active users
varies over time. In case the transmissions are ‘orthogonal’
(e.g. time sharing or power sharing with orthogonal code
words) and the available resources are constant over time
and evenly shared among the active data users, the flow-
level performance may be described by a Processor-Sharing
model, with the service requirements of the various users
normalized by their time-average transmission rates. No-
tably, the performance is then insensitive, in the sense that



the distribution of the number of active flows, the delays,
and the throughputs only depend on the statistical charac-
teristics of the system through easily calculated load factors.

The variations in the channel quality in fact open up the
possibility of scheduling the data transmissions to the var-
ious users when their instantaneous transmission rates are
relatively high [2, 5, 15, 16, 17]. While fading is consid-
ered to have a predominantly adverse impact for constant-
rate voice connections, it thus provides the opportunity to
achieve throughput gains for elastic data transfers. An im-
portant example of such a channel-aware scheduling policy
is the Proportional Fair algorithm for the CDMA 1xEV-DO
system [14]. In certain cases the flow-level performance of
the Proportional Fair algorithm may also be modeled by a
Processor-Sharing type queue, but with a state-dependent
service rate that accounts for the throughput gains from
channel-aware scheduling [6, 8].

All the above papers study scenarios with just a single iso-
lated base station (BS). In the present paper we investigate
the flow-level performance in data networks with multiple
BSs. We assume that the BSs transmit at full power as
long as there are any active users, and reduce the power
to zero otherwise. We further suppose that within each
cell the transmissions are orthogonal and that the avail-
able resources are shared in a fair manner among the ac-
tive users. Between cells, however, the transmissions do
interfere, and we explicitly take into account the complex,
dynamic interaction of the number of active flows in each
cell caused by the changing activity patterns of neighboring
BSs. The resulting model amounts to a network of multi-
class Processor-Sharing queues, where the service rates for
the various classes at each queue vary over time as governed
by the activity state of the other queues. The intricate cor-
relation among the various BSs renders an exact analysis
elusive in general. In the single-class case, the model re-
duces to a so-called coupled-processors model, which even
for two queues is barely tractable [11, 13], reflecting the
complexity of the model in general. Therefore, we focus on
the derivation of bounds and approximations.

We obtain two types of bounds: (i) the first-degree bounds
assume minimum and maximum interference incurred by the
cell under consideration itself; (ii) the second-degree bounds
assume minimum and maximum interference experienced by
the neighboring cells, but allow the cell under consideration
to be influenced by its neighbors. While the first-degree
bounds are relatively rough and can be explicitly computed,
the second-degree bounds are sharper, but correspond to a
Processor-Sharing queue in a time-varying environment, and
cannot be calculated analytically. In order to obtain closed-
form estimates for the latter type of bounds, we introduce
two limit regimes, termed fluid and quasi-stationary regime,
where the time-varying environment evolves on a very fast
and a very slow time scale, respectively. These two limit
regimes provide explicit formulas for the distribution of the
number of active flows, the mean transfer delays, and the
flow throughputs. Importantly, the performance in both
limit regimes is insensitive, and only depends on easily com-
puted load factors, thus yielding simple estimates that ren-
der the detailed traffic properties and propagation features
largely irrelevant. We will specifically consider lower bounds
for the number of active flows evaluated in the fluid regime
and upper bounds based on the quasi-stationary regime.
Some theoretical arguments as well as the numerical ex-

periments that we perform for various network topologies
indicate that the former tend to be optimistic, while the
latter tend to be conservative and quite often remarkably
sharp approximations.

The remainder of the paper is organized as follows. In
Section 2 we present a detailed model description. We col-
lect some useful preliminaries in Section 3. In Section 4 we
derive sample-path bounds for the number of active flows
in the various cells. In Section 5 we introduce the fluid
and quasi-stationary regimes mentioned above. We exam-
ine some stability issues in Section 6. In Section 7 we discuss
the numerical experiments that we conducted to illustrate
the results. In Section 8 we make some concluding remarks.

2. MODEL DESCRIPTION

We consider a network of BSs, indexed by the set A/. Each
BS provides service to data users in the corresponding cell
through a shared downlink.

Radio environmentin evaluating the flow-level perfor-
mance, it is useful to characterize the radio environment
in terms of feasible transmission rates of the various users.
By feasible rate, we mean the long-term transmission rate
that a user would receive if it were the only user in the cell.
The feasible rate for a given user depends on its channel
quality, which in turn depends on its relative location to the
serving BS in conjunction with the propagation character-
istics. Because of inter-cell interference, the channel quality
additionally depends on the relative position of the user to
neighboring BSs, and whether these surrounding BSs are
transmitting or not.

Rather than modeling these system-specific aspects ex-
plicitly, it will be convenient to introduce a class structure
to capture the dependence of the feasible rates on the propa-
gation characteristics, the network topology and the spatial
configuration of the users. The classes encapsulate these de-
tailed properties, and implicitly correspond to specific sub-
regions of the coverage area. Specifically, we assume that
the users in cell ¢ may be categorized into K; classes, and
denote by C; 4(k) the feasible rate of class-k users in cell i
when the set of active BSs is A C N. We will frequently
omit the index k and just write C; 4 when the class identity
is not essential.

We assume that the feasible rates satisfy a natural mono-
tonicity property: the larger the set of active BSs, and thus
the larger the inter-cell interference, the smaller the feasible
rate, i.e.,

ACB = Cia>C;p. (1)

In the definition of C; 4 it is immaterial whether or not cell ¢
is included in the set A, and it will be convenient to adopt
the convention C; 4 = C; augiy = Cia\{i}-

Traffic characteristics.Class-k flows arrive to cell i as a
Poisson process of rate A;(k). Each flow is associated with
a unique serving BS for its entire duration, and in partic-
ular we do not consider hand-offs between cells. Note that
hand-offs will tend to be rare for data transfers, since they
predominantly result from user mobility, which typically oc-
curs on a relatively slow time scale compared to a typical
flow duration. The flow sizes are independent and identically
distributed with mean o. (The results trivially extend to the
case where the flow sizes are also cell- and class-dependent.)



Radio resource sharingWe recall here that we consider
data traffic, which is not power-controlled, as is voice traffic,
but instead is rate-controlled. In particular, we assume that
the BSs operate at full power as long as there are any active
flows to serve, and use zero power otherwise. Within each
cell transmissions are orthogonal and the available radio re-
sources (time slots or transmit power) are evenly shared
among the active flows, obliviously of the instantaneous
channel conditions and the activity state of the neighbor-
ing BSs. Thus, when the set of active BSs is A and the
number of active flows in cell i is n;, the actual transmission
rate of class-k flows in cell i is

(k) /. (2)

The analysis may be generalized to the case where the ac-
tual transmission rate of class-k flows in cell ¢ is
Ci,4(k)Gi(ni)/ni. The function G;(-) may be interpreted
as a gain factor accounting for the throughput improve-
ments from channel-aware scheduling algorithms, which op-
portunistically allocate radio resources taking into account
the instantaneous channel conditions of the various users [2,
5, 8, 15].

REMARK 1. Since the nominal transmission rates in an
actual system are constrained to a discrete set, we consider
a finite number of user classes, i.e., K; < oo for alli € N.
Howewver, the results readily extend to a continuum of user
classes (corresponding to infinitesimally small subregions).

REMARK 2. In some current implementations such as the
CDMA 1zEV-DO system, the selection of the transmission
rate is not guided by the actual interference experienced on
the traffic channel, but rather based on the full interference
inferred from pilot channel measurements. However, the ef-
fectively received rate may still improve when interfering BSs
are inactive due to the use of so-called incremental redun-
dancy. This mechanism consists in transmitting packets in
a succession of slots until either the packet is successfully
decoded or a certain maximum number of slots is reached in
which case an error is declared. Although the selection of
the packet size is based on the measured interference on the
pilot channel, the expected number of required slots and the
probability of error mainly depend on the actual interference
encountered on the traffic channel.

REMARK 3. The need to explicitly distinguish between sev-
eral user classes arises from the fact that the feasible rates in
different locations are impacted by inter-cell interference in
a non-uniform manner. The latter property in fact provides
a potential incentive to allocate radio resources based on the
activity state of the neighboring BSs. For example, users
on the boundary of the cell are affected disproportionately
by inter-cell interference compared to users in the middle
of the cell. Thus, it pays to schedule users on the periph-
ery when few neighboring BSs are active, and schedule users
in the center when many surrounding BSs are active. Note
that the rationale behind such intra-cell scheduling strategies
is somewhat reminiscent of the objective of channel-aware
scheduling algorithms to exploit multi-user diversity caused
by independent fading.

REMARK 4. The actual data performance over wireless
links is also strongly affected by the interaction between the
TCP congestion control mechanism and the high latency and

high loss rates. The latter issue is beyond the scope of the
present paper, but has been widely studied in the literature,
where various approaches to improve the TCP performance
in wireless networks have been proposed, see for instance [3,

9.
3. PRELIMINARIES

The model described in the previous section corresponds
to a network of multi-class Processor-Sharing queues, where
the service rates for the various classes at each queue vary
over time as governed by activity state of the other queues.
The complex interaction between the various queues renders
an exact analysis impractical in general. In the single-class
case, i.e., K; = 1 for all i € N, the model reduces to a
so-called coupled-processors model. The latter model has
been studied in detail for the case of two queues. Fayolle
& lasnogorodski [13] showed that in the case of exponen-
tially distributed service times the analysis of the joint queue
length distribution may be formulated as a Riemann-Hilbert
problem. Boxma & Cohen [11] considered the case of gen-
erally distributed service times, and showed that the joint
workload distribution may be obtained as the solution to
a boundary value problem. For the case of more than two
queues, hardly any results are known [10].

The fact that even the single-class two-queue case is barely
tractable, testifies to the complexity of the model in general.
Therefore, we focus in the next sections on the derivation
of bounds and approximations. The numerical experiments
presented later indicate that the bounds and approximations
are quite often remarkably tight.

As mentioned above, the complexity of the model stems
from the fact that the service rate at each queue is time-
varying, depending on the activity state of the other queues.
In deriving the bounds and approximations, it will be con-
venient to consider a reference system for a cell in isolation
where the activity state of the other cells is fixed, so that
the service rates are fixed as well. Specifically, if the service
rates of class-k flows in cell ¢ are always C; 4(k), then the
cell in isolation behaves as a standard multi-class Processor-
Sharing system with load p; 4 = ZkK:ll pi,A(k), where
prak) = 27

Ci,a(k)

In particular, the reference system is stable if and only if
pi,A < 1, in which case the stationary distribution of the
number of active flows of the various classes is given by

w(ml,...,mm:(l—pi,m( iy me )sz e

Thus, the stationary distribution of the total number of
active flows is

mi,a(n) = (1 — pi,a)pia, (3)
and the mean number of active class-k flows is
pialk
Pi, A

Using Little’s law, we obtain that the mean class-k delay is

E[ni a(k)] _ o
Ai(k) (1= pi,a)Cia(k)’

E[Ti (k)] =



and the class-k flow throughput, defined as the ratio of the
mean flow size to the mean flow delay, is

Yi,a(k) = = (1= pi,a)Cialk). (5)

o

E[T;,a(F)]
4. PERFORMANCE BOUNDS

We now present some relatively simple lower and upper
bounds for the number of active flows in the various cells.
The bounds rely on the basic property that increasing or
decreasing the service rates in a given cell decreases or in-
creases the number of active flows in this cell, as formalized
in the next proposition. Let n;(t) be the number of active
flows in cell 7 at time ¢. Let A(t) be the set of active BSs at
time . Let n; (t) and n; (t) be the number of active flows
in two reference systems where the service rates of the users
in cell i are given by C; () and C;"(¢), respectively.

ProposiTION 1. If C7 (t) > C; a@) 2
then ny (t) < n;(t) < nif(t) for all t.

PROOF. The proof follows from (2) in combination with
sample-path arguments. []

C(t) for all t,

The above proposition provides a method for constructing
various bounds by making specific choices for C; (t) and

CF(t).

First-degree boundswe first derive rather crude bounds
for the number of active flows, obtained by assuming mini-
mum or maximum service rates in cell ¢, i.e., maximum or
minimum interference from other cells. Let n; 4(¢) be the
number of active flows in cell ¢ at time ¢ when the service
rates are always C; 4.

PROPOSITION 2. The number of active flows in cell i at
time t is larger (resp. smaller) than that obtained when the
service rates in cell i are always C; g and C; nr, respectively,
i.€e.,

nyp(t) <ni(t) <mnga(t), Vit

PROOF. Since § C A(t) C N at any time ¢, we deduce
from (1) that

Cio =2 Ciaw = Cin, Vit

The statement then follows from Proposition 1 by taking
C;(t)=C;p and G} (t) = Cip. O

K3

Second-degree bound®le now derive tighter bounds for
the number of active flows by assuming minimum or maxi-
mum service rates in the other cells j # 4, but allowing the
service rates in cell 7 itself to be influenced by the activity
state of the other cells.

Let n; ¢(t) and n; ,(t) be the number of active flows
in cell i at time ¢, assuming that the service rates in the
cells j # i are always Cj,g and Cj n, respectively. Let
Ag(t) = {7 € N\ {i} : njp(t) > 0} and An(t) = {j €
N\ {i} : nja(t) > 0} be the sets of active BSs at time ¢
when the service rates in the cells j # 7 are always C; ¢ and
Cj n, respectively. Noting that the cells j # ¢ then behave
independently, we have that the stationary distribution of
these sets is given by

PriAy(t) = B] = [[(1 = m50(0)) x [] 7,,0(0),

jEB JE€B

and

Pr[Anx(t) = B] = H(l -~ (0)) x H a0 (0),
JjeB J€B
for all B C AN\ {i}, with the convention m; 4(0) = 0 if
pj,A > 1.

PROPOSITION 3. The number of active flows in cell i at
time t is larger (resp. smaller) than that obtained when the
service rates in the cells j # i are always C; o and Cjn,
respectively, i.e.,

nip(t) < ni(t) <mia(t), V.

PRrROOF. Using Proposition 2 for all j # ¢, we find that
Ap(t) C A(t) C An(t) at any time ¢, and hence we deduce
from (1) that

Ciagt) = Ciawy 2 Cianw, Vt

The statement then follows from Proposition 1 by taking
C,; (t) = Ci,.A@(t) and Cj(t) = Ci,AN(t)' D

5. LIMITING REGIMES

The bounds derived in the previous section are much sim-
pler than the original performance measures since the actual
set of active BSs is replaced by a virtual set that evolves
independently of the number of active flows in the consid-
ered cell. The second-degree bounds are much finer than
the first-degree ones but intractable in general. The dif-
ficulty arises from the fact that the number of active flows
n; o(t) (resp. nj nr(t)) evolves like the number of customers in
a multi-class Processor-Sharing queue with correlated per-
class service rate variations, driven by a random environ-
ment described by the process Ay(t) (resp. Aa(t)). In this
section, we introduce approximations of the bounds based on
two limit regimes, termed fluid and quasi-stationary, where
the processes Ay (t) and An(t) evolve on an infinitely fast
and an infinitely slow time scale, respectively. Such approx-
imations turn out to be powerful in analyzing multi-class
Processor-Sharing systems (they were previously applied to
systems modeling the integration of streaming and data traf-
fic in wireline networks [12], and more recently to evaluate
the performance impact of user mobility in wireless data
systems [7]).

Here we consider an arbitrary stationary and ergodic pro-
cess A’(t) describing the evolution of the set of active BSs.
We assume this process is independent of the state of the
considered cell i. This process might, for example, repre-
sent Ay(t) or Anx(t). Consider now a family of systems,
parametrized by s € (0,00) and obtained by replacing the
process A’'(t) by A’(s x t). The parameter s represents the
speed of variations in the set of active BSs.

Quasi-stationary regimeThe quasi-stationary regime is
obtained when the speed of variations s tends to 0. In the
limit for s — 0, the set of active BSs is frozen to its initial
state. Thus the quasi-stationary regime corresponds to the
system where the set of active BSs is constant and equal to
B with probability Pr[A’(0) = B].

Assuming p; & < 1, we deduce from (3) the distribution
of the number of active flows in cell 7 in the quasi-stationary
regime:

mi(n) = E[mi_ar(n)] = E[(1 = pi ar)pi '],



where the expectation is taken with respect to the distribu-
tion of A’(0).
In view of (4), the mean number of active class-k flows is:

E[n® (k)] = E [M} .

' 1—pia
We deduce the class-k flow throughput:
Ai(k)o —17—1
a8 =——=E i A 1—piar .
Yi (k) E[n?s(k)} [(C’L,.A (k‘)( Pi, A )) }

For example, the class-k flow throughput in the quasi-stationary
regime of the upper bound of Proposition 3 is given by:
-1
a8} — HjeB\N’ Pi,N ngB(l - pij)
Yi ( )_ Z C. (1 — p; -1 )
= X(Cis(k)(1 = pi5))
N'CBCN\{i}

where N = {j e N'\ {i} : pj» > 1}.

Fluid regime. The fluid regime is obtained when the speed
of variations s tends to co. In the limit for s — oo, the set of
active BSs evolves so rapidly that each class-k flow in cell ¢
sees a constant feasible rate, equal to his mean feasible rate
E[C;, 4/ (k)]. Thus the fluid regime is the system where the
set of active BSs is constant and equal to E[.A’(0)].

The traffic load of cell ¢ in the fluid regime is given by:

_ Ai(k)o
P = 2 G ©

If pl! < 1, the distribution of the number of active flows is
then:

wim) = (=) (of)"

The mean number of active class-k flows is:

(k) Xi(k)o
Enf (k)] = 225D itk pi (k) = — K)o
e Ol= T e = e )
We deduce the class-k flow throughput:

k3

= E[C;, . (k)] (1 — p).

A question of importance is whether these quasi-stationary
and fluid regimes provide actual bounds for the performance
of the original system. From recent studies on single-class
Processor Sharing queues with time-varying capacity [12],
the performance in the quasi-stationary (resp. fluid) regime
is worse (resp. better) than that of the actual system. Thus
for any cell ¢ that contains a single class, the quasi-stationary
regime of the upper bound n; ar(t) is itself an upper bound
for the number of active flows in cell ¢, while the fluid regime
of the lower bound n; ¢(t) is itself a lower bound. It proves
extremely difficult to extend this result to multi-class cells.
The numerical results presented in Section 7 suggest how-
ever that the result still holds.

6. STABILITY CONDITION

We now examine the stability of the system. The follow-
ing stability condition is based on the first-degree bounds
derived in Section 4.

PROPOSITION 4. If pi v < 1, then cell i is stable.

PROOF. As p; & < 1 is the necessary and sufficient con-
dition for the stability of cell 7 in the reference system where
the set of active BSs is NV, the result is a direct consequence
of Proposition 2. [

The second-degree bounds provide a tighter stability con-
dition. As in Section 5, we first consider a virtual system
where the set of active BSs is given by an independent sta-
tionary and ergodic process A’(t). Let nj(t) be the number
of active flows in cell ¢ at time ¢ and pf the traffic load in
the fluid regime, given by (6). The following result can be
proved as Theorem 1 in [7].

LEMMA 1. If pf! < 1, then the stochastic process n;(t) is
stable.

Let pﬁ A be the load of the second-degree upper bound in
the fluid regime:

_ Xi(k)o
i = Z,C E[Cian (B)]'

Using Lemma 1 and Proposition 3, we immediately obtain:
PropoSITION 5. If p‘iN < 1, then cell i is stable.

Note that Proposition 5 is stronger than Proposition 4
since:

f )\i (k)a
PiN < T PN
WS & Gl
REMARK 5. The sufficient stability conditions of Propo-
sitions 4 and 5 have their natural counterpart in the form
of necessary conditions, but these are likely to be loose in
practice.

It follows from Proposition 5 that a sufficient condition
for the stability of the overall network is:

VieN, piy<l

For a two-cell network, it may be verified that this condi-
tion is in fact also necessary. In the case of a single class
per cell, this follows from the stability condition of a two-
processor coupled system [11]. It proves extremely difficult
to derive the exact stability condition when the network con-
tains more than two cells. This may notably be explained
by the fact that the stability condition does generally de-
pend on the flow size distribution. Consider a network of
three cells for instance, with a very large number of active
flows in one cell and a small number of active flows in the
other two cells. The mean service rate of active flows in
the “full” cell depends on the steady state of the other two
cells, which is indeed sensitive to the flow size distribution
(the two cells behave as a two-processor coupled system).
Thus the stability condition is itself sensitive. We can give
a general necessary stability condition, however.

PROPOSITION 6. If the network is stable, then there is at
least one cell i such that p; n < 1.

PROOF. Assume that p;» > 1 for all cells j. Starting
from any initial state where the set of active BSs A(0) is the
entire set NV, i.e., all cells have at least one active flow, the
number of active flows in cell ¢ behaves independently of the
number of active flows in other cells as long as A(t) = N.



Specifically, the number of active flows in cell ¢ evolves like
the number of customers in a multi-class Processor-Sharing
queue of load p; ar (cf. Section 3). As p;ar > 1, there is
a positive probability that this queue never empties. Since
the number of cells is finite, there is a positive probability
that no cell empties. The system is unstable. []

In view of Propositions 4-6, we deduce the stability condi-
tion of networks with homogeneous loads, i.e., such that the
traffic load p; o of cell ¢ when other cells are always active is
the same for all 7. In this case, the necessary and sufficient
stability condition simply reads:

VieN, pin <L

Such homogeneous networks may represent regular topolo-
gies (like hexagonal networks) with uniform traffic distribu-
tion, or networks with non-regular topologies but planned in
such a way that large cells cover areas with lower traffic den-
sity, which is indeed the case in well-engineered networks.

7. NUMERICAL RESULTS

The results of the previous sections hold in quite general
settings. In this section we make some specific assumptions
in order to conduct numerical experiments. In particular,
we consider a set of feasible rates in line with the High Data
Rate (HDR) standard [5, 14] which underlies the CDMA
1xEV-DO system. These results can, however, be easily
extended to UMTS HSDPA as well.

7.1 Experimental setting

Radio environmentAs mentioned in Section 2, the fea-
sible rate of a user depends on his position and the set of
active BSs through his signal-to-noise-and-interference ratio
(SNR). As mentioned above, we will consider a discrete set
of rates as defined in the HDR standard. Table 1 shows
the typical SNR requirements for the various rates at a one
percent frame-error rate based on AWGN channel assump-
tions [5]. This table also lists the corresponding Ey/No
values. Note that the target Ey/Ny values are approxi-
mately constant for all data rates except the three highest
rates. For convenience, we assume a constant E,/No tar-
get of 2.5 dB for the numerical experiments, thus linearizing
the SNR thresholds. Since the users with the highest data
rates are least demanding of transmission resources, it is rea-
sonable to expect that slightly altering their target Ep/No
values should not drastically affect the overall performance
characteristics of the system.

The SNR of a user is in turn a function of his position and
the interference from active BSs, as follows:

SNR; =
A (u) 7T hoa(w)

where P;(u) is the power received at position w from the
serving BS 4, n is the background noise, and I; 4(u) is the
interference caused by the set of active BSs A. The received
power P;(u) includes signal attenuation due to fading and
path loss. We do not consider fading effects in this paper.
The received power then is given by P;(u) = PT';(u), where
P is the power transmitted by a BS, assumed to be the max-
imum transmit power and identical for all BSs, and T';(u) is
the path loss function. Following standard models, the path

Rate ¢, | SNR | Ey/No
v kb/s dB dB
0 | 2457.6 9.5 | 6.49
1| 1843.2 7.2 | 5.44
2 | 1228.8 3.0 | 3.00
3 921.6 1.3 | 2.55
4 614.4 -1.0 | 2.01
5 307.2 -4.0 | 2.02
6 204.8 -5.7 | 2.08
7 153.6 -6.5 | 2.53
8 102.6 -8.5 | 2.28
9 76.8 -9.5 | 2.54
10 38.4 -12.5 | 2.55

Table 1: Feasible rates in HDR systems.

loss function is given by:

o) =4 7 o
©={ (st

where € is a reference distance very close to BS i where
full power is received, d(i, u) is the distance from position u
to BS i, and « is the path loss exponent. The path loss
exponent depends on the propagation environment, and has
typical values between 2 and 5. The interference term is
given by:

if d(i,u) < e,

otherwise,

(7)

Lia(u)="P E L'j(u).
i
FES

Network topology.We will consider two types of networks:
linear networks with equidistant BSs placed on a line, and
regular hexagonal networks as shown in Figure 2. For the
latter type of networks, we further distinguish between cells
with omni-directional antennas, referred to as omni-cells
here, as shown in Figure 2 and sectored cells as shown in
Figure 11. We first consider omni-cells, and sectored cells
will be discussed further at the end of this section. R de-
notes the farthest distance covered by a BS, so that for linear
networks, the distance between adjacent BSs is 2R and for
hexagonal networks, cells are regular hexagons with sides of
length R and the distance between neighboring BSs is v/3R.
Note that the framework of our model is general enough to
allow for different sized or shaped cells. For greater trans-
parency we provide here examples of how this model can be
used for certain symmetric topologies.

Linear networks as shown in Figure 1 model highway or
street scenarios and users are placed on a line on either side
of the BS. In hexagonal networks as shown in Figure 2, users
are placed on the plane. A user’s position is represented in
polar coordinates by (r,0), with a reference BS at (0,0).
For linear networks, # = 0 and 6 = II correspond to the two
sides of a BS.

A A A

2R

Figure 1: BSs on a line.
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Figure 2: Hexagonal network.

Discrete rates and classe8ecall that the feasible rate
of a user is dependent on his position as well as the set of
active BSs. For a given set of active BSs then, the cell can
be partitioned into regions such that all users in a given
region have identical feasible rates. Denote 1, 4(0) to be
the farthest distance from the BS where a rate of ¢, can be
achieved with the set of active BSs A, along the angle 6 from
the BS. For a linear network 6§ = 0 or II and 7, 4(-) < R.
When A = ( this results in symmetric spacings of r, on
either side, and similarly for A = N. The sizes and num-
ber of these regions change with the set A, as shown in
Figure 3, with the normalization rg9(-) = 1. We will as-
sume throughout this section that inter-cell interference is
due only to direct neighbors. This approximation is quite
common, and is reasonable given the fall-off in path loss with
distance under the power-law decay assumed in (7). For a
cell with normalized radius R = 3 and path loss exponent
a = 2, Figure 3 shows the regions of possible feasible rates
for all four possible sets of active BSs. The words ON and
OFF on each side of the cell in Figure 3 denote the activity
of the BS on that respective side. We observe that for a
user near 7 = 1.5, the rate is reduced from 1228.8 kb/s to
921.6 kb/s as the active set changes from no neighbor being
active to both being active. For a similar change in active
set, a user near r = 1.9 experiences a feasible rate reduced in
half from 614.4 kb/s to 307.2 kb/s. The effect of inter-cell
interference is to shrink all regions toward the BS. Thus,
changes in feasible rates are considerable for certain posi-
tions, especially users who are close to the edge of the cell,
with lower data rates. These users are the most demanding
on the transmission resources and are affected the most by
the rate changes. Such rate changes, therefore, are expected
to have a significant impact on the flow-level performance.

4321 o & o
F on
b on
¢ OFF

- OFF

Figure 3: Impact of interference on feasible rates in
a linear network (R =3, o =2).

In hexagonal networks, due to the hexagonal shape of

the cells, 7,,4(0) < % where 8 = 0 mod I1/3.

When A = () the regions with identical feasible rates form

concentric rings around the BS. Figure 4 shows how these re-
gions change with respect to A, normalized with ro¢(-) = 1.
As the set of active BSs, A, changes from §), no interference,
to {1,2,3,4,5,6}, interference from all direct neighbors, the
rings shrink considerably and feasible rates at positions away
from the center change significantly. For example, a user
at 7 = 2.5,0 = 0 has a feasible rate of 307.2 kb/s when
no other BS is active, and the feasible rate is halved to
153.6 kb/s when all direct neighbors are active. For a user
at r = 2.8,0 = 0, a similar change in A reduces the feasible
rate to a third, from 307.2 kb/s to 102.6 kb/s.

A={}

Figure 4: Impact of interference on feasible rates in
a hexagonal network with omni-cells (R =3, a = 2).

A={4,5,6}

The class structure described in Section 2 corresponds to
subregions of the cell based on the feasible rate and varia-
tions in this rate due to changes in inter-cell interference.
The regions described above are specific to a given set of ac-
tive BSs. When the set of active BSs is not static, users may
belong to different regions as their feasible rates change. We
create user classes then, by partitioning the cell into subre-
gions where feasible rates and their variations are identical.
Two users belonging to the same class will thus have iden-
tical feasible rates for any set of active BSs.

Traffic characteristicsS.We assume that data flows arrive
according to a Poisson process of rate A; in cell 4, and that
the arrivals are uniformly distributed throughout the cell.
Under this assumption and the definition of classes above,
the arrival rate of class-k data flows is \;(k) = X;Si(k)/S:,
where S;(k) is the surface of the subregion k and S; is the
surface of cell . The concept of surface corresponds to seg-
ments in linear networks and to areas in hexagonal networks.

7.2 Flow-level performance

We study flow-level performance through flow through-
put as defined by (5) for some class-k flows as well as for
an arbitrary flow in a given cell. We present throughput
results of the first-degree bounds presented in Section 4
and the appropriate regimes of the second-degree bounds
of Section 5, and compare these to simulation results. The



second-degree bounds for performance shown are the quasi-
stationary regime of the lower bound and the fluid regime
of the upper bound. The numerical results will show that
the regimes of these second-degree bounds are indeed quite
tight. Note that the lower and upper bounds for perfor-
mance presented here correspond to the upper and lower
bounds, respectively, for the number of active flows consid-
ered in Sections 4 and 5. The simulations are performed
for exponentially distributed flow sizes. We will, however,
also present a case of hyperexponential flow sizes in order
to study how sensitive the throughput is to the flow size
distribution.

For throughput results for an arbitrary flow, we will con-
sider two cases of load for each network topology: homo-
geneous load among all cells and heterogeneous load where
the load of all cells except the reference cell is always set
to 0.8. Results are plotted for varying load, p; ar, and it is
this notion of load that we will refer to as load for the rest
of this section. Values for the parameters n, P, and € are
normalized such that rq ¢(-) = 1.

Linear networks.Figures 5 and 6 show throughput of an
arbitrary flow in a linear network with homogeneous and
heterogeneous load, respectively. A linear network was sim-
ulated as a ring of cells as opposed to a line in order to
avoid the effects of cells on the edge. It has been shown in
Section 6 that the system is unstable for p; o+ > 1 for ho-
mogeneous networks. We observe this in Figure 5 where the
flow throughput of the actual system is zero for p; v > 1. In
Figure 6 the throughput of the actual system is above zero
past this point because the load in the neighboring cells is
less than one. For both cases of load shown here, the first-
degree bounds are not too rough because each cell has only
two direct interferers. The second-degree bounds are quite
tight and the quasi-stationary regime of the lower bounds
serves as a good conservative approximation. Note that the
duration of a file transfer tends to be fairly small relative
to the idle or busy period of a BS, as is well captured by
the quasi-stationary regime. Indeed, this has been found for
simpler models in a time-varying environment [12], and ap-
parently remains true in the more complicated model under
consideration here.
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Figure 5: Throughput of an arbitrary flow in a linear
network with homogeneous load (R = 1.5, o =4).
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Figure 6: Throughput of an arbitrary flow in a linear
network with heterogeneous load (R = 1.5, a =4).

Figure 7 shows flow throughput for five arbitrarily chosen
classes in a linear network with homogeneous load. These
five classes correspond, respectively, to the subregions sur-
rounding the points at distances of 0.8, 1.0, 1.2, 1.4, and 1.5
from the BS, which has a coverage distance of R = 1.5. The
throughput of flows is higher for users closer to the BS. The
quasi-stationary regime of the lower bound is shown again
to be an excellent approximation.
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Figure 7: Per-class flow throughput in a linear net-
work with homogeneous load (R = 1.5, o =4).

We now consider different flow size distributions in or-
der to study the sensitivity of flow size distribution to flow
throughput. In particular we consider increasingly variable
flow sizes, characterized by a hyperexponential distribution
defined as follows:

Prioc > z] = aexp A ipr

Such a distribution corresponds to a fraction a/(a + 1) of
small flows of size E[o]/a and a fraction 1/(a + 1) of large
flows of size aE[o] and the variance in flow sizes increases
with the parameter a. Figure 8 shows results of simulations



with hyperexponential flow sizes with a = 5,10, and 50,
along with results of exponential flow sizes and the bounds.
We observe that the system is fairly insensitive to the flow
size distribution. It has been suggested in Section 6 that
the stability condition is indeed sensitive to the flow size
distribution. The fluid and quasi-stationary regimes of the
bounds, however, are insensitive. The closeness of these
bounds suggests that the performance may be relatively in-
sensitive, as shown in the numerical results. For the rest of
this paper we will continue with exponentially distributed
flow sizes.
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Figure 8: Throughput of an arbitrary flow with
hyperexponential distribution with varying param-
eter a, in a linear network with heterogeneous load
(R=1.5, a=4).

Hexagonal networks: omni-cell&igures 9 and 10 plot
flow throughput for a hexagonal network of omni-cells with
homogeneous and heterogeneous load, respectively. A hexag-
onal network is simulated with 19 cells on a plane in the
pattern shown in Figure 2. In order to reduce the run time
and computational complexity for the simulations, the BSs
on the outer ring are set to be always active. We have per-
formed simulations not presented here in which the BSs on
the outer ring were set to be always idle, and simulations of a
37-cell network with the outer ring of BSs always active. In
comparison with simulations of the 37-cell network, we find
our original set-up of 19 cells with outer BSs always active
to be sufficiently close and we continue with this set-up for
further simulations of hexagonal networks with omni-cells.
Note that we are interested in the flow performance in the
reference cell at the center of such a network. The effect of
the outer ring of BS is thus quite small for this reference
cell, under the power-law decay assumed in (7).

The reference cell has six direct neighbors, and thus the
difference between no direct neighbor being active to all such
neighbors being active can be quite substantial, compared
to linear networks with similar-sized cells. This effect would
explain the relatively loose first-degree bounds in Figures 9
and 10. The second-degree bounds, especially the quasi-
stationary regime of the lower bound are, however, remark-
ably close to the simulation results for p; < 1, which is
a reasonable operating regime. Note that we show here re-
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Figure 9: Throughput of an arbitrary flow in a
hexagonal network with homogeneous load (R =
1.5, a =4).
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Figure 10: Throughput of an arbitrary flow in ref-
erence cell ¢ in a hexagonal network with heteroge-
neous load (R = 1.5, o =4).

sults for R = 1.5, which may be quite small for hexago-
nal networks that are typically deployed in rural areas. As
we increase R to be more realistic with rural scenarios, the
bounds are closer because of the reduced effect of interfer-
ence in larger cells. We point out, however, that for similar-
sized cells, a larger number of interfering BSs leads to looser
first-degree bounds.

Hexagonal networks: sectorsve have assumed above
that cells have omni-directional antennas. In practice, cells
are typically divided into sectors, with a directional antenna
in each sector. Configurations for such network topologies
differ in the number of sectors per cell (ranging from two
to six) and the orientation of the directional antennas with
respect to neighboring cells. We will show here an example
of a symmetric network topology of cells with three 120°
sectors each, oriented in a symmetric fashion, as shown in
Figure 11.



Figure 11: Hexagonal network with 120° sectors in
each cell.

The power received at position u from sector i, P;(u),
now includes signal attenuation as a function of the angle
from the center beam of the transmitting directional an-
tenna. The received power at position (r,6) is now given
by Pi(r,0) = PL;(r)H;(0) where H;(0) depends on the an-
tenna pattern. The signal attenuation due to angle separa-
tion from the center beam of the antenna can be reasonably
estimated by [1]:

12 2
H;(0) = 107D/1°  H,(9) = — min {12 ( 0 ) , Hm} ,

0;,34B

where 0’ is the angle separation from the user and the center
beam of the antenna at sector ¢, 6; 34 is the horizontal
beam width of antenna i (typically 70° for 120° sectors),
and H,, = 20 dB is the maximum loss.

Due to these directional antennas, a user in a given sector
may experience lower interference, as compared to the net-
work with omni-directional antennas. In the topology given
in Figure 11, for a user in reference sector Oa, sectors 1c and
2b are primary interferers, while sectors 3b, 4a, 5a, and 6¢
are secondary interferers. Figure 12 shows the effect of the
activity of these interfering sectors on the feasible rate re-
gions in the reference sector Oa. For these results, we make
an approximation by assuming that H;(0) = 1 if 8’ > 60°,
thus ignoring interference from other sectors of the same

A={} A={1c,2b,3b,4a,5a,6¢}

D &)

A={1c,2b} A={3b,4a,5a,6c}

Figure 12: Impact of interference on feasible rates
in a sectored hexagonal network (R =2, a = 2).

Figures 13 and 14 show throughput of an arbitrary flow
in sectored hexagonal networks with homogeneous and het-

erogeneous loads, respectively. We use the topology shown
in Figure 11 and assume that interference is due only to pri-
mary interferers, thus only sectors lc and 2b interfere with
transmissions in sector Oa. We observe that in compari-
son with hexagonal networks of omni-cells, the first-degree
bounds are close, due to fewer interferers. As seen in other
results presented so far, the quasi-stationary regime of the
lower bound is a very good approximation.
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Figure 13: Throughput of an arbitrary flow in a
sectored hexagonal network with homogeneous load
(R=15, a=3).

0.6 - T T T T T T
1-d lower bound ——
QS of 2-d lower bound -------
05 L FL of 2-d upper bound -------- |
Bl 1-d upper bound -
R - Simulation  +
w St
8 IS - .
s o4
5 Dt . .
o S
S 03 . e
=] S
[ K h
s
E 0.2 | B
L. N
01 fF N
N )
0 1 1 1 1 N L
0 0.2 0.4 0.6 0.8 1 1.2

Load

Figure 14: Throughput of an arbitrary flow in a sec-
tored hexagonal network with heterogeneous load
(R=1.5, a=3).

8. CONCLUSION

We have modeled networks of multiple BSs, including
the complex interactions of their activity periods through
mutual interference. We derived first-degree bounds by as-
suming maximum and minimum interference in the cell un-
der consideration. We also obtained closer bounds in the
form of quasi-stationary and fluid regimes of second-degree
bounds which assume maximum and minimum interference



in neighbors of the reference cell. Numerical experiments
for regular network topologies showed that these bounds
are indeed quite close, and further demonstrated that the
quasi-stationary regime of the lower bound for performance
is an extremely accurate approximation. The results high-
light the importance of capturing the dynamic activity pat-
terns of neighboring BSs. Models of a BS in isolation as
considered in most previous work basically correspond to
the first-degree bounds, which only provide a very rough
approximation, at best.

The observation that the lower bound for performance
is so tight, especially in hexagonal networks, may be ex-
plained as follows. In a system with strong interactions be-
tween the activity periods of the BSs, there is a tendency
toward synchronization among the BSs. For example, when
its neighboring BSs are active, a BS would serve its users
at lower rates, thus causing it to stay active also, as its
neighbors. Similarly, when the neighboring BSs are inac-
tive, users enjoy higher rates, allowing flows to be served
quicker, thus enabling the BS to return to an inactive state,
as its neighbors. This coupling effect is stronger when there
are more neighbors, as in hexagonal networks, as well as
at higher loads. Recall that the lower bound assumes the
neighbors of the reference cell or their neighbors to be always
on. Thus, in an active cell users are served at a rate that
assumes that the neighbors are also on, reflecting the above
coupling of BSs. At the upper bound however, an active
BS serves its users assuming the neighbors are all off, so the
synchronization between the activity states of the BSs is not
captured. Therefore the lower bound reflects this coalescing
phenomenon better than the upper bound, which explains
why the lower bound provides a more accurate approxima-
tion, especially at higher loads where the coupling effect is
more pronounced.

It is worth recalling that we assumed that the BSs always
transmit at full power when there are any active users. We
further supposed that the transmission resources are shared
in a fair manner among the active users, regardless of the
activity state of neighboring BSs. In principle, the through-
put may be improved by scheduling the transmissions to the
various users based on the activity state of interfering BSs.
For example, Figures 3, 4 and 12 indicate that edge users ex-
perience a strong increase in feasible rates when neighboring
BSs are idle. This suggests that their throughputs may be
increased by scheduling such users when the corresponding
BSs are inactive. (Note that this form of scheduling requires
not only that the activity state of neighboring BSs is known,
but also that the locations of active users are known. Such
information might be available in future wireless networks.)
Further throughput gains may be obtained by coordinat-
ing the activity patterns of adjacent BSs and adjusting the
transmit powers based on the configuration of active users.
The throughput benefits from such intra-cell and inter-cell
scheduling strategies in a static context have been explored
in [4]. The above options provide useful instruments to en-
hance performance in a dynamic context as well, although
wedded with potential pitfalls and challenging implementa-
tion issues. We leave these as interesting avenues for further
research.
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