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Flow-level Stability of Utility-Based Allocations
for Non-Convex Rate Regions

T. Bonald and A. Proutière
France Telecom R&D / Ecole Normale Supérieure, Paris

Abstract— We investigate the stability of utility-maximizing
allocations in networks with arbitrary rate regions. We consider
a dynamic setting where users randomly generate data flows
according to some exogenous traffic processes. Network stability
is then defined as the ergodicity of the process describing the
number of active flows. When the rate region is convex, the
stability region is known to coincide with the rate region,
independently of the considered utility function. We show that
for non-convex rate regions, the choice of the utility function is
crucial to ensure maximum stability. The results are illustrated on
the simple case of a wireless network consisting of two interacting
base stations.

Index Terms— Resource allocation, maximum stability.

I. INTRODUCTION

Designing fair and efficient resource allocations is a central
issue in data networks. Since the seminal work of Kelly [8],
optimization approaches have been extensively used to this
end: an allocation is said to be optimal if it maximizes the
overall “utility” of the set of active data flows.

Formally, consider a network whose resources are shared by
a set of data flows. We identify each flow through its “class”,
which defines the resources it requires for the transfer of its
packets. There is an arbitrary set of K flow classes. Denote
by x = (x1, . . . , xK) the number of active flows of each class
and by φ = (φ1, . . . , φK) the total long-term throughput of
each class, i.e., the throughput of each class-k flow is φk/xk.
Now given some increasing and strictly concave function U
representing the utility of a flow as a function of its throughput,
an allocation maximizes the overall network utility in state x
if φ solves the optimization problem:

max
∑

k

xkU(φk/xk), subject to φ ∈ R, (1)

where R is some compact subset of R
K
+ representing the rate

region, that is the set of all vectors of achievable throughputs.
The allocation is unique if the rate region R is convex. Usual
allocations are the α-fair allocations [14] based on the utility
functions Uα(.) = (.)1−α/(1 − α) for all α > 0, α 6= 1,
and U1(.) = log(.). The parameter α measures the degree of
fairness of the allocation [15]: the total throughput tends to be
maximized when α → 0 but the allocation is then very unfair;
α = 1 gives proportional fairness [8]; α = 2 corresponds to
the minimum potential delay allocation [12]; the limiting case
α → ∞ leads to the most fair allocation, namely max-min
fairness [3].

The main advantage of optimization approaches is that
standard decomposition techniques lead to congestion control

algorithms that realize the corresponding allocations in a
decentralized way [8],[10],[14]. Most studies in this field
of research consist in analyzing the performance of these
algorithms at packet level, assuming a fixed number of active
flows. In pratice, data flows do not last for ever but arrive at
random times and leave the network once the last packet of
the corresponding document has been received. This results in
a dynamic number of active flows. A key requirement for an
allocation is to ensure maximum stability at flow level in the
sense that the number of active flows remains finite for the
highest traffic intensity.

In the following, we assume that class-k flows are generated
according to a Poisson process of intensity λk and have
i.i.d. exponential sizes of mean σk bits1; the corresponding
traffic intensity is ρk = λkσk bit/s. We are interested in the
stability region of utility-based allocations, that is the largest
set of vectors ρ = (ρ1, . . . , ρK) such that the network is
stable. This issue has so far been addressed for convex rate
regions only. The stability region then coincides with the rate
region, independently of the considered utility function (see
below). We here consider an arbitrary rate region (possibly
discrete) and show that the stability region is generally larger
than the rate region and depends on the considered allocation.
Specifically, we prove that:

• the maximum stability region is the smallest convex,
coordinate convex set containing R;

• the stability region of an α-fair allocation depends on α:
it is maximum when α → 0 and minimum when α → ∞.
In particular, the most fair allocations cannot guarantee
maximum stability.

We illustrate the results on the simple case of a wireless
network consisting of two interacting base stations, whose rate
region is naturally non-convex.

Notation: For any S ⊂ R
K , we denote by S̆ the largest

open subset of S and by S̄ the smallest convex, coordinate-
convex set containing S (see below for a discrete set S).

S̄

S

1These technical assumptions allow us to describe the network state x as a
Markov process; the results remain valid for more realistic traffic assumptions
but require a much more complex proof, cf. [11].
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II. CONVEX RATE REGIONS

We first recall stability results for convex rate regions2. A
typical example is the rate region of a wireline network. The
class of a flow is then defined by the set of links on its route
through the network. The rate region R is the polytope of
vectors φ such that φA ≤ C, where A is the routing matrix
(Akl = 1 if class-k flows go through link l, Akl = 0 otherwise)
and C is the vector of link capacities. Many other examples
leading to convex rate regions are presented in [6].

The flow-level stability of utility-based allocations was
investigated for wireline networks in [16],[5],[17] and for
any convex rate region in [6]. The results are derived under
the so-called time-scale separation assumption: the congestion
control algorithms converge so fast compared to the flow-level
dynamics that the allocation φ can be assumed to be given by
(1) at any time. Recently, the stability analysis was extended
to scenarios where the time-scale separation assumption does
not hold [9]. The following theorem summarizes the above
mentioned stability results in the context of α-fair allocations.

Theorem 1: For any convex rate region, the maximum
stability region is equal to the rate region and is achieved
by all α-fair allocations.

It is worth noting that the stability region does not depend
on the fairness parameter α that characterizes the allocation,
provided α > 0. When α = 0, the allocation (which is not
unique) maximizes the total throughput but does not ensure
maximum stability [5]. This is due to the fact that those
flows that consume less resources are naturally given priority,
leading to the starvation of other flows. The stability region is
then strictly included in the rate region.

III. MAXIMUM STABILITY FOR ARBITRARY RATE REGIONS

We now consider an arbitrary rate region. Wireless networks
where base stations interact through interference typically have
non-convex rate regions, see Section V. A first issue is to
determine the maximum stability region, that is the set of
traffic vectors ρ such that there exists an allocation stabilizing
the network.

Theorem 2: For an arbitrary rate region R, the maximum
stability region is R̄.

Proof. If ρ 6∈ R̄, we proved in [6] that the network is unstable
for any allocation. Now assume that ρ belongs to the largest
open subset of R̄. An allocation that stabilizes the network is
given by the so-called MaxProjection policy [2]: for any state
x, φ solves the optimization problem

max〈x, φ〉, subject to φ ∈ R,

where 〈., .〉 is the usual scalar product on R
K . 2

The rest of the paper is devoted to the stability analysis of
α-fair allocations. Due to space limitations, we consider the

2In all the paper, we assume without loss of generality that the rate region
is coordinate-convex (if the rate region contains two distinct points A,B such
that A ≤ B component-wise, A is never scheduled).

case of K = 2 classes only. This simple scenario is sufficient
to illustrate the sensitivity of the stability region to the fairness
parameter α. The case of K = 3 or more classes is briefly
discussed in Section VI.

IV. A NETWORK WITH TWO CLASSES

A. A discrete rate region

We first consider the case where the rate region R consists
of a finite set of n points A1, A2, . . . , An in R

2
+, for some

n ≥ 2. Since the rate region is assumed to be coordinate-
convex, we can order these n points from left to right and
from top to bottom in the sense that for all i = 1, . . . , n − 1,

Ai
1 < Ai+1

1 and Ai
2 > Ai+1

2 . (2)

This is illustrated in Figure 1(a) for a discrete rate region of
n = 4 points.

A4

A3A2

A1

d1
= d2

d3

C4

(b)(a)

φ1 x1

C1

C3

φ2 x2

Fig. 1. (a) A discrete rate region (b) The corresponding cones associated
with some α-fair allocation (note that A2 is not scheduled in this example).

In view of (1), the α-fair allocation schedules in state x =
(x1, x2) a point Aj that maximizes3:

xα
1

(Aj
1)

1−α

1− α
+ xα

2

(Aj
2)

1−α

1 − α
, j = 1, . . . , n. (3)

Define for all i 6= j:

si,j
α =

(

(Aj
2)

1−α − (Ai
2)

1−α

(Ai
1)

1−α − (Aj
1)

1−α

)1/α

. (4)

This expression, that belongs to R+∪{∞}, gives the direction
of the switching line between the scheduling points Ai and Aj .
Specifically, the inequality:

xα
1

(Ai
1)

1−α

1 − α
+ xα

2

(Ai
2)

1−α

1 − α
≥ xα

1

(Aj
1)

1−α

1 − α
+ xα

2

(Aj
2)

1−α

1 − α

is satisfied in state x = (x1, x2) for some i < j if and
only if x1 ≤ si,j

α x2. In particular, there exists a set of n
cones C1, . . . , Cn covering R

2
+ such that point Ai is scheduled

when x ∈ C̆i. These cones are ordered from left to right
(equivalently, from top to bottom) in the sense that a line
parallel to the x1-axis crosses cones C1, . . . , Cn in that order
when x1 goes from 0 to ∞, cf. Figure 1(b).

Let di be the direction of the boundary between cones C i

and Ci+1, for all i = 1, . . . , n − 1. This is the tangent of the
angle between the line Ci ∩ Ci+1 and the x2-axis. We have:

d1 ≤ d2 ≤ . . . ≤ dn−1.

3In this and subsequent expressions, the function (.)1−α/(1 − α) is
replaced by log(.) for α = 1.
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These n − 1 directions, that characterize the allocation, are
given by the following algorithm:

i = 1;
while i < n do

l = arg minj=i+1,...,n si,j
α ;

for m = i to l − 1, dm = si,l
α ;

i = l;

This algorithm leads to a unique solution in view of the
following result. In particular, l may be arbitrarily chosen
among those indices j that minimize si,j

α .

Proposition 1: The algorithm gives a unique sequence of
non-decreasing numbers d1, . . . , dn−1.

Proof. We first show that the sequence is non-decreasing. If
di < di−1 for some i ∈ {2, . . . , n−1}, there exists some a < i
such that di−1 = sa,i

α and some b > i such that di = si,b
α . Since

si,b
α < sa,i

α , it follows easily from (4) that sa,b
α < sa,i

α . But this
contradicts the fact that:

sa,i
α = di−1 = min

j=a+1,...,n
sa,j

α .

We now prove that the sequence is unique. If for some i,
the set of indices j > i that minimize si,j

α is not unique, let b
be the largest such index. We shall prove that:

di = db−1 and db = min
j=b+1,...,n

sb,j
α . (5)

Note that, since the sequence d1, . . . , dn−1 is non-decreasing,
this implies that di = di+1 = . . . = db−1: the sequence does
not depend on the choice of the index j > i that minimizes
si,j

α . Denote by a this index. If a = b, (5) directly follows
from the algorithm. Now assume that a < b. Since si,a

α = si,b
α ,

it follows from (4) that sa,b
α = si,a

α . Thus da ≤ di. Since the
sequence d1, . . . , dn−1 is non-decreasing, we get da = di. In
particular,

sa,b
α = da = min

j=a+1,...,n
sa,j

α .

Note that b is the largest index j > a that minimizes sa,j
α . If

sa,c
α = sa,b

α for some c > b, it indeed follows from (4) and
the equality sa,c

α = si,a
α that si,c

α = si,a
α , which contradicts the

fact that b is the largest indice j > i that minimizes si,j
α . Now

if b is the only index j > a that minimizes sa,j
α , (5) follows

from the algorithm. Otherwise, we apply the same argument
as above until b is the only minimizing index. 2

As proved in Theorem 3 below, the stability region is
entirely determined by the set of scheduled points. This set
includes the extremal points A1 and An (in view of (3), these
points are always scheduled on the x2-axis and the x1-axis,
respectively) and all non-extremal points Ai whose associated
cone Ci does not reduce to a line, that is such that di−1 < di.
On the intersection between two cones that do not reduce to
a line, any of the two corresponding points may be scheduled
(the allocation is not unique).

We say that α-fair allocations are monotonic cone policies
in the following sense.

Definition 1: An allocation is said to be a monotonic cone
policy if there exists a set of non-empty cones C1, . . . , Cn

covering R
2
+ such that:

(i) For all i 6= j, C̆i ∩ C̆j = ∅.
(ii) The cones are ordered from left to right as above.

(iii) The point Ai is scheduled when x ∈ C̆i.
(iv) The extremal points A1 and An are scheduled on the

x2-axis and the x1-axis, respectively.
(v) Any of the two points Ai or Aj is scheduled when x ∈

Ci ∩ Cj , provided Ci 6= Ci ∩ Cj and Cj 6= Ci ∩ Cj .

The projective cone policies considered by Armony and
Bambos [1], [2] are examples of monotonic cone policies
in dimension 2. Note that a scheduled point Ai does not
necessarily belong to the corresponding cone C i. It turns out
that the stability region of a monotone cone policy depends
on the scheduled points only, and not on the corresponding
cones. Specifically, let S ⊂ R be the set of scheduled points,
that is the extremal points and all non-extremal points whose
associated cone does not reduce to a line. We refer to the
contour of S as the broken line joining the points of S from
the left to the right.

Theorem 3: The stability region of a monotonic cone policy
is the smallest coordinate-convex set containing the contour of
the scheduled points S.

Proof. Without loss of generality, we assume that all points
are scheduled (if some points are not scheduled, it is sufficient
to restrict the subsequent analysis to the subset of scheduled
points). The proof is by fluid limit techniques [7]. In the fluid
limit, the network state is continuous and evolves according
to the following differential equations:

∂x

∂t
= ρ − Ai if x ∈ C̆i,

∂x1

∂t
= max(ρ1 − A1

1, 0),
∂x2

∂t
= ρ2 − A1

2 if x1 = 0,

∂x1

∂t
= ρ1 − An

1 ,
∂x2

∂t
= max(ρ2 − An

2 , 0) if x2 = 0,

∂x1

∂t
= ρ1,

∂x2

∂t
= ρ2 if x = 0.

On the intersection between two cones that do not reduce to a
line, any of the two corresponding points may be scheduled:
the fluid limit does not depend on this choice. We say that the
system in fluid limit is stable if it empties in finite time and
unstable if it grows linearly after a finite time. This implies the
ergodicity and the transience of the original Markov process
x, respectively [7], [13].

Let δi = ρ − Ai be the drift vector associated with Ai, for
all i = 1, . . . , n. We first consider the case where δi

1 < 0 and
δi
2 < 0 for some i ∈ {1, . . . , n}. The set of indices j such that

δj
1 < 0 and δj

2 < 0 necessarily consists of consecutive indices
{a, a + 1, . . . , b}. We then have δj

1 ≥ 0 and δj
2 ≤ 0 for all

j < a and δj
1 ≤ 0 and δj

2 ≥ 0 for all j > b. Thus the system
in fluid limit enters the set of cones Ca, Ca+1, . . . , Cb after a
finite time and stays there. The system then empties in finite
time. This case is illustrated in Figure 2. Similarly, the system
is unstable if δi

1 > 0 and δi
2 > 0 for some i ∈ {1, . . . , n}.
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δ1

δ3ρ

φ1 x1

φ2 x2

δ2

C1

C2

C3

Fig. 2. Drift vectors and system behavior in fluid limits - A stable scenario.

It now remains to investigate the case where δi
1 ≥ 0, δi

2 ≤ 0
and δi+1

1 ≤ 0, δi+1
2 ≥ 0 for some i ∈ {1, . . . , n − 1}. This

implies that δj
1 > 0, δj

2 < 0 for all j < i and δj
1 < 0, δj

2 > 0
for all j > i + 1, which further implies that the system enters
the set Ci ∪ Ci+1 after a finite time and stays there. We first
consider the case where ρ is strictly below the line (Ai, Ai+1).
This case is illustrated in Figure 3(a) and arises when:

−δi
2

δi
1

>
δi+1
2

−δi+1
1

.

Let θ > 0 be such that:

−δi
2

δi
1

> θ >
δi+1
2

−δi+1
1

.

One can easily verify that the drift of the Lyapounov function
f(x) = θx1 + x2 is lower bounded by a negative constant
outside a compact set: the system is stable. Similarly, one
proves that the system is unstable when ρ is strictly above
the line (Ai, Ai+1), as illustrated in Figure 3(b). 2

(a) stable (b) unstable

δi

δi+1

Ai+1

Ai
δi

δi+1

Ai+1

Ai

Fig. 3. Drift vectors for two scheduled points Ai and Ai+1.

Since α-fair allocations are monotone cone policies, it
follows from Theorem 3 that the stability region of an α-fair
allocation depends on the set of scheduled points only. We give
in Figure 4 the stability region of an α-fair allocation when the
rate region is that of Figure 1(a) and when the corresponding
cones are those of Figure 1(b).

We now study the sensitivity of the stability region to the
fairness parameter α. We first show that if the rate region has
a convex structure, in the sense that the smallest coordinate-
convex set containing its contour is convex, the stability region
is maximum and independent of α.

Corollary 1: If R has a convex structure, the stability
region of α-fair allocations is maximum and equal to R̄.

Proof. The convex structure of the rate region implies that
si,i+1

α < si,j
α for all i = 1, . . . , n − 1 and j > i + 1. It

then follows from the algorithm that d1 < d2 < . . . < dn−1. 2

ρ1

ρ2

A3

A4

A1

A2

Fig. 4. Stability region of an α-fair allocation when S = {A1, A3, A4}.

We now consider an arbitrary discrete rate region R. We
have the following two key results.

Corollary 2: There exists β ∈ (0,∞) such that for all α <
β, the stability region of α-fair allocations is maximum and
equal to R̄.

Proof. For all i = 1, . . . , n − 1, there exists βi ∈ (0,∞] such
that for all α < βi, the indice j > i that minimizes si,j

α is
that which minimizes the angle between line (Ai, Aj) and
the x1-axis. Letting β = mini=1,...,n βi, we conclude that
for all α < β, the stability region of α-fair allocations is the
smallest convex, coordinate-convex set containing R. 2

Corollary 3: There exists γ ≥ 0 such that for all α > γ,
the stability region of α-fair allocations is minimum and equal
to the smallest coordinate-convex set containing the contour
of the rate region R.

Proof. For all i = 1, . . . , n − 1, there exists γi ∈ (0,∞] such
that for all α > γi, the indice j > i that minimizes si,j

α is
that which minimizes the angle between line (0, Aj) and
the x2-axis, namely i + 1. Letting γ = mini=1,...,n γi, we
conclude that for all α > γ, all points are scheduled. The
stability region is minimum and equal to the smallest convex,
coordinate-convex set containing R. 2

We conclude that the stability region is sensitive to the
fairness parameter α: it is maximum when α → 0 and mini-
mum when α → ∞. In particular, max-min fairness does not
guarantee maximum stability. To the best of our knowledge,
this is the first result showing fairness “inefficiency” in a
dynamic scenario with a varying number of flows. It differs
from the usual efficiency vs. fairness trade-off discussed by
many authors in static scenarios, see e.g. [15].

B. A continuous rate region

The above results can be generalized to a continuous rate
region. Again, the stability region of an α-fair allocation only
depends on the set of scheduled points, which can be obtained
by applying the algorithm derived for a discrete rate region
to a discretized version of the continuous rate region with a
sufficiently small discretizing parameter. We give an example
of continuous rate region in the following section.
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V. EXAMPLES

We conclude the paper by applying previous results to a
simple wireless network consisting of two base stations (BS).
We refer to class 1 as those flows served by BS 1 and to class
2 as those flows served by BS 2.

A. Discrete rate region

We first assume the base stations transmit at full power when
active, as in CDMA 1xEV-DO systems. We denote by P the
power received by each user from each active base station.
We assume for simplicity that it is the same for both base
stations; this is the case for instance if users are at the same
distance of both base stations in an obstacle-free propagation
environment, as illustrated by Figure 5.

BS 2BS 1

Fig. 5. A wireless network with two base stations.

The thermal noise power is denoted by N . The bit rate of
flows served by a given BS depends on the activity of the
other BS, and is assumed to be given by Shannon’s formula.
Specifically, the bit rate obtained when the other base station
is switched on and off is respectively given in bit/s/Hz by:

con = log2

(

1 +
P

N + P

)

, coff = log2

(

1 +
P

N

)

.

Thus the rate region R contains three points, as illustrated in
Figure 6.

φ2

φ1

coff

con

con coff

Fig. 6. Rate region when the base stations transmit at full power.

The rate region R has a convex structure if and only if
con ≥ coff/2, that is if

1 +
P

N + P
≥
√

1 +
P

N
.

It may be easily verified that this occurs when the signal-to-
noise ratio (SNR) P/N is less than the golden number:

Φ =

√
5 + 1

2
,

in which case all α-fair allocations achieve maximum stability
in view of Corollary 1.

Now assume that the SNR is higher than the golden number.
The stability region of α-fair allocations is maximum if and
only if c1−α

off
> 2c1−α

on , that is if α < β, with

β = 1 − 1

log2(coff) − log2(con)
.

If α > β, all points are scheduled and the stability region is
minimum (thus γ = β in that example). We give in Figure 7
the two corresponding stability regions (in bit/s/Hz) when the
SNR is equal to 10 dB.

 0

 4

 0  4

 4

 0
 0  4

1

2

3

31 2

1

3

2

1 2 3

ρ2 ρ2

ρ1 ρ1

(a) α < β (b) α > β

Fig. 7. The two stability regions when the SNR is equal to 10 dB.

The critical value β is given in Figure 8 as a function of
the SNR (higher than Φ ≈ 2 dB). It slowly (logarithmically)
increases from 0 to 1 when the SNR goes from Φ to ∞.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14  16  18  20

 

SNR (dB)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10  12  14  16  18  20

 

SNR (dB)

β

Fig. 8. Critical value β as a function of the SNR (β = ∞ if the SNR is
less than Φ ≈ 2 dB).

B. Continuous rate region

We now consider the case where the base stations do not
necessarily transmit at maximum power. We still denote by P
the maximum received power. The rate region R is the set of
vectors φ such that:

φ1 ≤ log2

(

1 +
u1P

N + u2P

)

,

φ2 ≤ log2

(

1 +
u2P

N + u1P

)

,

for some u1, u2 ∈ [0, 1]. The boundary of R is obtained letting
u1 = 1 or u2 = 1, i.e., at least one of the two base stations
transmits at full power. The resulting rate region is presented
in Figure 9 for different values of the SNR P/N . Note that
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 0

 1

 2

 3

 4

 0  1  2  3  4

φ1

φ2

Fig. 9. Rate region for different values of the SNR (−10,−3, 0, 3, 10 dB,
from bottom left to top right).

the rate region does not have a convex structure. It contains
the three points of the discrete rate region considered above.

There are critical values β, γ of α, with β ≤ γ, such that
the stability region of α-fair allocations is maximum if α < β
and minimum if α > γ (cf. Corollaries 2 and 3). We give in
Figure 10 the stability region of α-fair allocations for different
values of α. The critical values are β ≈ 0.12, γ ≈ 0.41 when
the SNR is equal to 0 dB and β ≈ 0.46, γ ≈ 0.65 when
the SNR is equal to 10 dB. Note that the stability region
decreases continuously from the maximum stability region to
the minimum stability region when α goes from β to γ. The
critical values β, γ of α are given in Figure 11 with respect
to the SNR.

 0  0.2  0.4  0.6  0.8  1

 1

 0.6

 0.8

 0.4

 0.2

 0
 0  1  2  3  4

 4

 3

 2

 1

 0

ρ1

(a) SNR = 0 dB

ρ1

ρ2

(b) SNR = 10 dB

ρ2

Fig. 10. Stability region for different values of α (a) α = 0.12, 0.2, 0.41,
(b) α = 0.46, 0.5, 0.57, 0.61, 0.63, 0.65, from top-right to bottom-left.

SNR (dB)

−20 −10  0  10  20

 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0.1

 0

γ

β

Fig. 11. Critical values β, γ of α as functions of the SNR.

VI. CONCLUSION

The stability region of utility-based allocations is larger than
the rate region in non-convex cases. A judicious choice of the
utility function ensures maximum stability by restricting the
set of scheduled points and thus convexifying the rate region.
This is the case of α-fair allocation for a sufficiently small
fairness parameter α. Max-min fairness, on the other hand,
always schedules all points of the rate region and therefore
minimizes the stability region.

We believe these results have strong implications on the
choice of the utility function to be used in the design of packet-
level algorithms, especially in wireless networks where the
interaction of transmitters through interference naturally leads
to non-convex rate regions.

Though we considered the case of two classes only, we think
the main results extend to the case of three or more classes.
That is, the stability region depends on the fairness parameter
α, is maximum when α → 0 and minimum when α → ∞. The
problem is made harder by the fact that the stability region may
depend on traffic characteristics like the flow size distribution,
as pointed out in [4] for a wireless network where three or
more base stations interact through interference.
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