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ABSTRACT
Overcomplete transforms have received considerable atten-
tion over the past years. However, they often suffer from
a complexity burden. In this paper, a low complexity ap-
proach is provided, where an orthonormal basis is comple-
mented with a set of incomplete transforms: those incomplete
transforms include a reduced number of basis vectors that al-
low a reduction on the coding complexity and ensure a certain
level of sparsity. The solution has been implemented in the
HEVC standard and compression gains of around 1% on av-
erage are reported while reducing the decoder complexity in
about 5%.

Index Terms— Transform coding, orthogonal trans-
forms, sparse data representation, image coding

1. INTRODUCTION

Sparse data representation has been an important field of
study in the last years thanks to its countless applications in
many domains, in which, compression and feature extraction
stand out.

Sparse representation focuses on finding the most com-
pact representation of a given signal [1]. Amongst them, the
K-SVD is one way of designing overcomplete dictionaries to
achieve sparse data representation [2].

The usage of multiple complementary transforms to
provide sparse representations has been addressed in pre-
vious work [3] where the high computational requirements
were pointed out: this motivates the work carried out here.
In this paper, a low-complexity solution for sparse repres-
entation is proposed. The approach is based on a standard
orthogonal transform, the discrete cosine transform (DCT),
in competition with multiple elementary sparse transforms
called Incomplete Transforms. The competition exists in
the sense that the encoder selects, for each image block, the
transform that provides the best signal representation in the
distortion-sparsity plane.

The effectiveness of the approach is first measured using
a sparsity metric that serves to design effective incomplete
transforms based on a learning algorithm. The incomplete
transforms are subsequently implemented in High Efficiency

Video Coding (HEVC), the state-of-the-art image/video cod-
ing standard, defined in January 2013 [4].

This paper is organised as follows: section 2 describes the
main idea and the motivation to use incomplete transforms.
Section 3 proposes a design method for this kind of trans-
forms, which have been implemented HEVC and the results
are discussed in section 4.

2. PRINCIPLES OF INCOMPLETE TRANSFORMS

In this paper, the concept of incomplete transforms is intro-
duced. They can be considered as a special case of sparse
orthonormal transforms [5] in which only one basis vector is
retained and considered: consequently, a signal that has been
transformed using an incomplete transform has only one coef-
ficient different from zero in the transform domain.

In order to be able to represent any signal within a given
distortion, incomplete transforms are conceived to work as
companions of a main orthogonal transform, such as the DCT
for image coding.

To illustrate a case where incomplete transforms can be
useful, figure 1 presents a two-dimensional scenario, where
the small dots symbolise the 2D signals to be transformed.

The main transform, whose basis vectors are v0 and v1,
is able to represent the signal in a very efficient way, as v0
follows the main direction of the dark dots. By construction
v1 is orthogonal to v0.

However, there exists a secondary direction that cannot be
represented compactly using the (v0,v1) basis: both axis are
needed to describe their coordinates. Just by adding an extra
axis (w0) adapted to this secondary direction, an effective and
sparser representation of those dots can be achieved.

Therefore, the dots plotted in this space can be represen-
ted efficiently thanks to the union of two basis. One basis is
complete, the second one, which can be conceived as a com-
plete basis, is restricted to only one axis, the principal com-
ponent: in this way, the compactness is guaranteed as only
one transform coefficient need to be transmitted.

If only one adapted transform had been used in figure 1 to
adapt to all those points, such as the Karhunen-Loève trans-
form (KLT), the main axis would have been placed some-
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Fig. 1: Illustration of the incomplete transform concepts. An
additional basis vector (w0) is added to assist an orthogonal
transform (v0,v1)

where in between v0 and w0, which would not provide sparse
representation of the signal.

A remarkable consequence of using incomplete trans-
forms is a decrease in complexity when decoding a signal,
since there will be one coefficient different from zero, the
decoding implies only one basis vector of the incomplete
transform multiplied by this coefficient.

In image coding, a separable two-dimensional transform
writes:

X = A ·
(
A ·xT )T

= A ·x ·AT (1)

Assuming the image is composed of 8×8 blocks, x stands for
the 8× 8 pixels, and X their frequency representation. A is
the 8× 8 1D transform. The usual transform used in image
coding is the DCT, whose fast algorithm requires 12 multi-
plications and 29 additions per 8×1 vector. As 8 vectors per
block need to be processed both for the vertical and horizontal
transform, processing an 8× 8 block requires a total of 192
multiplications and 464 additions. This number of operations
is identical for the inverse transform.

For an incomplete transform, only one axis needs to be
processed: each axis being formed by 64 values in this ex-
ample. Consequently, only 64 multiplications and 63 addi-
tions are need to transform the input block x into the trans-
form domain. For the inverse transformation, only 64 multi-
plications are needed.

As a result, in this case, the incomplete transforms can be
applied with an number of operations of approximatively one
third of the cost of regular separable transforms. This com-
plexity reduction benefits both the encoder and the decoder.

It is also worth noticing, that those incomplete transforms
are non-separable and, therefore, able to exploit any linear
correlation amongst pixels within a block. Separable trans-
forms, on the other hand, are only able to exploit correlation
of pixels sharing the same row or column.

3. DESIGN OF INCOMPLETE TRANSFORMS

The incomplete transform design is based upon the sparse or-
thogonal transforms model proposed and detailed in [5]. The
original method describes how to derive one optimal trans-
form iteratively for some training data and an initial transform
by using a metric that includes a sparsity constraint.

In this paper, this method has been further adapted to
handle incomplete transforms.

3.1. Incomplete transform learning

The method proposes a weighted rate-distortion metric that
is able to provide different trade-offs. This metric includes
a measure of the distortion in the mean square error sense of
the quantised samples and a sparsity constraint, as explained
below.

Aopt = argmin
A ∑

∀i
min

ci

(
‖xi −AT ci‖

2
2 +λ‖ci‖0

)
(2)

Where xi is signal from the training set, e.g. a block
of pixels reshaped into a N2 × 1 vector, Xi = A · xi are the
transformed coefficients using the transform A and ci are the
quantised transformed coefficients. AT is the inverse trans-
form, since A is chosen orthonormal.

The constraint in the cost function is the `0 norm of the
coefficients, i.e. the number of non-zero coefficients, also
called the number of significant coefficients. Finally, λ is the
Lagrange multiplier.

The equation 2 is minimised in two steps. First, the op-
timal coefficients are obtained by hard-thresholding Xi. Af-
terwards, the transform is updated given the hard-thresholded
coefficients ci and the xi. A detailed resolution of this equa-
tion is described in [5], as well as the relation between λ and
the hard-thresholding parameter.

The algorithm iterates over the two steps until the metric
converges.

The design of an incomplete transform takes one ex-
tra step: one and only one coefficient is kept after hard-
thresholding, the first one. Consequently, only X0 is con-
sidered and the level of sparsity is guaranteed as ‖ci‖0 = 1.
This makes the incomplete transform to have only one mean-
ingful basis vector.

Therefore, for a given set of training signals, one obtains
a transform consisting of one meaningful basis vector. The
remaining vectors, albeit constituting a basis, are useless for
the aim of the paper.



3.2. Multiple incomplete transforms

Since incomplete transforms are designed with a strong
sparsity constraint of the quantised coefficients, it seems
reasonable to generate several incomplete transforms to be
able to adapt to different signal natures. However, an incom-
plete transform cannot represent accurately a signal provided
a desired level of fidelity (e.g. a distortion criterion).

Consequently, the purpose of this paper is to complement
a set of incomplete transforms with a standard orthogonal
transform, such as the DCT.

As a result, a coding scheme based on such an approach
is able to compress a signal at any quality level and might
be able to be efficient sparsity-wise thanks to the incomplete
transforms.

A learning algorithm and classification algorithm based
on the metric defined in equation 2 has been implemented
to design a set of 1+N transforms: N incomplete transforms
that complement a standard orthogonal transform, the DCT.

In order to design multiple transforms, an additional
learning step is required: this consists in a classification step
in which each learning signal is assigned to the transform,
complete or incomplete, that provides the best representation
in a rate distortion sense.

The rate distortion metric is consistent with the one
defined in equation 2 and its purpose is to assign a signal
xi to the transform An that minimises the value:

δn = ‖xi −AT
n ci,n‖

2
2 +λ‖ci,n‖0 (3)

To this end, the representation of any signal xi is computed
for all transforms An, delivering a set of Xi,n, subsequently
quantised into ci,n. The quantisation operator is the hard-
thresholding function presented before, but only the first fre-
quency coefficient is retained for the incomplete transforms.
Therefore, the sparsity constraint, i.e. the second half of equa-
tion 3 equals to λ for the incomplete transforms and propor-
tional to the number of significant coefficients for the DCT.

Once the learning signals have been classified given a set
of transforms, each incomplete transform is updated using the
learning algorithm of section 3. The classification/transform
update steps are repeated until convergence.

Note that only transforms A1 to AN are updated while A0
(the DCT) is also considered in the classification step.

To illustrate the effectiveness of the algorithm, figure 2
presents how the increase of the number of incomplete trans-
forms is able to provide a more sparse representation of the
signal. To evaluate this, the average number significant coef-
ficients is computed at a similar distortion level for different
coding configurations (from 1 to 32 incomplete transforms
used in conjunction with the DCT). The results are presented
relative to the reference system which consists of a coding
system using the DCT alone, such as HEVC.

As the number of incomplete transforms is increased, the
proportion of significant coefficients is decreased to 66% of

input : A training set of image signals x
output: Set of N incomplete transforms An

Initial random classification into 1+N classes
while !convergence do

for n = 1 to N do
Learn an inc. tr. on Classn using equation 2

end
foreach block x do

for n = 0 to N do
δn = ‖x−AT

n c‖2
+λ‖c‖0

end
n∗ = argmin

n
(δn)

Classn∗ .append(x)
end

end
Algorithm 1: Multiple incomplete transform design
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Fig. 2: Percentage of non-zero coefficients referred to the
DCT

its original value: this validates the fact that more sparse rep-
resentations can be achieved with the adjunction of incom-
plete transforms to the traditional DCT transform.

The result of a learning experiment is shown in figure 3,
where 32 8 × 8 incomplete transforms are presented. For
each one, only the first basis vector is displayed, since is
the only one delivering significant frequency coefficients. In
the case of two-dimensional signals, like images, incomplete
transforms can be directly interpreted as texture patterns.

The learning set in this experiment is made of prediction
residuals extracted from a directional mode from the HEVC
coding scheme. The selected mode (intra prediction 6) is an
angular prediction of approximatively +26◦. Accordingly,
the blocks selected by HEVC for this mode mostly present
a directional pattern following that direction.

It can be observed how the incomplete transforms have
patterns containing that particular direction, each exhibiting
a particular band-shaped pattern. Note that the DCT requires
a significant number of coefficients to represent such direc-
tional, and inherently non-separable, patterns.



Fig. 3: List of 32 incomplete transforms for 8×8 blocks

4. APPLICATION TO IMAGE CODING

The usefulness of incomplete transforms has also been ap-
plied to a practical environment, more precisely, inside the
HEVC, the latest video coding standard, which is considered
as the most performing image coder as of today [6].

To evaluate the coding performance of the approach, a set
of incomplete 8× 8 transforms is designed for each HEVC
intra prediction mode. At the encoder, for each block, the
best prediction mode/transform pair is selected.

The conventional HEVC work flow is used except for two
changes:

1. The signalling of the selected transform is requested. A
flag + index approach has been retained here for its sim-
plicity. If the DCT is selected, 0 is signalled, otherwise
a flag is set to 1 and a fixed-length codeword indicates
the incomplete transform index.

2. As the incomplete transforms retain only the first coef-
ficient, the position of the last significant coefficient
does not need to be conveyed.

Experiments have been performed following the common
test conditions described in [7] for an established test set (in-
dependent from our learning set). Sequences have been coded
in all intra (AI) mode, meaning that each image is coded in-
dependently.

As specified in the test conditions, the improvement are
presented as percentage of bit rate reduction relative to the
HEVC coding scheme, using the Bjøntegaard Distortion-rate
(BD-rate) metric [8].

Table 1 shows that around 1% of bit-rate reduction with
regards to the HEVC standard can be achieved using this
technique. There are some sequences which present not-
able gains over HEVC, such as SteamLocomotiveTrain and
BasketballDrill. This is due to the large amount of diagonal
patterns in those sequences, which are hardly handled by sep-
arable transforms like the DCT.

Complexity-wise, the proposed system is much more at-
tractive that the previous one from [3], where regular non-
separable transforms are tested in the HEVC rate-distortion
optimisation loop, which lead to a complexity of around 8

Sequence Y BD-rate

Class A
(2560×1600)

PeopleOnStreet -0.64%
Traffic -0.68%
NebutaFestival -0.91%
SteamLocomotiveTrain -5.25%

Class B
(1920×1080)

BasketballDrive -0.99%
BQTerrace -1.06%
Cactus -1.38%
Kimono1 -0.31%
ParkScene -0.15%

Class C
(832×480)

BasketballDrill -6.22%
BQMall -0.66%
PartyScene -0.18%
RaceHorses -0.44%

Class D
(416×240)

BasketballPass -0.47%
BQSquare -0.25%
BlowingBubbles -0.21%
RaceHorses -0.32%

Class E
(1280×720)

FourPeople -1.07%
Johnny -1.25%
KristenAndSara -1.15%
Average -1.18%

Table 1: BD-rate savings referred to HEVC

times the one from HEVC [3]. Using incomplete transforms
leads to a complexity 2.7 times higher than that of HEVC.
On the decoder side, complexity has been decreased due to
the reduction in the number of operations with regards to the
DCT when using incomplete transforms. Whilst the previ-
ous system increased the decoding complexity by 30% [3],
the incomplete transforms reduce the decoding time in 5% on
average. Keeping in mind that the transform does not repres-
ent the whole decoding process and that the DCT is still used,
complexity reductions affecting the transform are moderate.

5. CONCLUSIONS

This paper has proved the effectiveness of incomplete trans-
forms. When used as complementary transforms, they are
able to increment the sparsity of the signal in the transform
domain. The number of non-zero coefficients has been re-
duced to around two thirds of its original value.

First experimental results on the HEVC-based image
coder prove that incomplete transforms can be used to ob-
tain some compression gains, 1% on average and up to 6%
bit-rate reduction is achieved, with a slight decrease of the
decoding complexity.
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