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Abstract

The performance evaluation of wireless networks is severely complicated by the specific
features of radio communication, such as highly variable channel conditions, interference
issues, and possible hand-offs among base stations. The latter elements have no natural
counterparts in wireline scenarios, and create a need for novel performance models that
account for the impact of these characteristics on the service rates of users.
Motivated by the above issues, we review several models for characterizing the capacity and
evaluating the flow-level performance of wireless networks carrying elastic data transfers.
We first examine the flow-level performance and stability of a wide family of so-called α-fair
channel-aware scheduling strategies. We establish that these disciplines provide maximum
stability, and describe how the special case of the Proportional Fair policy gives rise to a
Processor-Sharing model with a state-dependent service rate. Next we turn attention to a
network of several base stations with inter-cell interference. We derive both necessary and
sufficient stability conditions and construct lower and upper bounds for the flow-level per-
formance measures. Lastly we investigate the impact of user mobility that occurs on a slow
time scale and causes possible hand-offs of active sessions. We show that the mobility tends
to increase the capacity region, both in the case of globally optimal scheduling and local
α-fair scheduling. It is additionally demonstrated that the capacity and user throughput
improve with lower values of the fairness index α.

1 Introduction

The performance evaluation of wireless networks centers on similar metrics as in wireline envi-
ronments, such as user-perceived throughputs, delay characteristics, and loss rates. However,
the evaluation of these performance metrics is severely complicated by the specific features
of wireless communications, e.g., uncertain and highly variable channel conditions, interfer-
ence issues, and possible hand-offs among base stations (BS’s) associated with long-range user
mobility. The latter features have no natural counterparts in wireline scenarios, and create a
strong need to develop and analyze novel models for the performance evaluation of wireless
networks. In fact, even the characterization of the network capacity, which is straightforward in
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wireline systems with fixed link rates, becomes non-trivial in the presence of channel variations,
and even mostly intractable in the case of mutual interference.
In order to develop adequate performance models for wireless networks, it is crucial to identify
the primary sources of channel variations. First of all, the channel quality may differ widely
among spatially distributed users due to distance-related attenuation. In addition, the channel
conditions for a given user may vary dramatically over time because of fading effects. Fading is
an extremely complex physical phenomenon caused by the interaction between the propagation
environment and user mobility. It emerges in diverse forms and typically spans a wide range
of time scales. Multi-path fading arises on the level of a wavelength, and occurs on a fast time
scale that depends on the carrier frequency and user velocity. Path loss and shadow fading
manifest themselves on a more macroscopic level as a result of distance-related attenuation
and scattering due to obstacles and terrain conditions, and tend to vary over a longer time
scale. Variations in the path loss due to long-range user mobility force hand-offs of active
sessions, and cause a dynamic interaction among neighboring BS’s. As a further potential
source of complex interaction, transmissions tend to be significantly impacted by activity of
surrounding BS’s because of interference issues.
The above-described channel variations have a critical impact on the instantaneous trans-
mission rates and long-term throughputs. Specifically, the fast channel fluctuations due to
multi-path fading, in combination with the relative delay tolerance of elastic data transfers,
open up the possibility of scheduling transmissions to the various users when their channel
conditions are relatively favorable [43]. This paradigm has triggered a huge interest in so-
called channel-aware scheduling strategies as a means to achieve throughput gains for elastic
data users [3, 6, 25, 34, 45, 48, 64]. The most prominent exampe of a channel-aware scheduling
strategy is the Proportional Fair (PF) policy, which has been widely adopted in commercial
systems [5,27,37,64]. The PF policy in fact belongs to a broader class of so-called utility-based
schedulers, which may be implemented via simple gradient-based algorithms [1,4,41,44,52,57].
The achievable throughput gains from channel-aware scheduling vary with the channel statistics
of the various users as well as the degree of multi-user diversity. As a result, the service rates
of the various users depend on the entire user population in a rather intricate fashion. The
latter dependence considerably complicates the evaluation of the relevant performance metrics,
and renders even the derivation of stability conditions difficult. The slower channel variations
due to long-range user mobility offer less scope for channel-aware scheduling, but also pose a
major challenge when it comes to evaluating user-perceived throughputs.
Motivated by the above issues, we review in the present paper several models for determining
the capacity and assessing the flow-level performance of wireless networks carrying elastic data
transfers. In particular, we survey various results originally reported in [7, 8, 17, 18, 21–23,39].
In the first part of the paper, we examine the flow-level performance and stability of α-fair
channel-aware scheduling strategies. We describe how under certain assumptions the flow-
level performance of the PF scheduling policy may be evaluated by means of a multi-class
Processor-Sharing (PS) model where the total service rate varies with the total number of users.
The state-dependent service rate accounts for the fact that the throughput gains achieved by
channel-aware scheduling increase with the degree of multi-user diversity. The PS model
provides explicit formulas for the distribution of the number of active users, mean transfer
delays, and blocking probabilities. In particular, the performance is insensitive, in the sense
that these measures only depend on the statistical characteristics of the system through a
readily computed ‘load’ factor. The notion of ‘cell capacity’, critical for dimensioning purposes,
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can then be defined independently of the detailed properties of the system [13]. Similar PS-
type models have been proposed for various kinds of wireless systems [47,55]. An early paper
developing a PS model for a multi-access system is [63].
For general α-fair channel-aware schedulers, the evaluation of the flow-level performance in-
volves a multi-dimensional queueing system that does not seem to be tractable. However, we
will show that the stability conditions can still be explicitly characterized, and that the family
of α-fair schedulers in fact provide maximum stability.
In the second part of the paper, we consider a network of several BS’s with inter-cell interfer-
ence, where BS’s remain on as long as there are any active users in the corresponding cell, and
turn off otherwise. The resulting dynamic interaction among interfering BS’s is quite complex
and renders an exact analysis elusive in general. In the single-class case, the model reduces to
a so-called coupled-processors model, which even for two queues is barely tractable [28,29,33],
reflecting the complexity of the model in general. Therefore, we focus on the derivation of
bounds and approximations. In particular, we derive both necessary and sufficient conditions
for stability. We also construct lower and upper bounds for flow-level performance measures,
by assuming minimum and maximum interference for either the cell under consideration itself
or for all its neighbors.
In the third and final part of the paper, we investigate the impact of user mobility that occurs
on a slow time scale and manifests itself in the form of rate variations at flow level. We
first consider a scenario where the mobility remains confined to a single cell. Due to these
slower rate variations, the above-mentioned insensitivity of the PF strategy is lost, and the
performance depends in some complicated fashion on the detailed rate statistics and traffic
characteristics. In order to obtain tractable performance estimates, we introduce two limit
regimes, termed fluid and quasi-stationary regime, and use stochastic comparison techniques
to show that these yield optimistic and conservative performance estimates, respectively. The
latter estimates are particularly useful, as the performance in the limit regimes is insensitive,
and only depends on appropriately defined load factors, thus providing simple bounds that
render the detailed statistical characteristics of the system largely irrelevant.
Next we turn attention to a network of several BS’s where the user mobility extends across cells
and forces hand-offs of active sessions. We demonstrate that the mobility tends to increase
the capacity region, not only in case of globally optimal scheduling, but also when each of the
BS’s adopts a local α-fair discipline. At a qualitative level, the finding that mobility-induced
rate variations improve the performance, ties in with the generic rationale for channel-aware
scheduling described earlier. It further resonates with the observation in [35] that mobility
increases the capacity of ad hoc wireless networks. In the present context, however, the perfor-
mance improvement does not rely on channel-aware scheduling, but also occurs for example in
the case of channel-oblivious round-robin scheduling. Instead, informally stated, it arises from
the fact that flow-level performance measures behave as convex functions of the rate processes.
In addition, we establish that the capacity and performance improve with lower values of the
fairness index α. Interestingly enough, in contrast to the situation without user mobility, the
overall improvement in capacity and performance is not necessarily at the expense of users in
unfavorable conditions.
The remainder of the paper is organized as follows. In Section 2 we present a detailed model
description and then proceed to describe how the flow-level performance of the PF scheduling
policy may be evaluated by means of a PS model. Next we derive necessary and sufficient
conditions for the existence of a scheduling strategy that achieves stability. As a by-product,
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we establish that the family of α-fair schedulers provide maximum stability. In Section 3 we
consider a network of several BS’s with inter-cell interference. We examine the impact of
mutual interference, establish necessary and sufficient conditions for stability, and construct
lower and upper bounds for flow-level performance measures. In Section 4 we investigate the
impact of rate variations associated with user mobility on a slower time scale. We first focus on
a scenario where the mobility remains confined to a single cell, and prove that two limit regimes
yield explicit, insensitive performance bounds. Last, we turn attention to a network of several
BS’s where the user mobility extends across cells and causes hand-offs of active sessions. We
demonstrate that the mobility tends to increase the capacity region, both in case of globally
optimal scheduling and in case of a local α-fair discipline. It is further shown that the capacity
and performance improve with lower values of the fairness index α. We make some concluding
remarks in Section 5.

2 Flow-level performance of channel-aware scheduling strate-

gies

We consider a wireless system carrying elastic traffic from K classes. Each class represents a
category of statistically identical users in terms of flow sizes and rate characteristics. Class-k
users arrive as a Poisson process of rate λk (per time unit), and have generally distributed flow
sizes Fk (in bits) with mean ξk. Denote by σk := λkξk the offered traffic of class k (in bits per
time unit), and define σ := (σ1, . . . , σK).
As mentioned earlier, channel-aware scheduling causes the set of feasible service rate vectors
to depend on the active user population in a fairly intricate fashion. In order to capture that
dependence, we define R(n) ⊆ RK

+ as the set of all feasible service rate vectors for a given
user population n ∈ NK . The set R(n) has a rather complicated structure in general, but
can be characterized through a linear programming formulation. For further details, we refer
to [19,25,26].
When the user population is n = (n1, . . . , nK) ∈ NK , each class-k user receives service at rate
φk(n)/nk, with φ(n) = (φ1(n), . . . , φK(n)) ∈ R(n) representing the service rate vector for the
various classes as function of the user population. The function φ(·) will frequently be referred
to as the allocation function.
Denote by N(t) = (N1(t), . . . , NK(t)) the user population at time t. Let (N1, . . . , NK) be a
random vector representing the number of users of the various classes at an arbitrary epoch in
statistical equilibrium (assuming it exists). Denote by N := N1 + · · ·+NK the total number
of users in the system.

2.1 Proportional Fair scheduling

In this subsection, we consider a single-cell-scenario and assume that the allocation function
is of the form

φk(n) = R̄kG(n1 + · · ·+ nK)
nk

n1 + · · ·+ nK
. (1)

In this expression, the coefficient R̄k may be interpreted as the time-average feasible transmis-
sion rate of a class-k user (if it were allocated the full transmission resources). The function
G(·) captures the throughput gains achieved by channel-aware scheduling, and represents the
benefit that each user receives compared to a channel-oblivious round-robin discipline. This
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function will be increasing, reflecting the fact that the throughput gains increase with the
degree of multi-user diversity. Note that the form of (1) assumes that the relative scheduling
gains are identical for all classes and only depend on the user population through the total
number of active users. Also, define G∗ := limn→∞G(n).
It may be shown that the allocation function (1) arises in the case of a PF scheduling strategy,
assuming the relative rate variations (around the time-average values) of the various user classes
to be statistically identical. The latter assumption entails that the instantaneous transmission
rate of the i-th class-k user Ri,k is distributed as R̄kYik, where the Yik’s are independent
and identically distributed copies of some generic random variable Y with unit mean. Now
suppose that the system operates in a time-slotted fashion, with rate variations from slot to
slot, and that in each time slot we select the user with the highest instantaneous rate relative
to its time-average rate, i.e., the user with the maximum value of Yik. Then each user is
equally likely to be selected for service, and given that the i-th class-k user is selected, its
expected transmission rate is E{Rik|Yik ≥ Yjl for all j, l} = R̄kE{Yik|Yik ≥ Yjl for all j, l} =
R̄kE{maxl=1,...,K maxj=1,...,nk Yjl}. Thus, the expected rate of each class-k user is exactly
given by φk(n)/nk in (1), with G(n) := E{max{Y1, . . . , Yn}} and Y1, . . . , Yn independent and
identically distributed copies of the random variable Y . The assumption that the relative
rate variations are statistically identical (and in fact exponentially distributed), is roughly
valid when the users for example have Rayleigh fading channels and the feasible rates are
approximately linear in the SNR (signal-to-noise ratio). The latter approximation is reasonably
accurate when the SNR is low, and then yields G(M) =

∑M
m=1 1/m.

In order to see that the allocation vector φ(n) in (1) is proportional fair, observe that the set
R(n) of all feasible service rate vectors is still complicated, even under the above symmetry as-
sumption. However, each achievable throughput vector T (n) ∈ R(n) satisfies

∑K
k=1

∑nk
i=1 Tik(n)/R̄k ≤

E{maxk=1,...,K maxi=1,...,nk Rik/R̄k} = E{maxk=1,...,K maxi=1,...,nk Yik} = G(n1 + · · · + nK).
Hence, each achievable throughput vector satisfies

∑K
k=1 nk

∑nk
i=1 Tik(n)/φk(n) ≤ n1+· · ·+nK ,

which means that the allocation vector φ(n) is proportional fair. For further details, we refer
to [17,18].
We now proceed to show that in case the allocation function is of the form (1), one can
explicitly evaluate the flow-level performance in terms of the number of active users, mean
transfer delays, and blocking probabilities. Further to the earlier model description, we include
admission control, and assume that at most M users are admitted in the system simultaneously
(possibly M =∞). Users which initiate service requests when there are already M transfers in
progress are denied access and abandon. For convenience, let Bk := Fk/R̄k be the normalized
service requirement of a class-k user with mean βk := ξk/R̄k. Note that the normalized service
requirement encapsulates both the transfer amount (in bits) and the mean transmission rate
of a user, and is measured in transmission time rather than data volume. Define ρk := λkβk =
σk/R̄k as the normalized traffic intensity of class k, and by ρ :=

∑K
k=1 ρk the total normalized

traffic intensity. Let Br
k be a random variable representing the residual lifetime of Bk and Br

k(·)

the corresponding distribution function, i.e., Br
k(x) := P{Br

k < x} := 1
βk

x∫
y=0

P{Bk > y}dy.

Given that there are nk class-k users in the system, let Br
k,i be the remaining normalized

service requirement of the i-th class-k user, i = 1, . . . , nk, k = 1, . . . ,K.
Now observe that the form of the allocation function in (1) implies that the normalized remain-
ing service requirement of each user is reduced at rateG(n)/n, which means that the normalized
remaining service requirements evolve in a similar probabilistic fashion as the remaining ser-
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vice requirements in a multi-class Processor-Sharing (PS) system with arrival rates λk, generic
service requirements Bk, and service rate G(n) when there are n users in total present. The
next proposition follows from well-known results for such a system [30,40].

Proposition 2.1 The PF strategy achieves stability for ρ < G∗ or M <∞, in which case

P{Nk = nk, B
r
k,i ≤ tk,i; i = 1, . . . , nk, k = 1, . . . ,K} = H−1 n!ρn

φ(n)

K∏
k=1

1
nk!

(
ρk
ρ

)nk nk∏
i=1

Br
k(tk,i),

with n :=
∑K

k=1 nk ≤ M , φ(n) :=
n∏
i=1

G(i), and normalization constant H :=
M∑
n=0

ρn

φ(n) . In

particular,

P{N = n} = H−1 ρn

φ(n)
,

and the blocking probability is given by L = P{N = M}.

Using Little’s law, we find that the mean transfer delay experienced by a class-k user is given
by

E{Sk} =
βk

ρ(1− L)
E{N}.

The above formula reflects the celebrated insensitivity property of the PS discipline, which
shows that the mean delay of a class-k user only depends on the service requirement distribution
of class k through its mean βk. In fact, it may be shown that the conditional expected delay
of any user with actual service requirement b is given by

E{S|B = b} =
b

ρ(1− L)
E{N}.

Thus, the expected transfer delay incurred by a user is proportional to its normalized service
requirement, with factor of proportionality E{N}/(ρ(1 − L)). The latter property embodies
a certain fairness principle, which means that users with larger service requirements tend to
experience longer delays. Recall that the normalized service requirement encapsulates both
the transfer volume and the mean transmission rate of a user, and is expressed in time units
rather than data bits.

Remark 2.1 Proposition 2.1 extends to the case where users generate sessions consisting of
multiple transfer requests separated by random ‘think times’ as in [16]. In that case, the
traffic intensity should be calculated so as to include the mean number of transfer requests per
session.

Remark 2.2 We refer to [20] for an extension of the model to an integrated system supporting
a mixture of elastic flows and adaptive streaming traffic as considered in [14, 42] in a wireline
setting.

2.2 Generic stability conditions

We now examine under what conditions an allocation function φ(·) exists, with φ(n) ∈ R(n)
for all n ∈ NK for given sets R(n), such that the system is stable. We borrow from the results
originally reported in [23], and use similar ideas as developed by Massoulié [50] to incorporate

6



load balancing as an additional control mechanism. In Section 3 we will investigate under what
conditions the system is stable for a given allocation function φ(·), which turns out to be a
harder problem.
Henceforth we assume exponentially distributed flow sizes with unit mean. (The latter assump-
tion does not involve any loss of generality as the sets R(n) can easily be scaled to account for
different exponential service rates. While in some cases the stability results are conjectured
to hold for general flow size distributions, such an extension entails major technical difficulties
in the proofs, and there are also cases where the stability condition is likely to be sensitive
to the flow size distribution.) Thus the process N(t) tracking the active user population is a
K-dimensional birth-death process with birth rates λi and death rates φi(N(t)). In particular,
stability of the system corresponds to positive recurrence of the latter process.
We make two natural assumptions concerning the sets R(n) which will play a crucial role in
deriving the stability conditions. First of all, each of the sets R(n) is assumed to be convex.
Second, the sets R(n) are assumed to be monotone increasing in the user population i.e., if
m ≤ n, then R(m) ⊆ R(n).
The above two assumptions are satisfied in scenarios with globally scheduled medium access
control. In these scenarios any convex combination of rate vectors is achievable through time
sharing, and additional users may simply be excluded from service without affecting the feasible
service rates of the remaining users, ensuring monotonicity.
Scheduled medium access control is commonly used on the downlink of a cellular system, and
is by definition ‘global’ in nature if we restrict attention to a single-cell scenario. However,
global scheduling is not always a viable option in multi-cell scenarios where individual BS’s
tend to make local scheduling decisions and in particular remain on as long as there are any
active users to be served. In that case, the stability conditions become far more complicated
and delicate, as we will see in Section 3. Also, in the absence of a centralized control entity,
medium access is commonly governed by distributed and possibly randomized mechanisms. In
those cases, the convexity property may not be satisfied, and the stability conditions entail
major complications [15,49].
Define R∗ ⊆ RK

+ as the closure of
⋃

n∈NK
R(n), which inherits the convexity of the sets R(n).

While the set R∗ may have a complicated structure in general, it has a rather simple form
in the special case where only a single user is served in each time slot. Denote by R∗k
the maximum possible value of the rate of class-k users (possibly R∗k = ∞). Then R∗ =
conv({R∗1e1, . . . , R

∗
KeK}) = {x ∈ RK

+ :
∑K

k=1
xk
R∗k
≤ 1}. If in addition the relative rate varia-

tions around the time-average values are statistically identical for all classes, then R∗k = R̄kG
∗

with G∗ := lim
n→∞

G(n) as defined in Section 2.1. In that case, R∗ = {x ∈ RK
+ :

∑K
k=1

xk
R̄k
≤ G∗}.

In this subsection, we allow for load balancing as an additional control mechanism, which
is modeled through a function λ(n) ∈ Q describing how the arrival rate vector is governed
by the user population, with Q ⊆ RK

+ some given closed convex set. In the absence of load
balancing, the set Q is simply a singleton. Such a load balancing strategy is particularly
relevant in networks with several BS’s where flows along the border between two cells may be
assigned to either serving BS (with two ‘artificial’ classes representing the two options, and a
sum constraint on the two arrival rates). Indeed, all the results in the present section apply
for networks with several BS’s. However, they do rely on the assumption that the allocation
vector φ(·) is a function of the entire user population, which requires some global mechanism
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that may be harder to implement in a network with a large number of BS’s than in a single
isolated cell.
The next proposition states a sufficient as well as a necessary condition for the existence of a
combined load balancing strategy λ(·) and allocation function φ(·) that achieve stability.

Proposition 2.2 If there exists a pair (q∗, r∗) ∈ Q×R∗ such that q∗ < r∗, i.e., q∗i < r∗i for all
i = 1, . . . ,K, then there exist a combined load balancing strategy λ(·) and allocation function
φ(·) that achieve stability. If on the other hand Q ∩R∗ = ∅, then stability cannot be achieved.

Proof We start with the proof of the first assertion, which follows along similar lines as in [50]
and [23]. Consider the load balancing strategy / allocation function defined by

(λ∗(n), φ∗(n)) = arg max
(q,r)∈Q×R∗

〈r − q, n〉.

The above-mentioned properties of the sets R(n) imply that there exists a sequence ε(n) such
that the load balancing strategy / allocation function (λ(n), φ(n)) = (λ∗, φ∗)(n) − ε(n) ∈
Q×R(n) for all n ∈ NK , with ε(n)→ 0 as |n| → ∞.
Define the Lyapunov function F (n) := max(q,r)∈Q×R∗〈r−q, n〉. Denote by ∆g(n) :=

∑
p q(n, p)(g(p)−

g(n)) the drift of a function g(·) of a Markov process with transition rates q(·, ·). Let δ > 0 be
fixed. Because of the 1-homogeneity of the function F (·), there exists an m such that |n| > m

implies ∆F (n) ≤ 〈gradF (n),∆n〉+ δ. Noting that Q×R∗ is convex, we obtain

∆F (n) ≤ 〈arg max
(q,r)∈Q×R∗

〈r − q, n〉, λ(n)− φ(n)〉+ δ,

and the fact that ε(n)→ 0 as |n| → ∞ implies

∆F (n) ≤ −|λ∗(n)− φ∗(n)|2 + 2δ ≤ −M,

for m large enough and M > 0.
It remains to be shown that F (n) diverges to infinity when |n| → ∞. For |n| large enough,
if there exists a pair (q∗, r∗) ∈ Q × R∗ such that q∗ < r∗, then there exists a constant c such
that max(q,r)∈Q×R∗〈φ − λ, n〉 ≥ 〈r∗ − q∗, n〉 ≥ c|n|, which shows that F (·) is divergent. The
stability then follows from the Lyapunov-Foster criterion.
The converse statement follows from the simple observation that the long-term mean arrival
rate vector and long-term mean service rate vector must be contained in conv(Q) = Q and
conv(R∗) = R∗, respectively. Thus, Q ∩R∗ = ∅ precludes stability.

2

Remark 2.3 Note that if there exists no pair (q∗, r∗) ∈ Q×R∗ such that q∗ < r∗, then either
Q only intersects with the Pareto boundary of R∗ or Q∩R∗ = ∅. Thus the necessary condition
established in the above proposition is in fact ‘nearly’ sufficient for the existence of a load
balancing strategy and allocation function that achieve stability.

In the absence of load balancing, the set Q is simply a singleton, and we obtain the following
corollary.

Corollary 2.1 If λ ∈ int(R∗), then there exists an allocation function that achieves stability.
If on the other hand, λ /∈ R∗, then stability cannot be achieved.

The proof of Proposition 2.2 in fact identifies a specific load balancing strategy and allocation
function that achieve stability under the sufficient condition (and hence ‘nearly always’ when
the necessary condition is satisfied). The rationale for these is that they maximize the drift of
the process N(t) towards the origin at all times.

8



2.3 Maximum stability of α-fair schedulers

Similar arguments may be used to study the stability of a broad range of allocation func-
tions φα(·) that correspond to the family of weighted α-fair utility-based schedulers [1, 41, 52,
57]. Specifically, define (λ∗(n), φ∗α(n)) := arg max(a,b)∈G(Q)×G(R∗)〈b − a,wnα〉, and F (n) :=
〈1, wnα+1

1+α 〉, with α > 0 and w ∈ RK
+ a positive weight vector, wnα = (w1n

α
1 , . . . , wKn

α
K),

1 = (1, . . . , 1) and G : R+ → R an increasing and concave function.
First observe that F (·) is (α+1)-homogeneous, yielding the upper bound ∆F (n) ≤ 〈gradF (n),∆n〉+
o(|nα|) for large n. Then note that 〈gradF (n),∆n〉 = −max(a,b)∈G(Q)×G(R∗)〈b−a,wnα〉 ≤ −M
given the stability condition presented in Proposition 2.2, and the proof arguments may be
readily extended.
In particular, in the absence of load balancing, taking G(x) = x1−α

1−α , we obtain

φ∗(n) = arg max
b∈G(R∗)

〈b, wnα〉 = arg max
b∈R∗
〈 b

1−α

1− α
,wnα〉,

which corresponds to weighted α-fair utility functions U(x) = x1−α

1−α for α > 0, with the
convention that U(x) = G(x) = log(x) for α = 1. The latter family of utility functions
covers the most common fairness notions, such as proportional fairness (α = 1), and max-min
fairness (α = ∞). Thus, we conclude that the family of α-fair utility-based schedulers with
α > 0 achieve stability under the sufficient condition (and therefore ‘nearly always’ when the
necessary condition is satisfied). This result is in the same spirit as in [11, 12, 46], where the
rate region is however fixed and does not depend on the user population.
As described earlier, in the special case where only a single user is served in each time slot,
we have R∗ = {x ∈ RK

+ :
∑K

k=1
xk
R∗k
≤ 1}, and the sufficient stability condition λ ∈ int(R∗)

reduces to
∑K

k=1 λk/R
∗
k < 1. Note that this corresponds to the stability condition for a work-

conserving single-server system where class-k users can always be served at rate R∗k. This
somewhat surprising fact may be explained by the observation that under a weighted α-fair
strategy every class will either be served at the maximum possible rate ionr not at all whenever
any of them is unstable.
It is interesting to observe that the above results contrast with the fact that utility-based
scheduling strategies generally fail to provide maximum stability guarantees at packet level, see
for instance [2,54]. Various simple queue-length-based strategies on the other hand do achieve
stability at packet level whenever possible [3, 60, 61]. In order to reconcile these paradoxical
facts, it is worth observing that while such utility-based strategies operate agnostically of
the queue lengths at packet level, they do respond to congestion that occurs at flow level.
Thus, from a stability perspective, the behavior of a utility-based strategy at flow level shows
resemblance to that of a queue-length-based strategy at packet level. An important related
finding in the context of ‘imperfect’ scheduling in multi-hop networks is described in [45].
However, a crucial distinction is that at packet level channel fluctuations give rise to random
time-varying service rates for the various users, which are independent of the number of packets
stored in the buffer. In contrast, the feasible service rates for the various classes at flow level
are deterministic as the channel fluctuations ‘average out’, but they vary with the number of
users because the scheduling gains increase with the degree of multi-user diversity as mentioned
earlier.
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3 Networks with inter-cell interference

In the present section we examine the flow-level stability and performance of networks with
several cells subject to interference between BS’s. The dynamics of such systems are quite
complex since the activity state of each BS affects the service rates of users in neighboring
cells, which in turn influences the activity state of the corresponding BS’s. We model the
system as a processor-sharing network where the service rate of each class depends on the
number of active users in the other cells. In order to obtain more tractable results, we assume
that there is only one class of users per cell.
We first examine under what conditions the system is stable for a given allocation function,
which turns out to be a much harder problem than the one considered in the previous section.
We mostly borrow from the results originally reported in [24, 38]. Earlier results of this type
were obtained by Szpankowski [58,59]. Similar problems were also recently studied by Hansen
et al. [36].
As the stability conditions turn out to be complicated and difficult to calculate in general, we
derive bounds that can be easily evaluated and do not depend on detailed statistical character-
istics of the system. We then give approximations for key performance metrics like the number
of active users, transfer delays and user throughputs.

Throughout the section we continue to assume exponentially distributed flow sizes with unit
mean, so that stability corresponds to positive recurrence of the Markov process N(t) rep-
resenting the active user population. In case the process N(t) is not positive-recurrent, a
restricted version (Nk(t))k∈L, L ⊆ {1, . . . ,K}, may still be ‘stable’ in a certain sense. Such a
restricted version will however not be a Markov process in general, and the notion of positive
recurrence may not readily apply. Therefore the process (Nk(t))k∈L will be called ‘stable’ if
for any ε > 0, there exists a finite set Sε such that

P((Nk(t))k∈L /∈ Sε) ≤ ε for all t,

and otherwise the process is said to be unstable.

3.1 Partially decreasing service allocations

In wireless networks, the feasible service rates at a given BS typically decrease in a complex
way when neighboring BS’s are active due to mutual interference. As a result, the service rate
of a given class will usually decrease with the number of active users of competing classes in
other cells. Motivated by the above observations, we will assume that the allocation function
satisfies a natural monotonicity property. Specifically, the allocation function φ(·) is said to be
partially decreasing if for all i,

φi(n) ≥ φi(m) for all n ≤ m such that ni = mi.

Implicitly we assume here that a BS is always on as long as there are any active users in the
cell. (The interference between cells in fact provides a potential incentive to turn off BS’s,
even when there are users to serve, and coordinate the activity patterns of interfering BS’s,
see for instance [9, 10].) We do not make any further assumptions on the specific form of the
allocation function, which tends to be quite intricate and strongly depends on the particular
properties of the channel-aware scheduling policy, the fading behavior and the propagation
characteristics.
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Note that any component-wise decreasing function is partially decreasing, and any function
φ(·) such that φi(n) only depends on ni, is also partially decreasing. Importantly, a multi-class
birth-death process with constant birth rates and bounded state-dependent death rates φi(·) is
monotone if and only if the function φ(·) is partially decreasing. Recall that a continuous-time
Markov process N(t) is said to be monotone if E{f(N(t))|N(0) = n} is increasing for all t in
the initial state n for any bounded increasing function f(·).
The fact that the allocation function φ(·) is partially decreasing, allows us to establish stability
by inductively comparing the process with decoupled versions of it, and determining stability
conditions for each of the components.
Define the death rates `lφi by the lower partial limits

`lφi(n1, . . . , nl) := lim
r→∞

inf
nl+1,...,nK>r

φi(n1, . . . , nK). (2)

The quantity `lφi(n1, . . . , nl) represents the asymptotically worst-case service rate received by
class i in a partially saturated system where the numbers of users of classes l + 1, . . . ,K tend
to infinity. Let Y l(t) be an l-dimensional birth-death process with birth rates λi and death
rates `lφi, which may intuitively be interpreted as a partially saturated version of the process
N(t), where classes 1, . . . , l are allocated the asymptotically worst-case service rates. Also,
define

Lli(λ1, . . . , λl;φ) :=
∑
n∈Nl

`lφi(n)πl(n),

if Y l(t) has a unique stationary distribution πl, and set Lli(λ1, . . . , λl;φ) := 0 otherwise. The
quantity Lli(λ1, . . . , λl;φ) represents the worst-case average service rate received by class i in a
partially saturated system where the numbers of users of classes l + 1, . . . ,K tend to infinity.
For notational convenience, denote Lli(λ1, . . . , λl;φ) := `0φi for l = 0.

Proposition 3.1 Assume the allocation function φ(·) is bounded and partially decreasing and
that there exists an l such that

λi < Li−1
i (λ1, . . . , λi−1;φ) (3)

for all i = 1, . . . , l. Then each of the processes N1(t), . . . , Nl(t) is stable, regardless of the initial
state.

Remark 3.1 Because of the partial monotonicity of φ(·), the sequence j → Lji (λ1, . . . , λj−1;φ)
is increasing. Hence, if the network is completely symmetric, in the sense that the service
rates and the arrival rates of all classes are equal, then the stability region boils down to
λ̄ ≡ λi < `0φi ≡ φ̄ for all i.

3.2 Partially decreasing service allocations with uniform limits

In the previous subsection we made the assumption that the allocation function φ(·) is partially
decreasing. In this subsection, we additionally impose the assumption that the allocation
function has uniform limits as the numbers of users of some of the classes tend to infinity.
Specifically, an allocation function φ(·) is said to have uniform limits at infinity if for all i:

1. There exists a constant φ0
i such that supn∈NK :n1,...,nK>r |φi(n)− φ0

i | → 0 as r →∞.

11



2. For any k = 1, . . . ,K − 1 and any permutation σ on {1, . . . ,K}, there exists a function
φl,σi : Nl → R such that supn∈NK :nσ(k+1),...,nσ(K)>r

|φi(n) − φl,σi (nσ(1), . . . , nσ(l))| → 0 as
r →∞.

For example, if the allocation function φ(·) is of the form φi(n) = gi(ni)h(n), where gi(·) has a
limit at infinity, while h(·) is a (component-wise) decreasing function accounting for the mutual
interference, then φi(·) has a uniform limit. If φ(·) has uniform limits, then the partial lower
limits `lφ defined in (2) become true limits in the sense that φ(n1, . . . , nK) → `lφ(n1, . . . , nl)
uniformly over n1, . . . , nl as min{nl+1, . . . , nK} → ∞.

Proposition 3.2 Assume the allocation function φ(·) is bounded and partially decreasing with
uniform limits at infinity. Assume that there exists an index l such that

λi < Li−1
i (λ1, . . . , λi−1;φ) for all i ≤ l,

λi > Lli(λ1, . . . , λl;φ) for all i > l.

Then the process (Nl+1(t), . . . , NK(t)) is unstable, regardless of the initial state.

Applying Proposition 3.1 to all possible permutations of the classes yields sufficient conditions
for the global stability of the system, i.e., the positive recurrence of the Markov process N(t).
Proposition 3.2 demonstrates that these conditions are also ‘nearly’ necessary: the system is
unstable outside the closure of the set defined by the sufficient conditions (3).

The above propositions show that the stability of a system with K user classes can be expressed
in terms of the stationary distributions of a reduced system with K−1 classes. These stationary
distributions might be sensitive to subtle properties of the allocation function φ(·), which
illuminates the difficulty of characterizing the exact stability region for heterogeneous networks.
Consider for example a two-cell network with allocation function φi(x) = gi(xi)hi(xj). This
particular form of allocation function arises in case of two interfering BS’s operating according
to a channel-aware scheduling discipline. The functions hi(·) capture the interference between
the two BS’s, and the functions gi(·) reflect the scheduling gain, which increases with the
number of users due to multiuser diversity. Figure 1 shows the service rate vectors for various
numbers of users in each cell, and the frontier of the stability region for two types of allocation
functions φ(·) and ψ(·) given by:

φi(n) = min(3, log(1 + ni))(1nj>0 + 0.5 · 1nj>0), j 6= i,

ψi(n) = min(3, log(1 + ni))
1

2− (1 + j)−0.4
, j 6= i.

In the first scenario, the interference reduces the service rates by a factor 2 as soon as the
number of users in the interfering cell is strictly positive. In the second case, the interference
is smoother and the impact on the service rates increases with the number of active users in
the interfering cell.
The resulting stability regions are not convex and depend in a complicated way on the tradeoff
between interference and the gain from channel-aware scheduling. Note that operating the
network in the most symmetric fashion (equal arrival rates in each cell) is optimal in the first
scenario but not in the second case where the arrival rates maximizing the total traffic that
the network can support are non-trivial.
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Figure 1: State-dependent service rates and the corresponding stability region.

With an arbitrary number of K user classes, the global stability region involves K! sets of
conditions in general. However, depending on the topology and possible symmetries, the
number of conditions can possibly be reduced. Consider for example a 3-cell linear network.
Suppose that cell 1 is in the middle and interferes with cells 2 and 3, while cells 2 and 3
interfere only with cell 1. To simplify notation, denote by φAi the service rate received by cell i
when cells outside A ⊆ {1, 2, 3} are supposed to be saturated and cells in A are supposed to
be stationary. The stability conditions boil down to:

λ1 < φ∅1, λ2 < φ
{1}
2 , λ3 < φ

{1}
3 ,

or λ2 < φ∅2, λ1 < φ
{2}
1 , λ3 < φ

{1}
3 ,

or λ2 < φ∅1, λ3 < φ∅3, λ1 < φ
{2,3}
1 ,

or λ3 < φ∅3, λ1 < φ
{3}
1 , λ2 < φ

{1}
2 .

The proof of Propositions 3.1 and 3.2 developed in [24] relies both on stochastic comparisons
and martingale arguments, and does not involve specific Lyapunov functions. The knowledge of
a Lyapunov function provides however valuable insight into the type and speed of convergence
of the process to its stationary distribution [51]. Following [39], we now give a construction
of a Lyapunov function in the simplest case of two user classes. The construction sheds some
light on the difficulty of making such functions explicit, as they should depend on the specific
properties of the allocation function φ(·). The construction of the Lyapunov function relies
on solving a Poisson equation. For that purpose, suppose without loss of generality that
λi + φi(n) < 1, i = 1, 2, for all n ∈ N2 and define P as the kernel of a one-dimensional Markov
process with transition rates

p(n1, n1 + 1) = λ1, p(n1, n1 − 1) = `1φ1(n1), p(n1, n1) = 1− (λ1 + `1φ1(n1)).

Proposition 3.3 If
λ1 < `0φ1 and λ2 < L1

2(λ1),

then a Lyapunov function for the system is given by

F (n) := ψn1 + γ[n2 + V (n1)].

with ψ > 1, γ > 0 some constants to be chosen and V (·) a bounded function defined as the
solution of the Poisson equation (I − P )V = λ2 − `1φ2 + ε, with ε := L1

2(λ1)− λ2.
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3.3 Bounds for the stability conditions and performance

In this subsection, we use further stochastic comparisons to derive bounds for the stability
conditions and the performance that are far simpler to compute. Recall that Y l(t) is the
l-dimensional birth-death process with birth rates λi and death rates `lφi, i = 1, . . . , l. The
partial monotonicity of the allocation function implies that

(N1, . . . , Nl) ≤st (Y l
1 , . . . , Y

l
l ).

This stochastic comparison has yielded the stability conditions in Proposition 3.1. However,
the stability conditions obtained can be difficult to compute, since they involve the calculation
of the stationary distribution πl of the l-dimensional process Y l(t), which does not have a
closed form in general unless l = 1. Using the fact that `lφi is partially decreasing, i = 1, . . . , l,
however, we can derive a looser stochastic comparison, namely

(N1, . . . , Nl) ≤st (Y l
1 , . . . , Y

l
l ) ≤st (Ỹ l−1

1 , . . . , Ỹ l−1
l−1 , Ñl), (4)

where the process (Ỹ l−1, Ñl) has death rates φii(ni), i = 1, . . . , l − 1, and `lφl, with

φii(ni) = lim
r→∞

inf
nj>r,j 6=i

φi(n1, . . . , nK).

Note that with these modified death rates, the processes Ỹ j = (Ỹ j
1 , . . . , Ỹ

j
j ) are themselves

Markov processes for all j. Moreover, all their components decouple, leading to the following
stationary distribution

π̃j(n1, . . . , nj) :=
1
Gj

j∏
i=1

ni∏
mi=1

λi
φii(mi)

,

with Gj :=
∑

n1,...,nj∈Nj
∏j
i=1

∏ni
mi=1

λi
φii(mi)

. Defining

L̃i−1
i (λ1, . . . , λi−1;φ) :=

∑
n1,...,ni−1

`i−1φi(n1, . . . , ni−1)π̃i−1(n1, . . . , ni−1),

we obtain the following simple sufficient stability condition.

Proposition 3.4 If λj < L̃j−1
i (λ1, . . . , λi−1;φ) for all j = 1, . . . , l, then the process (N1(t), . . . , Nl(t))

is stable.

Proof By virtue of the stochastic dominance and the fact that the allocation function φ(·) is
partially decreasing, we obtain∑

n1,...,ni−1

`i−1φi(n1, . . . , ni−1)π̃i−1(n1, . . . , ni−1) ≤ Li−1
i (λ1, . . . , λi−1;φ).

Thus the condition in (3) is implied by the inequality λi < L̃i−1
i (λ1, . . . , λi−1;φ). 2

Remark 3.2 Note that the bounds are insensitive to the flow size distribution. Also, the
bounds coincide with the exact stability conditions in case of two user classes.

Remark 3.3 Note that the bounds extend to scenarios with several user classes per cell, as
long as the correlations between service rates depend on the total number of users per cell only.
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Using (4), the number of users (of class k, say) Nk can be bounded by a process Ñk having death
rates `kφk(Ỹ k−1, Ñk), where Ỹ k−1 has been defined above and is not influenced by Ñk. Here we
would index the classes in such a manner that class k interferes with classes 1, . . . , k−1, but not
with classes k+1, . . . ,K. Unfortunately, this does not lead directly to closed-form bounds. The
difficulty arises from the fact that Ñk behaves as a birth-death process driven by a random
environment Ỹ k−1, which is intractable in general. Hence, we introduce approximations of
the bounds along the lines of [14, 32], based on two limit regimes, termed fluid and quasi-
stationary, where the process Ỹ k−1 evolves on an infinitely fast and an infinitely slow time
scale, respectively. Specifically, we consider a family of systems, parametrized by s ∈ (0,∞)
and obtained by accelerating the process Ỹ k−1(t) by a factor s, i.e., replacing the process
Ỹ k−1(t) by Ỹ k−1(s× t).

Quasi-stationary regime The quasi-stationary regime is obtained when the acceleration
factor s tends to 0. In the limit for s→ 0, the process Ỹ k−1(t) is frozen to its initial state. Thus
the quasi-stationary regime corresponds to a scenario where the process Ỹ k−1(t) is constant
and equal to (n1, . . . , nk−1) with probability π̃k−1(n1, . . . , nk−1).
Assuming λk < inf(n1,...,nk−1)∈Nk−1 lim infnk→∞ `

kφk(n1, . . . , nk−1, nk), we obtain the distribu-
tion of the number of active class-k flows in the quasi-stationary regime:

p
qs

k (nk) =
∑

(n1,...,nk−1)∈Nk−1

π̃k−1(n1, . . . , nk−1)p
qs

k (nk|n1, . . . , nk−1),

with

p
qs

k (nk|n1, . . . , nk−1) = G
qs

k (n1, . . . , nk−1)
nk∏
m=1

λk
`kφk(n1, . . . , nk−1,m)

,

and G
qs

k (n1, . . . , nk−1) :=
(∑∞

n=0

∏n
m=1

λk

`kφ
(
kn1,...,nk−1,m)

)−1

.

Fluid regime The fluid regime is obtained when the acceleration factor s tends to ∞. In
the limit for s → ∞, the process Ỹ k−1(t) evolves so rapidly that when there are nk class-k
users, their total service rate is constant and equal to

φ̄
fl

k (nk) =
∑

(n1,...,nk−1)∈Nk−1

π̃k−1(n1, . . . , nk−1)`kφk(n1, . . . , nk−1, nk).

Assuming λk < lim infnk→∞ φ̄
fl

k (nk), we derive the distribution of the number of active class-k
flows in the fluid regime

p
fl

k (nk) = G
fl

k

nk∏
m=1

λk

φ̄
fl
k (m)

,

with G
fl

k :=
(∑∞

n=0

∏n
m=1

λk

φ̄
fl
k (m)

)−1

.

A question of importance is whether these quasi-stationary and fluid regimes provide actual
bounds for the orginal upper bounds. From studies on single-class PS queues with time-
varying capacity [32], the performance in the quasi-stationary (resp. fluid) regime is worse
(resp. better) than that of the actual system. Numerical results in [7] lend further support to
that observation. Thus, the quasi-stationary regime of the upper bound Ñk is likely to be an
upper bound for the actual number of active flows Nk.
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4 Intra- and inter-cell mobility

So far we have assumed that the rate variations occur on a fast time scale and average out
over the time scale of interest for flow-level performance, only manifesting themselves in the
throughput gains obtained from channel-aware scheduling. We now turn attention to a scenario
where the fluctuations may have a slowly varying component. This component may correspond
to the variations in the channel attenuation between BS’s and users due to user mobility. In
order to simplify the presentation, we ignore fast fading unless otherwise specified. The results
presented in this section can be readily extended to account for fast fading. We no longer
include time-varying inter-cell interference. Finally, we assume that the scheduling strategies
operate on a faster time scale (of the order of ms) than that of user mobility (of the order of
several seconds). The results presented in this section offer a summary of those in [8, 21,22].

4.1 Mobility model

In order to model user mobility, it is convenient to adopt a ‘state structure’, with the users
moving among several possible states indexed by a finite set I. The states implicitly correspond
to geographic subregions of the network. The latter is divided into a set B of cells, and we
denote by Ib the set of states corresponding to subregions in cell b, i.e., where users are served
by BS b. When in state i ∈ Ib, a user is served at rate Ci when scheduled by BS b.
We categorize users according to their mobility. Specifically, we consider a system withK traffic
classes. We denote by Xkm(t) the state of the m-th arriving class-k user, and by Fkm its flow
size. (For notational convenience, we define Xkm(t) for all values of t. Note however that the
m-th class-k user may not have arrived yet or may already have departed at time t, in which
case Xkm(t) is inconsequential.) We assume that Fkm and Xkm(t), m = 1, 2, . . . , are i.i.d.
copies of an exponential random variable Fk with mean ξk and a Markovian stationary and
ergodic process Xk(t) with state space I, respectively. Denote by Rk(t) = CXk(t) the generic
rate process for class k. Define πi,k := P{Xk(t) = i} as the stationary probability for a class-k
user to be in state i, and Jk := {i ∈ I : πi,k > 0} as the set of states in which a class-k
user may reside. Define pk,b :=

∑
i∈Ib πi,k as the stationary probability that a class-k user is

in cell b. Finally, denote by Bk := {b ∈ B : pk,b > 0} the set of cells that class-k users may
visit. Users of classes 1, . . . ,K generate flows according to independent Poisson processes of
intensities λ1, . . . , λK , respectively, and we denote by σk := λkξk the traffic intensity of class-k
users.
We first provide stability conditions that depend on the scheduling strategy, and then derive
bounds for the transfer delays using stochastic comparison methods.

4.2 Stability

We now determine the set of all traffic vectors (σ1, . . . , σK) such that the system is stable.
This set depends, as we will see, on the underlying scheduling strategy. We first investigate
strategies that maximize the stability region, and then consider α-fair schedulers.

4.2.1 Optimal scheduling strategies

We first determine the capacity region for optimal scheduling strategies. In other words, we
characterize the set of all traffic vectors (σ1, . . . , σK) for which there exists a scheduling strategy

16



that achieves stability. Define:

T := {(τi,k)i∈I,k=1,...,K ∈ R(|I|×K)
+ : τi,k = 0 if i 6∈ Jk, and

K∑
k=1

∑
i∈Ib∩Jk

τi,k = 1,∀b ∈ B},

R := {(r1, . . . , rK) ∈ RK
+ : ∃τ ∈ T such that rk ≤

∑
i∈I

τi,kCi, ∀k = 1, . . . ,K}.

The component τi,k, i ∈ Ib, may be interpreted as the fraction of resources of BS b allocated
to class-k users in state i. With that interpretation, the quantity

∑
i∈I τi,kCi represents the

total service rate received by class-k users. Thus, R may be interpreted as the achievable rate
region, i.e., the set of all achievable service rates for the various traffic classes.
Note that R is a convex set and depends on the spatial user distributions through the sets Jk
only.

Proposition 4.1 There exists a scheduling strategy that achieves stability if (σ1, . . . , σK) ∈
int(R). Conversely, if (σ1, . . . , σK) 6∈ R, then there exists no scheduling strategy that achieves
stability.

Proof Assume (σ1, . . . , σK) ∈ int(R). Then there exists a vector (τi,k)i,k ∈ T such that
σk <

∑
i∈I τi,kCi for all k = 1, . . . ,K. Now consider a static scheduling strategy that allocates

in cell b a fixed fraction τi,k, i ∈ Ib of the resources to class k in that cell. By considering the
system in the fluid limit, it can be shown that this strategy achieves stability. The converse
statement follows from the convexity of R. If (σ1, . . . , σK) /∈ R, then by convexity of R, there
exists a linear hyperplane H containing (σ1, . . . , σK) defined by

∑K
k=1 akσk = d, with ak, d > 0,

such that there exists an ε > 0 with
∑K

k=1 akrk < d − ε for all rate vectors (r1, . . . , rK) ∈ R.
Thus, in the fluid limit, the quantity

∑K
k=1 akn̄k(t), where n̄k(t) is the number of active class-k

users at time t in the fluid limit, will continuously grow at least at rate ε, which implies that
the system is unstable. 2

Example 4.1 (Single traffic class) If there is just a single traffic class, i.e., K = 1, then,
dropping the class index k, R = {r ∈ R+ : ∃τ ∈ T such that r <

∑
i∈I τiCi}, which may be

represented in a more compact manner as R = [0, rmax), with rmax :=
∑

b∈Bmax
i∈Ib

Ci.

Example 4.2 (Intra-cell mobility only) If there is intra-cell mobility only, i.e., each of the
sets Bk is just a singleton, then R = {(r1, . . . , rK) ∈ RK

+ :
∑

k:Bk={b}
rk/C

max
k ≤ 1,∀b ∈ B}, where

Cmax
k := max

i∈Jk
Ci denotes the highest transmission rate of class-k users.

Note that in both the above two examples the BS only serves classes in their most favorable
state within the cell.

4.2.2 α-fair resource sharing

We now assume that each BS implements an α-fair scheduling discipline, independently of the
behavior of other BS’s. Thus when there are ni,k class-k users in state i, i ∈ Ib, each of them

receives service at rate C
1/α
iPK

l=1

P
j∈Ib

nj,lC
1/α−1
j

.
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Define

Rα := {(r1, . . . , rK) ∈ RK
+ : ∃θ ∈ RK

+ such that

rk ≤
∑
b∈B

∑
i∈Ib πi,kθkC

1/α
i∑K

l=1

∑
j∈Ib πj,lθlC

1/α−1
j

,∀k = 1, . . . ,K}.

Note that the vector (τi,k) with τi,k = πi,kθkC
1/α−1
iPK

l=1

P
j∈Ib

πj,lθlC
1/α−1
j

, i ∈ Ib, belongs to the set T , so

that Rα ⊆ R.
The components of the vector (θ1, . . . , θK) may be interpreted as the numbers of flows of the

various classes. With that interpretation, the quantity
∑

b∈B

P
i∈Ib

πi,kθkC
1/α
iPK

l=1

P
j∈Ib

πj,lθlC
1/α−1
j

represents

the total service rate received by class-k flows under an α-fair sharing strategy.
The region Rα has a non-linear boundary in general, and may either be convex or non-convex,
depending on the values of the probabilities πi,k and the rates Ci, see Example 4.5 for a
graphical illustration.
The next proposition provides a characterization of the capacity region in case of α-fair resource
sharing, assuming exponential service requirements. It states that the system is stable if and
only if there exists a relative distribution of the numbers of flows across the various classes
so that the total service rate received by each of the traffic classes is larger than the traffic
intensity of that class.

Proposition 4.2 If (σ1, . . . , σK) ∈ int(Rα), then the system is stable. If (σ1, . . . , σK) 6∈ Rα,
then the system is unstable.

Proof The proof relies on the consideration of fluid limits [31], where systems with a large
population of flows are considered. In such limiting systems, it can be shown that the total
service rate received by class-k flows is given by:

rk(t) =
∑
b∈B

n̄k(t)Aαk,b∑K
l=1 n̄l(t)B

α
l,b

, (5)

for n̄k(t) > 0, and where

Aαk,b =
∑
i∈Ib

πi,kC
1/α
i , Bα

k,b =
∑
i∈Ib

πi,kC
1/α−1
i .

In the above formula, n̄k(t) denotes the number of class-k flows at time t. The proof of (5) is
standard when a single cell is considered, but involves a spatial homogeneity property in the
case of networks with several cells. Intuitively, one can justify this formula by observing that
when the number of class-k flows is very large then at any instant, the number of such flows
in state i should be πi,kn̄k(t). This statement can be formally justified as in [56].
The evolution of the fluid limit is characterized by the following set of differential equations:

∀k, d

dt
n̄k(t) = λk − µk × rk(t),

where µk := 1/ξk.
Sufficient stability condition
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Assume that (σ1, . . . , σK) ∈ int(Rα). Then there exists a vector (θ1, . . . , θK) ∈ RK
+ such that

λk < µk
∑

b∈B
θkA

α
k,bPK

l=1 θlB
α
l,b

− ε for ε > 0 sufficiently small for all k = 1, . . . ,K. We now consider

the quantity y(t) := maxk=1,...,K n̄k(t)/θk and show that it will continuously decrease at a
strictly negative rate.
Denote k∗ := arg maxk=1,...,K n̄k(t)/θk, where the implicit dependence on t is suppressed. Then:

d

dt
n̄k∗(t) = λk∗ − µk∗

∑
b∈B

n̄k∗(t)Aαk∗,b∑K
l=1 n̄l(t)B

α
l,b

= λk∗ − µk∗
∑
b∈B

Aαk∗,b∑K
l=1B

α
l,bn̄l(t)/n̄k∗(t)

< λk∗ − µk∗
∑
b∈B

Aαk∗,b∑K
l=1B

α
l,bθl/θk∗

= λk∗ − µk∗
∑
b∈B

Aαk∗,bθk∗∑K
l=1B

α
l,bθl

< ε,

whenever n̄k∗(t) > 0. We conclude that the fluid limit reaches zero in finite time, and hence
the system is stable [31].
Necessary stability condition
Denote by ∂Rα the boundary of Rα, i.e., r ∈ ∂Rα if r ∈ Rα and there exists a k such that
∀ε > 0, r + ε.ek /∈ Rα. This boundary is the union of the surfaces ∂RαL over all non-empty
subsets L of {1, . . . ,K}, with:

∂RαL =
{
r ∈ RK

+ : ∃θ ∈ R|L|+ ,∃θ′ ∈ R|L̄|+ ,

∀k ∈ L, θk > 0, rk =
∑
b∈B

θkA
α
k,b∑

l∈L θlB
α
l,b

,

∀k ∈ L̄, rk ≤
∑
b∈BL

θ′kA
α
k,b∑

l∈L̄ θ
′
lB

α
l,b

}
,

where L̄ = {1, . . . ,K}\L and BL denotes the set of cells that are not visited by users of classes
in the set L. The surface ∂RαL is the set of points of Rα parametrized by θ such that ∀k ∈ L,
∀l ∈ L̄, θk � θl. It is worth remarking that ∂RαL is part of a cylinder with directions parallel
to the components in L̄, i.e., if r is a point of this surface, then r′ = (rk, k ∈ L, r′l, l ∈ L̄) is
also a point of this surface provided that for all l ∈ L̄, 0 ≤ r′l ≤ rl. It is also important to
note that in the definition of ∂RαL, we can choose θ ∈ R|L|+ with strictly positive components;
this is because the points obtained when some of the components of this θ are equal to 0, are
included in some other surfaces with a different set L.
We now prove that the system is unstable by induction on the number K of flow classes. The
result holds for K = 1. Assume that it is true for all systems with at most K − 1 classes. Let
us prove it in the case of K-class systems. Assume that σ = (σ1, . . . , σK) /∈ Rα. Without loss
of generality, we can assume that σk > 0 for all k = 1, . . . ,K. Now define γ as the maximum
real number such that γ × σ ∈ Rα. By assumption, γ < 1. Of course, we have γ × σ ∈ ∂Rα,
and there exists a set of classes L such that γ × σ ∈ ∂RαL. We consider two cases:
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(i) If L = {1, . . . ,K}, then we deduce that there exists θ ∈ RK
+ such that θk > 0 for all

k = 1, . . . ,K and:

σk >
∑
b∈B

θkA
α
k,b∑K

l=1 θlB
α
l,b

.

We deduce that the system is unstable. Indeed one can easily show that the fluid limit grows
at least linearly to ∞.
(ii) Otherwise, we consider the restricted system where the classes in L̄ have no traffic. Note
that the restricted system provides a stochastic lower bound of the actual system (this is due
to the fact that all the systems considered are monotonic [14]). Hence we just need to prove
that the restricted system is unstable. Note that the projection of ∂RαL on the sub-space of L
components is actually the boundary of the set RαL defined by:

RαL =
{
r ∈ R|L|+ : ∃θ ∈ R|L|+ , ∀k ∈ L, rk ≤

∑
b∈B

θkA
α
k,b∑

l∈L θlB
α
l,b

}
.

Since ∂RαL is a cylinder, we deduce that (σk, k ∈ L) /∈ RαL, and finally that the restricted
system is unstable by induction. 2

Example 4.3 (Single traffic class) If there is just a single traffic class, i.e., K = 1, then
Rα = [0, rαmax) with, dropping the class index k, rαmax :=

∑
b∈B Cb, with

Cb :=
∑

i∈Ib πiC
1/α
i /

∑
j∈Ib πjC

1/α−1
j .

Example 4.4 (Intra-cell mobility only) If there is intra-cell mobility only, i.e., each of
the sets Bk is just a singleton, then Rα = {(r1, . . . , rK) ∈ RK

+ :
∑

k:Bk={b}
rk/C

ave
k ≤ 1, ∀b ∈ B},

where Cave
k :=

∑
i∈Jk πi,kCi denotes the average rate coefficient of class-k flows.

In both the above two examples it is easily seen that the capacity region Rα decreases when
the value of the fairness index α increases, which in fact holds in greater generality as will be
shown in Proposition 4.3 below.

Example 4.5 (A 3-cell 3-class network) In general, the capacity region Rα has non-linear
boundaries and its shape turns out to be rather intricate. We present an example of a three-cell
three-class network to illustrate how astonishing this shape can be. There are five states, with
C1 = C4 = C5 = 2, C2 = C3 = 1, I1 = {1, 2}, I2 = {3, 4}, and I3 = {5}. Class-1 users
oscillate between states 1 and 3 with probability 0.1 to be in state 1, class-2 users between
states 2 and 4 with probability 0.9 to be in state 2, and class-3 users between states 2 and 5,
with equal probability to be in each state. Figure 2 depicts R1, i.e., the capacity region for the
PF strategy, and indicates the various surfaces ∂RL1 composing the boundary of R1.

4.2.3 Impact of scheduling

It is worth observing that the stability region Rα depends on the fairness index α, i.e., on the
scheduling discipline, even in the simple case of single-cell single class systems. This contrasts
with the case where users are not moving (see § 4.2.4). The next proposition, whose proof can
be found in [22], states that the stability region actually grows monotonically as the value of α
decreases.

Proposition 4.3 If α′ ≥ α then Rα′ ⊆ Rα.
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Figure 2: Capacity region R1 of a three-cell three-class network with mobility under the PF
strategy.

4.2.4 Mobility increases stability

Let us first provide the stability region in the case where users are not moving, i.e., the state
of a user is assumed to be fixed for the duration of the flow, and the probability that a class-k
user is in state i is ψi,k. Consider systems where the scheduling discipline implemented at each
BS is arbitrary but work-conserving, i.e., each BS is active whenever there is a user in the
corresponding cell. It can be easily shown that the stability region without mobility does not
depend on the scheduling discipline and simplifies to

Rno := {(r1, . . . , rK) ∈ RK
+ : ∃τ ∈ T such that ψi,krk < τi,kCi, ∀i ∈ I, k = 1, . . . ,K},

which may be represented in a more compact manner as

Rno = {(r1, . . . , rK) ∈ RK
+ :

K∑
k=1

∑
i∈Ib

ψi,krk/Ci < 1,∀b ∈ B}.

To compare the stability regions with and without mobility, it makes sense to assume that for
all k, i, πi,k = ψi,k. The next proposition first states that the stability region with mobility
is larger than that without mobility as long as the scheduling discipline is left flexible, which
agrees with findings in the context of ad-hoc mobile networks [35]. It further states that this
observation also remains valid for α-fair scheduling strategies. Its proof can be found in [22].

Proposition 4.4 We have:

Rno ⊆ R, and for any α > 0, Rno ⊆ Rα.

4.3 Transfer delays

With user mobility, the network may be interpreted as a system of (PS) queues with state-
dependent and time-varying capacities, and not surprisingly, it proves impossible to obtain
exact expressions for the transfer delays (even the average values). In this subsection, we
develop a method, based on stochastic comparison techniques, to derive upper and lower
bounds for transfer delays. We restrict our attention to intra-cell mobility, and consider the
class of schedulers such that the service rate of a class-k user in state i is of the form:

Ci ×Hk(n1, . . . , nK),
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where as before nk denotes the number of active class-k users. For any k, the function
Hk(·) is decreasing in each of the nj ’s, j = 1, . . . ,K. Note that the above form does not
apply for α-fair schedulers, except the PF strategy (α = 1), for which Hk(n1, . . . , nK) =
G(
∑K

k=1 nk)/(
∑K

k=1 nk). For general α-fair schedulers, we believe that the results remain
valid, but the proof will require a different approach.

4.3.1 Limiting regimes

In order to obtain tractable performance estimates, we introduce two limit regimes, termed fluid
and quasi-stationary regime, where the rate processes evolve on an infinitely fast and an in-
finitely slow time scale, respectively. Formally, let us consider a family of systems, parametrized
by s ∈ (0,∞), where the generic rate process for class k is R(s)

k (t) := Rk(st). Thus the pa-
rameter s represents the ‘speed’ of the rate process. Or equivalently, the value 1/s models the
time scale of the rate process. In the case where Xk(t) is a Markov process, the process R(s)

k (t)
may be obtained by scaling the transition rates with s.
When the parameter s grows large, the rate process approximately averages out over the time
scale of the flow dynamics. In the limit for s→∞, the variations completely vanish, and the
rate process reduces to a constant, giving rise to the ‘fluid’ regime with Rfl

k(t) := R
(∞)
k (t) = R̄k,

where R̄k := E{Rk(0)}. It is worth observing that the fluid regime is reminiscent of (but
different from) the usual law-of-large-numbers fluid limit. On the other hand, as the value
of s becomes small, the fading process remains roughly constant over the time scale of the flow
dynamics. In the limit for s→ 0, the changes completely disappear, and the rate process freezes
in some initial state, yielding the ‘quasi-stationary’ regime with Rqs

k (t) := R
(0)
k (t) = Rk(0),

where Rk(0) has the stationary marginal distribution of the process Rk(t).
For example, for the PF strategy, the fluid and quasi-stationary regimes yield tractable ex-
pressions for the transfer delays. Define the traffic intensities associated with class k in the
fluid and quasi-stationary regimes as ρfl

k := λkξk/R̄k and ρqs
k := λkξkE{1/Rk(0)}, respectively.

Note that these values depend on the rate statistics only through the arithmetic and harmonic
means, respectively. By Jensen’s inequality, we have ρfl

k ≤ ρqs
k . Denote by ρfl :=

∑K
k=1 ρ

fl
k and

ρqs :=
∑K

k=1 ρ
qs
k the total traffic intensities in the fluid and quasi-stationary regimes, respec-

tively. With the above translation to a multi-class PS system (without time-varying capacities),
the performance in the fluid and quasi-stationary regimes may be explicitly evaluated using
results of Subsection 2.1. In particular, a necessary and sufficient condition for stability of
the fluid (respectively, quasi-stationary) regime is ρfl < G∗ (respectively, ρqs < G∗). When
the system is stable, the stationary distributions πfl and πqs of the numbers (n1, . . . , nK) of
active flows of the various classes in the respective regimes depend on the class characteristics
through the traffic intensities ρfl

k and ρqs
k , respectively, only:

πfl(n1, . . . , nK) = πfl(0)
n

φ(n)

K∏
k=1

(ρfl
k)nk

nk!
,

πqs(n1, . . . , nK) = πqs(0)
n

φ(n)

K∏
k=1

(ρqs
k )nk

nk!
,

where n :=
∑K

k=1 nk, φ(n) :=
n∏
i=1

G(i), and πfl(0) and πqs(0) are determined by the respective

normalizing conditions.
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4.3.2 Stochastic comparisons

We now prove that under rather mild assumptions, the fluid and quasi-stationary regimes
yield lower and upper bounds for the performance of the system with user mobility. The
reason why these two regimes provide bounds is because - informally speaking - the adverse
impact of getting stuck in a bad state for a long time far outweighs the beneficial effect of
residing in a good state for a long period, and rapid averaging is the most favorable situation.
Under additional assumptions, we actually show the stronger property that the performance
improves when the speed parameter s is increased.
Define the total workload of the system at time t as:

W (t) =
K∑
k=1

Nk(t)∑
j=1

Fkj(t)
R̄k

,

where Nk(t) denotes the number of active class-k users at time t, and Fkj(t) is the remaining
size of active class-k flow j at time t. We also denote by W , Nk, and Sk the workload, the
number of class-k flows, and the class-k transfer delay in equilibrium (with some abuse of
notation, we assume that these quantities are infinite when the system is unstable). Similarly,
we introduce W

fl
, W

qs
, W (s), N

fl

k , N
qs

k , N (s)
k , S

fl

k , S
qs

k , S(s)
k .

Assumption 4.1: The cumulative distribution function P (·) = P{Fk ≤ ·} of class-k flow sizes
is concave.
Assumption 4.2: The rate process of class-k users is a homogeneous stationary Markov process.
The transition kernels Q and Qr of the rate process and of its time-reversed process are st-
monotone in the following sense: for all increasing functions f(·), x 7→

∫
f(u)Q(x, du) is also

increasing.

Proposition 4.5 Under Assumption 4.1, we have:

W
fl ≤icx W ≤icx W

qs
,

and for all k = 1, . . . ,K,
N

fl

k ≤st Nk ≤st N
qs

k ,

S
fl

k ≤st Sk ≤st S
qs

k .

Proposition 4.6 Under Assumptions 4.1 and 4.2, we have: for any s > 1,

W (s) ≤icx W,

and for all k = 1, . . . ,K,
N

(s)
k ≤st Nk, S

(s)
k ≤st Sk.

In the above propositions, ≤st and ≤icx denote the strong and icx stochastic orders (for two
r.v. X and Y , we have X ≤icx Y if and only if for all increasing and convex functions f(·) such
that E{f(Y )} < ∞, E{f(X)} ≤ E{f(Y )}). In order to illustrate the methods used to prove
the above propositions, we next provide the proof of Proposition 4.5 (the proof of Proposition
4.6 is given in [8]).
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4.3.3 Proof of Proposition 4.5

We prove the inequalities of Proposition 4.5 for the workload W (t), the number of class-k
flows Nk(t) at time t, and the transfer delay S of an arbitrary flow, in a system initially empty.
The results in equilibrium are deduced using classical results about the stability of the strong
stochastic order by limits, and for the workload, using the monotonicity property of Loynes’
construction (the icx order is not stable by limits).
We first prove the inequalities in the following slotted system. The interval is divided into slots
such that the feasible rate of each flow is constant during each slot and equal to the feasible
rate at the beginning of the slot. We also assume that when a flow is present at the beginning
of a slot, it remains in the system during the entire slot. The inequalities for a non-slotted
system then follow from the fact that for L = 2p, p ≥ 1, the workload and the number of
class-k flows in a slotted system where the feasible rate of a flow during a slot is fixed at its
maximum in the slot (respectively, its minimum) converge monotonically to W (t) and Nk(t),
respectively, when p tends to ∞.
The proof is based on the notion of supermodular functions (see, e.g., [53]) and on the Lorentz
inequality [62]. To simplify the notation, we assume that Hk depends only on the total number
of active flows n, and that Hk(n) = G(n)/n. All proofs remain unchanged without this
convenient assumption.

Definition 4.1 (Supermodular functions) f : Rn → R is supermodular if and only if for all
x, y ∈ Rn, f(x ∨ y) + f(x ∧ y) ≥ f(x) + f(y), where (x ∨ y)i = xi ∨ yi and (x ∧ y)i = xi ∧ yi,
for all i = 1, . . . , n.

Lemma 4.1 (Lorentz inequality) Let Z1, . . . , Zn be identically distributed r.v.’s. For all su-
permodular functions f(·), E{f(Z1, . . . , Zn)} ≤ E{f(Z1, . . . , Z1)}.

Consider an arbitrary flow, say flow 1, that arrived at the beginning of slot l ∈ {1, . . . , L}.
Assume without loss of generality that flow 1 is of class 1. We fix the arrival process up to
slot L, the rate processes of all flows except flow 1, and the sizes of all flows except flow 1. We
denote by xj the feasible rate of flow 1 during slot j, by F1 the size of flow 1, and by E1 the
expectation with respect to the random variable F1. Let WL and Nk,L be the workload and
the number of class-k flows at the end of slot L, respectively. The key result is:

Lemma 4.2 For all k = 1, . . . ,K, E1 [f(WL)] and E1 [g(Nk,L)] are supermodular and con-
vex functions of (xl, . . . , xL), for all increasing and convex functions f(·) and all increasing
functions g(·).

Proof Let nj be the number of flows present during slot j, assuming that flow 1 is present
during this slot. Note that these numbers do not depend on (xl, . . . , xL) nor on F1. Let W 1

L

be the workload due to flow 1 at the end of slot L, i.e., the remaining size of flow 1 divided
by C1. As the transmission rate of flow 1 in slot j is xjG(nj)/nj , we have:

W 1
L =

1
C1

max

0, F1 −
L∑
j=l

xj
G(nj)
nj

 ,

which, composed with an increasing and convex function, is known to be supermodular and
convex in (xl, . . . , xL). Now let wj and nk,j be the workload and the number of active class-k
flows at the end of slot L, respectively, assuming flow 1 leaves the system at the end of slot j.
Note that these quantities do not depend on (xl, . . . , xL) nor on F1. We have:
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• If F1 ≤ xlG(nl)/nl, WL = wl and Nk,L = nk,l;

• for l′ = l + 1, . . . , L − 1, if
∑l′−1

j=l xjG(nj)/nj < F1 ≤
∑l′

j=l xjG(nj)/nj , WL = wl′ and
Nk,L = nk,l′ ;

• if F1 >
∑L−1

j=l xjG(nj)/nj , WL = wL +W 1
L and Nk,L = nk,L.

Averaging with respect to the size of flow 1, we obtain for all increasing and convex func-
tions f(·):

E1 [f(WL)] = (f(wl)− f(wl+1))P1

[
xl
G(nl)
nl

]

+ · · ·+ (f(wL−1)− f(wL))P1

L−1∑
j=l

xj
G(nj)
nj

+ f(wL)P1

L−1∑
j=l

xj
G(nj)
nj


+ E1

[
f(wL +W 1

L)I
{F1>

PL−1
j=l xj

G(nj)

nj
}

]
,

where P1 denotes the c.d.f. of F1. Note that the sum of the last two terms in the latter
expression is simply equal to E1

[
f(wL +W 1

l )
]
, which is a supermodular and convex function

of (xl, . . . , xL). In addition, it follows from Assumption 4.1 that for all m = l, . . . , L − 1, the
function

(xl, . . . , xL) 7→ −P1

 m∑
j=l

xj
G(nj)
nj

 ,

as the composition of an affine function and a convex function, is supermodular and convex. As
G(n)/n decreases in n, we have wl ≤ · · · ≤ wL, so that E1 [f(WL)], as the sum of supermodular
and convex functions, is supermodular and convex.
Similarly, we have for all increasing functions g(·):

E1 [g(Nk,L)] = (g(nk,l)− g(nk,l+1))P1

[
xl
G(nl)
nl

]

+ · · ·+ (g(nk,L−1)− g(nk,L))P1

L−1∑
j=1

xj
G(nj)
nj

+ g(nk,L).

As G(n)/n decreases in n, we have nk,l ≤ · · · ≤ nk,L. Thus E1 [g(Nk,L)], as the sum of super-
modular and convex functions, is supermodular and convex. 2

Now, for any function f(·), we have:

E{f(W fl1
L )} = E{E1 [f(WL)] (E{xl}, . . . ,E{xl})},

E{f(WL)} = E{E1 [f(WL)] (xl, . . . , xL)},

E{f(W qs1
L )} = E{E1 [f(WL)] (xl, . . . , xl)},

where fl1 (resp. qs1) denotes the fluid (resp. quasi-stationary) regime with respect to flow 1.
Similar relations hold for the number of class-k flows. Using the independence of the rate
processes, we deduce from Lemma 4.2 and the fact that (E{xl}, . . . ,E{xl}) ≤icx (xl, . . . , xL)
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that for all increasing and convex functions f(·), all increasing functions g(·), and all k =
1, . . . ,K:

E{f(W fl1
L )} ≤ E{f(WL)}, E{g(Nfl1

k,L)} ≤ E{g(Nk,L)},

Similarly, using the independence of the rate processes, it follows from Lemma 4.2 and the
Lorentz inequality that:

E{f(WL)} ≤ E{f(W qs1
L )}, E{g(Nk,L)} ≤ E{g(Nqs1

k,L)}.

We obtain the required inequalities for the workload and number of flows by applying suc-
cessively the same reasoning to an arbitrary set of flows satisfying Assumption 4.1, i.e., to all
flows here.
We now prove the inequalities regarding the transfer delay. Let SL be the time spent by an
arbitrary flow in the slotted system up to slot L. We prove exactly as in Lemma 4.2 that
that for all increasing functions g(·), E1 [g(SL)] is a supermodular and convex function of
(x1, . . . , xL). We deduce as above that:

E{g(Sfl
L)} ≤ E{g(SL)} ≤ E{g(Sqs

L )},

and by letting L tend to ∞,

E{g(S(t)fl)} ≤ E{g(S(t))} ≤ E{g(S(t)qs)},

where S(t) denotes the time spent by an arbitrary flow in the non-slotted system up to time t.
We obtain the required inequalities by letting t tend to ∞.

4.3.4 Numerical experiments

To conclude this section, we illustrate the results derived above in the case of a simple multi-cell
linear network. In this network, which may for example represent a road, BS’s are regularly
spaced, and users move at the same speed in both directions (there are two flows classes). Flow
instances, or file transfers, are generated at positions uniformly distributed in the network, with
mean flow sizes of 75 kbytes. The traffic intensities of the two flow classes are identical. The
feasible rate of a flow can take three different values, 4 Mb/s close to BS’s, 3 Mb/s, and 2
Mb/s at the cell edges. Cells are of diameter equal to 1 km. This setting roughly corresponds
to CDMA 1xEV-DO systems.
For this network, we calculate the stability condition without user mobility to be a traffic
intensity less than 2.74 Mb/s per cell. In order to assess the impact of the fairness index α

and of mobility on the transfer delay, we use the notion of mean flow throughput defined as
the ratio of the mean flow size to the mean transfer delay. Figure 3 (left) presents the mean
flow throughput as a function of the total traffic intensity for a user speed equal to 90 km/h,
and for various values of the fairness index α. The performance improves when the value of α
is decreased, as does the stability limit. The latter can be significantly increased by choosing
a scheduler with α close to 0. In Figure 3 (right), we show that for a fixed scheduler (α is
close to 0), increasing the speed of users improves the performance. This suggests that the
stochastic comparison results derived in Subsection 4.3.2 also hold in the case of networks with
inter-cell mobility.

26



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 4  4.5  5  5.5  6  6.5  7  7.5  8

m
ea

n 
th

ro
ug

hp
ut

 (
M

b/
s)

traffic intensity

At speed 90 km/h, file size 75 KBytes

α ≈0
0.2
0.5

1
max-min

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 4  4.5  5  5.5  6  6.5  7  7.5  8

m
ea

n 
th

ro
ug

hp
ut

 (
M

b/
s)

traffic intensity

Small α

speed: 0
30 km/h
60 km/h
90 km/h

120 km/h
240km/h

Figure 3: Mean throughput in a linear network- Left: mean user speed of 90 km/h, varying α
- Right: small α, varying speed.

5 Conclusion

We have reviewed several models for characterizing the capacity and evaluating the flow-level
performance of wireless networks carrying elastic data transfers. We established that a wide
family of so-called α-fair channel-aware scheduling strategies provide maximum stability, and
described how the special case of the Proportional Fair policy gives rise to a Processor-Sharing
model with a state-dependent service rate. We further derived both necessary and sufficient
stability conditions for a network of several base stations with inter-cell interference, and
constructed lower and upper bounds for the flow-level performance measures. Lastly we in-
vestigated the impact of user mobility that occurs on a slow time scale and causes possible
hand-offs of active sessions. It was shown that the mobility tends to increase the capacity
region, both in the case of globally optimal scheduling and local α-fair scheduling. We addi-
tionally demonstrated that the capacity and user throughput improve with lower values of the
fairness index α.
Several potential avenues for further research present themselves. First of all, it would be
interesting to consider networks with both inter-cell interference and user mobility, which were
treated separately in the present paper. A further appealing problem would be to examine
whether intra-cell mobility improves the performance for general α-fair strategies as well. A
final important challenge would be to prove that inter-cell mobility improves not only the
capacity but also the performance in terms of transfer delays and user throughputs as we
observed in the numerical experiments.
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