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ABSTRACT
Performance of WLANs has been extensively studied during
the past few years. While the focus has mostly been on
isolated cells, the coverage of WLANs is in practice most
often realised through several cells. Cells using the same
frequency channel typically interact through the exclusion
region enforced by the RTS/CTS mechanism prior to the
transmission of any packet.

In this paper, we investigate the impact of this interac-
tion on the overall network capacity under realistic dynamic
traffic conditions. Specifically, we represent each cell as a
queue and derive the stability condition of the correspond-
ing coupled queuing system. This condition is then used
to calculate the network capacity. To gain insight into the
particular nature of interference in multi-cell WLANs, we
apply our model to a number of simple network topologies
and explicitly derive the capacity in several cases. The re-
sults notably show that the capacity gain obtained by using
M frequency channels can grow significantly faster than M ,
the rate one might intuitively expect. In addition to stabil-
ity results, we present an approximate model to derive the
impact of network load on the mean transfer rate seen by
the users.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless communication ;
C.4 [Computer Systems]: Performance of Systems—Mod-
eling techniques

General Terms
Performance

Keywords
Multi-cell WLAN, IEEE 802.11, flow-level model, stability,
capacity.
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1. INTRODUCTION
Our objective in the present paper is to investigate the

downlink capacity of multiple interfering IEEE 802.11 Ac-
cess Points (AP) using the Distributed Coordination Func-
tion (DCF) medium access control. Use of this technology to
access the Internet in homes, enterprises and WiFi hotspots
is growing rapidly leading to an increasingly dense implan-
tation of APs. Interference between these APs and their re-
spective users reduces overall traffic capacity. We consider a
generic multiple AP network that we refer to as a multi-cell
WLAN. The cell is the set of positions from which users will
associate with a given AP. While the performance of single
cell networks is well understood, there has as yet been rel-
atively little evaluation of the impact of interference on the
capacity of multi-cell networks.

We assume users situated within the coverage area of the
WLAN download files from the Internet via their nearest
AP. The rate at which downloads are generated times the
average flow size defines a traffic intensity in bits per second.
The traffic capacity of the WLAN is the maximum intensity
it can support without the number of simultaneous down-
loads growing to infinity. The capacity depends somewhat
on the statistical characteristics of demand as well as its spa-
tial distribution over the WLAN coverage area. Our main
focus, however, is on how capacity depends on the placement
of the APs, their transmission range and the assignment of
frequency channels to neighbouring cells.
The ultimate goal is to provide guidelines for planning multi-
cell WLANs, to maximize their capacity or to minimize their
cost, for example. However, our present ambition is limited
to exploring the issues using relatively simple models that
capture the impact of inter-cell interference in toy network
configurations.

Interference is manifested in IEEE 802.11 networks by the
CSMA collision avoidance protocol [9]. Stations must listen
to the channel and defer transmission when it is sensed busy.
When the channel is idle, stations compete for access using
the exponential backoff procedure. In a multi-cell WLAN
the efficiency of this procedure is compromised due to the
hidden node phenomenon necessitating the use of channel
reservation. This is performed through the exchange of short
frames called RTS (Request-To-Send) and CTS (Clear-To-
Send) prior to the transmission of a data packet.

Suppose, for example, that two users associated with dif-
ferent APs are located within their common transmission
range while the two APs are not able to hear each other,
as depicted in Figure 1(a). The transmission from AP1 to
user u1 will not be detected by AP2 leading to a collision
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Figure 1: Impact of hidden nodes.

on reception if it begins to transmit to u2. The RTS/CTS
mechanisms prevent this. The CTS frame sent by u1 in re-
sponse to an RTS from AP1 is heard by AP2 which refrains
from transmitting until the channel is idle. In Figure 1(b),
where the two downlink transmissions can coexist, collisions
can still occur between data packets in one cell and acknowl-
edgements in the other. With a prior RTS/CTS exchange,
the second transmission would not take place since, after re-
ceiving the CTS from u1, u2 would not respond to an RTS
sent later by AP2. The area where channel access is inhib-
ited during an ongoing transmission is thus extended to all
user and AP positions within the transmission range of both
sender and receiver. We term this the exclusion region.

The process by which stations gain channel access is very
complex. Consider an AP with a packet to transmit to a
particular user in its cell. It must first wait for any ongo-
ing transmission in its exclusion region to complete. It may
then continue to be blocked by some other concurrent trans-
mission within this exclusion region but compatible with the
first transmission. When it can eventually try to access the
channel, it will be in competition with a variable number
of other AP-user pairs. Depending on the outcome of this
competition, it may be necessary to make several successive
attempts before successful transmission. It seems impossible
to precisely model such a complex stochastic system where
all cells are inter-dependent through their overlapping ex-
clusion zones. On the other hand, simulation is hardly use-
ful to provide the general insights we seek. We therefore
make some quite bold assumptions and simplifications, as
discussed in the paper, in order to derive analytical results.

In this simplified setting, we are able to derive the sta-
bility condition and deduce the traffic capacity of multi-cell
WLANs. When demand is less than capacity, we can esti-
mate the mean time to perform a download for any given AP
and user position. These general results are evaluated nu-
merically for some toy network topologies. The results show
how capacity changes abruptly depending on whether APs
interfere directly or only through the users to which they
transmit. This discontinuity has a significant impact on the
potential gain in capacity brought by the use of different fre-
quency channels in neighbouring cells. At best, this gain is
significant, with capacity increasing up to four times as fast
as the number of channels. Arguably, the broad character-
istics of this behaviour do not depend on the simplifications
introduced in our modelling and therefore provide valuable
insight into the performance of real multi-cell WLANs.

In the remainder of the paper we introduce our model and

present the analysis that leads to closed form expressions for
the traffic capacity and a procedure to evaluate mean flow
download times as a function of load. The results are applied
in the next sections to simple network configurations, with
one or several channels, in one and two dimensional space.
We evaluate flow throughput for the simplest two-AP net-
work configuration and validate these results by means of
packet-level simulations. We first present a brief review of
related literature.

2. RELATED WORK
There is a huge amount of literature on the performance

of IEEE 802.11 under DCF access control. However, much
of this is focused on the performance of isolated cells with
a static user population. In the seminal work of Bianchi
[2] and its generalizations, by Gupta and Kumar [8] and by
Kumar et al [11], for instance, the capacity of a single cell
with N saturated stations uploading packets to the AP is
determined as the solution to a fixed point equation. This is
not directly related to our work, however, where we focus on
downlink throughput and evaluate the impact of interference
between multiple APs under dynamic traffic.

The performance of multi-hop wireless networks calls for
an evaluation of interference effects similar to those occur-
ring in our multi-cell WLAN. For example, Tassiulas and
Ephremides [18] characterize the maximal capacity region
of such networks and the scheduling algorithm that achieves
this. More recent work has focused on determining schedul-
ing algorithms that realize given performance objectives,
e.g., [10, 13]. This work is useful in illustrating the inherent
difficulty of accounting for the impact of interference. Our
context is somewhat simpler in that connections are all sin-
gle hop and we do not seek to define a scheduling algorithm.
However, our focus is different in that we evaluate capacity
in a dynamic scenario and how it depends on the relative
positions of the APs.

The work by Panda et al. [16] is, at first sight, particu-
larly relevant. The authors consider the same configuration
of interfering WLAN APs. However, they consider uplink
traffic only, generalizing the model of Bianchi [2] for a net-
work of two APs with so-called critical inter-AP spacing.
We consider downlink traffic with two or more interfering
APs.

Traffic capacity and throughput performance, in the flow
level sense considered here, was evaluated by Lebeugle and
Proutière [12] and Litjens et al. [14] for a single AP cell.
Their results are a useful justification for our assumption in
the next sections that the DCF protocols leads to approxi-
mate fair sharing of a constant cell capacity.

The present analysis is also closely related to previous
work on the impact of inter-cell interference on the per-
formance of cellular networks. Bonald et al. [3] evaluate
bounds on download throughput performance under the flow
level traffic model considered here. Although the network is
also represented as a coupled queuing system, the nature
of the interference phenomenon is different. A key feature
of our model of multi-cell WLANs is that the service rate
of each queue does not only depend on the activity state
of the other queues, that is on the presence or absence of
active users in the corresponding cells, but on the locations
of these active users, that may collide or not with ongoing
data transfers in the considered cell.



3. MODEL
In this section, we describe the model used to analyse the

impact of interference on the traffic capacity of multi-cell
WLANs. Each cell is represented as a queue that interacts
with other queues through coupled service rates. This cou-
pling, that captures the interference between neighbouring
cells, is derived from a simple packet-level model represent-
ing the impact of RTS/CTS mechanisms.

3.1 Network structure
Consider a WLAN that consists of N access points (AP).

We focus on the downstream traffic from the APs to ran-
domly located users in the coverage region of the network.
We assume this traffic consists of elastic data transfers, typ-
ically under the control of TCP.

There is an arbitrary finite set U of user classes, corre-
sponding to homogeneous regions in terms of radio charac-
teristics. Specifically, two users of the same class are asso-
ciated with the same AP and interact with other users and
APs in the same way. We denote by Ui ⊂ U the set of user
classes associated with AP i. This corresponds to the cell
served by AP i.

Users interfere through the RTS/CTS mechanisms, as de-
scribed in Section 1. We model this interference through
a function χ from U × U to {0, 1}, such that χ(j, l) = 1 if
and only if the transmissions to a class-j user and a class-
l user cannot occur simultaneously. In particular, we have
χ(j, l) = 1 if user classes j, l are associated with the same
AP. For all i = 1, . . . , N and j ∈ Ui, we refer to the set
E i

j = {l ∈ U : χ(j, l) = 1} as the exclusion region of user
class j associated with AP i.

AP

u

(a)

u

AP

(b)

Figure 2: Notion of exclusion region.

Though we assume that both the number of APs and the
set of classes are finite in the analysis, the results naturally
extend to infinite networks with a continuous set of classes.
For 2D networks for instance, each class may represent a
specific location in the network, so that U = R

2. A simple
interference model in this context consists in considering any
transmission successful if there is no other transmitting or
receiving station within a distance R from the source and
from the receiver, the distance R corresponding the trans-
mission range of RTS/CTS signals for both users and APs.

The interference function between two users located in

u1, u2 ∈ R
2 is then given by:

χ(u1, u2) = 0 ⇐⇒


d(u1, u2) > R, d(u1, v2) > R
d(v1, u2) > R, d(v1, v2) > R

where v1, v2 are the respective locations of the associated
APs and d(u, v) is the distance between u and v. Thus the
exclusion region of any transmission typically consists of two
disks, one centered on the AP and the other on the user, as
illustrated by Figure 2(a). When some APs are located in
the region formed by these two disks, the whole cells served
by these APs must be added to the exclusion region. This
is illustrated by Figure 2(b).

3.2 Packet-level model
Packet scheduling is assumed to be FIFO at each AP.

When the transmission of a packet is scheduled, the AP
performs DCF access control competing with other trans-
missions in its exclusion region until the packet is eventually
delivered. Thus the APs interact in a very complicated way
that depends on the location of active users in the corre-
sponding cells.

To get some insight into the impact of this interaction
on the overall network behaviour, we consider the following
simple packet-level model. All packets have the same size
and the network operates synchronously in a slotted fash-
ion: transmissions occur only at the beginning of a time slot
and the transmission of each packet takes one slot. The slot
duration may be seen as the average transmission time of a
packet for an isolated AP, including all overheads like the
times to access the channel and to transmit control mes-
sages like RTS/CTS signals and MAC/TCP acknowledge-
ments. Thus the throughput of an isolated AP is equal to 1
packet/slot, which is the throughput unit used in the rest of
the paper. Note that we neglect the impact of variable radio
conditions, that may result in different physical throughputs
depending on the location in the cell. In our model, the
throughput of a user depends on her/his location in a given
cell through her/his interaction with other cells only.

Now let ξi
j be the probability that AP i attempts to serve

a class-j user after any successful transmission. We assume
that the mean number of slots an AP remains idle before
transmitting a packet is equal to the number of other ac-
tive users in the corresponding exclusion region, when each
AP i independently selects a class-j user with probability
ξi

j . Thus the mean time for a user to access the channel
is proportional to the number of active transfers in her/his
exclusion region, which is a reasonable assumption. For all
k 6= i and j ∈ Ui, the probability that the user selected by
AP k is in the exclusion region Ej

i of class-j users is given
by:

X

l∈Uk

ξk
l χ(j, l).

We deduce the average number of slots δi
j needed by AP i

to successfully transmit the packet of a class-j user:

δi
j = 1 +

X

k 6=i

X

l∈Uk

ξk
l χ(j, l). (1)

The average number of slots needed by AP i to successfully
transmit any packet is then given by:

δi =
X

j∈Ui

ξi
jδ

i
j . (2)



We conclude that the throughput of AP i is equal to 1/δi.
This throughput is equal to 1 for an isolated AP and is less
than 1 in the presence of inter-cell interference. A fraction
ξi

j of the throughput of AP i is allocated to class-j users.
Thus the throughput allocation is entirely determined by
the interference function χ and the probabilities ξi

j , for all
i = 1, . . . , N and j ∈ Ui.

3.3 Flow-level model
In the following, we refer to a class-j flow as a data trans-

fer to a class-j user. We assume class-j flows arrive at AP i
as a Poisson process of intensity λi

j . Flow sizes are i.i.d. ex-
ponential with parameter µ.

Let xi
j be the number of class-j flows at AP i. We denote

by xi the total number of flows at AP i:

xi =
X

j∈Ui

xi
j .

We are interested in the evolution of the network state x that
describes the number of ongoing flows of each class at each
AP. This depends on the throughput allocation in state x.
In order to apply the above packet-level model, it remains to
determine the probabilities ξi

j in state x, for all i = 1, . . . , N
and j ∈ Ui.

Assume all flows associated with same AP get the same
throughput. This is a natural assumption under the as-
sumed FIFO packet scheduling policy, since these flows ex-
perience the same packet delay and the same packet loss rate
at the AP. The probability that AP i selects the packet of
a class-j flow after a successful transmission is then propor-
tional to xi

j in all states x such that xi > 0:

ξi
j =

xi
j

xi

.

In view of (1) and (2), the throughput of AP i is equal to
1/δi, with

δi =
X

j∈Ui

xi
j

xi

δi
j (3)

and

δi
j = 1 +

X

k 6=i:xk>0

X

l∈Uk

xk
l

xk

χ(j, l). (4)

In addition, this throughput is evenly shared by all active
flows served by AP i.

Thus the model corresponds to a network of N multi-class
processor-sharing queues with state-dependent service rates.
Class-j customers arrive at queue i as a Poisson process of
intensity λi

j and have i.i.d. exponential service requirements
with parameter µ. In view of (3)-(4), the service rate 1/δi of
queue i depends on the whole network state x that describes
the number of customers of each class in each queue. It is
this coupling of service rates that captures the impact of
interference between neighbouring cells.

4. ANALYSIS
We first determine the stability region of the network,

from which we derive the notion of traffic capacity. We
then propose a fixed-point approximation for the flow-level
performance when the network is stable.

4.1 Stability region
Let ρi

j = λi
j/µ be the traffic intensity of class-j flows at

AP i. We denote by αi
j the proportion of class-j traffic at

AP i:

αi
j =

ρi
j

ρi

with ρi =
X

j∈Ui

ρi
j .

We say that the network is stable if the Markov process that
describes the evolution of the network state x is ergodic. We
have the following key results, proved in Appendix A.

Theorem 1. The network is stable if for all i = 1, . . . , N ,

ρi

X

j∈Ui

αi
jβ

i
j < 1,

where

βi
j = 1 +

X

k 6=i

X

l∈Uk

αk
l χ(j, l). (5)

Observe that, for isolated cells, the model reduces to mu-
tually independent processor-sharing queues so that the sta-
bility condition becomes ρi < 1 for all i = 1, . . . , N . The
impact of inter-cell interference on stability is captured by
the multiplying factor

P

j∈Ui
αi

jβ
i
j on the traffic intensity at

AP i. In the following, we refer to the load of AP i as the
product:

ρi ×
X

j∈Ui

αi
jβ

i
j .

Theorem 2. If the network is stable, there exists some
i ∈ {1, . . . , N} such that

ρi

X

j∈Ui

αi
jβ

i
j ≤ 1.

The inequalities of Theorems 1 and 2 coincide, up to the
critical case, when all APs have the same load. This allows
us to calculate in Sections 5 and 6 the traffic capacity of
a number of practically interesting symmetric networks, fol-
lowing the approach described below. It proves very difficult
to derive the necessary and sufficient stability condition for
heterogeneous load distributions, as in most coupled queuing
systems with more than two queues [1, 4, 6, 17].

4.2 Traffic capacity
We define the traffic capacity of a network as the maxi-

mum traffic intensity such that the network is stable, assum-
ing a fixed traffic distribution among user classes. When
all APs have the same load, the necessary and sufficient
stability condition is, up to the critical case, that for all
i = 1, . . . , N ,

ρi

X

j∈Ui

αi
jβ

i
j < 1.

We deduce the traffic capacity of cell i:

Ci =
1

P

j∈Ui
αi

jβ
i
j

.

This traffic capacity is equal to 1 if the cell is isolated (since
βi

j = 1 for all j ∈ Ui) and is less than 1 in the presence of
inter-cell interference.



In the continuous setting introduced in Section 3, assum-
ing cells of equal area A and uniform traffic distribution
throughout the network, we obtain:

C =
A

R

C β(u)du
, (6)

where C is the considered cell and, in view of (5),

β(u) =
1

A

Z

U
χ(u, v)dv. (7)

Note that β(u) is equal to the area of the exclusion region
associated with a user located in u normalized by the cell
area. It may be simply interpreted as a measure of the av-
erage interference suffered at location u. We apply formulas
(6) and (7) to a number of symmetric network topologies in
Sections 5 and 6.

4.3 Mean transfer time
Finally, it is interesting to analyse how the throughput

of each user depends on network load under the stability
condition. In the following, we refer to the flow throughput
of class j at AP i as the ratio of the mean flow size, 1/µ, to
the mean duration W i

j of class-j flows:

γi
j =

1

µW i
j

.

By Little’s law, the mean number of class-j flows at AP i is
given by:

Xi
j = λi

jW
i
j . (8)

Unfortunately, there is no simple expression for the station-
ary distribution of the network state. A useful approxima-
tion consists in decoupling queues by replacing the state-
dependent parameters δi

j by constants φi
j . In view of (3),

class-j flows are then served at rate:

xi
j

P

l∈Ui
xi

lφ
i
l

.

This is equivalent to a discriminatory processor-sharing queue
of unit service rate with weights φi

j , where class-j customers

require exponential services of parameter µ/φi
j . We assume

that the queue is stable, that is:

ρi

X

j∈Ui

αi
jφ

i
j < 1.

We can then apply the results of Fayolle et. al. [7] to get the
mean flow duration of each class:

W i
j

“

1 − ρi

2

X

l∈Ui

αi
lφ

i
l

”

− ρi

2

X

l∈Ui

αi
lφ

i
lW

i
l =

φi
j

µ
. (9)

It remains to estimate the weights φi
j , for which we use the

following fixed point equations:

φi
j = 1 +

X

k 6=i

0

@

X

l∈Uk

φk
l ρk

l

1

A

P

l∈Uk
Xk

l χ(j, l)
P

l∈Uk
Xk

l

. (10)

These equations follow from (3) by replacing the condition
xk > 0 by the probability that xk > 0 and the random
variables xk

l by their mean Xk
l . This approximation turns

out to be very accurate, as shown in Section 7.

5. 1D NETWORKS
In this section, we calculate the traffic capacity of 1D net-

works, assuming users are randomly located on a line. The
set of user classes is U = R. The traffic distribution is as-
sumed to be uniform on the coverage region of the network.
We consider a simple radio model where users associate with
the nearest AP and any transmission is successful if and only
if there is no other transmitting station within a distance R
from the source and from the receiver. We take R = 1 in
the rest of the paper so that the unit length corresponds to
the transmission range of both APs and users.

We first consider the simple case of two APs. This pro-
vides useful insight into the impact of interference and con-
stitutes a basic building block for understanding the be-
haviour of more complex network topologies. We then anal-
yse the more practically interesting case of an infinite num-
ber of APs regularly located on the line and sharing one or
more frequency channels.

5.1 Case of two APs
Consider two APs separated by a distance d: AP 1 is

located at − d
2

and AP 2 at d
2
. When d > 2, each cell is a

segment of length 2 centered at the AP; when d < 2, the cells
are the segments [−1 − d

2
, 0] and [0, d

2
+ 1]. Now consider

one user in each cell, located at u1 and u2, respectively.
The mutual interference region of these two users is shown
by the shaded areas of Figure 4, where r1 = u1 + d

2
and

r2 = u2 − d
2

correspond to the relative location of these
users in the corresponding cells, as illustrated by Figure 3.

AP1 AP2

d

r1 r2

u2u1

Figure 3: 1D network with two APs.

Applying (6), we obtain the traffic capacity C of each cell
as a function of d. We distinguish four cases:
(a) Total coupling, d ∈ (0, 1]: The two APs can never trans-
mit simultaneously and thus behave as a single cell of unit
service rate. We have:

C(d) =
1

2
.

(b) Partial coupling, overlapping transmission areas,
d ∈ (1, 2]: The APs can only interfere indirectly through
their destination. We obtain:

C(d) =

“

1 + d
2

”2

5
2

+ d
.

(c) Partial coupling, non-overlapping transmission areas, d ∈ (2, 3]:
The two transmission areas no longer overlap, but the cells
still interfere. We have:

C(d) =
8

17 − 6d + d2
.

(d) Independent cells, d ∈ (3,∞): Each cell behaves as if it
were alone yielding:

C(d) = 1.

The results are illustrated by Figure 5. We observe that
capacity has irregular behaviour at the three critical dis-
tances d =1, 2 and 3. At d = 1 capacity jumps discontin-
uously from 1

2
to 9

14
as the APs cease to interfere directly.
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Figure 4: Mutual interference region of two users.
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The form of the shaded interference region changes abruptly
as we move from case (a) to case (b) in Figure 4. At d = 2
and d = 3 capacity is continuous but its slope is discontinu-
ous. The reason is again the change in form of the exclusion
region as we move from (b) to (c) and from (c) to (d).

5.2 Infinite linear network in 1D space
Consider an infinite 1D linear network where APs are lo-

cated respectively at nd, n ∈ Z, as shown in Figure 6.

−3d −2d −d 0 d 2d 3d

Figure 6: Infinite linear network in 1D.

We first assume all APs use the same channel and thus
use the subscript 1. We distinguish two cases:

(a) Overlapping transmission areas, d ∈ (0, 2]. The cell
associated with AP i is the segment [(i − 1/2)d, (i + 1/2)d].
Consider a particular user located at u ∈ (0, d

2
]. Its exclusion

region is equal to the union of the segment [−1, u + 1] and
of all cells whose AP is located on this segment. In view of
(7), the level of interference β(u) is equal to the area of this
exclusion region normalized by the cell area, d. It may be

expressed as:

β(u) = 1 + e1

„

u + 1

d

«

+ e1

„

−1

d

«

,

where e1(s) is the total area of cells whose AP is located
on the segment (0, sd]. This function is illustrated in Figure
7. The steps at s = 1, 2, ... occur as an AP is included in
the segment (e1(s) = s for s = 1, 2, . . .); e1 then remains
constant during the first half interval and increases linearly
with slope 1 during the next half; it jumps again as the next
AP is included.
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Figure 7: Functions eM , M = 1, 2, 3.

We deduce from (6) the capacity C1 of each cell as a func-
tion of the inter-AP distance:

C1(d) =
“

1 + e1

“1

d

”

+ 2

Z 1

d
+ 1

2

1

d

e1(s)ds
”−1

. (11)

(b) Non-overlapping transmission areas, d ∈ (2, 3]. In this
case, the transmission areas do not overlap as the separation
distance d is greater than 2. A given cell interferes only with
its immediate neighbours since the separation distance with
other cells is greater than 4. The total interference seen from
the cell is therefore equal to twice that of two interfering APs
derived in the previous section and the cell capacity is:

C1(d) =
4

13 − 6d + d2
.

Figure 8 illustrates the cell capacity as a function of the
inter-AP distance d. We observe that capacity presents ex-
actly the same types of irregularity discussed in the previous
example but this time the set of irregular points is discrete
and infinite.

The graph can best be understood by observing how cell
capacity decreases from 1 to 0 as the distance between access
points shrinks from +∞ to 0. The first type of irregularity
is discontinuity occurring at points d = 1

n
, where capacity

decreases sharply to 1
2n+1

. Each of these points corresponds
to the introduction of a new tier of interfering APs into
the transmission range of the considered AP, say 0. The
n-th interfering tier consisting of APs n and −n enters the
transmission range of AP 0 when nd = 1. At this point
interference with tier n + 1 is null and cell capacity is 1

2n+1
,

2n + 1 being the number of APs located within the trans-
mission range. As the inter-AP distance decreases further,
interference with tier n + 1 begins and proceeds as in the
case of two cells. The result is slope discontinuity occurring
when (n + 1/2)d = 1. Capacity at this point can also be
computed easily by observing that each cell of tier n + 1
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Figure 9: Density, infinite network in 1D.

increases the mean slot time by 1
8

and all previous tiers are

within the transmission range. The capacity is then 4
8n+5

.
Between each couple of irregular points, capacity behaves
like that of two interfering cells.

Figure 9 shows the maximal traffic density normalised to
the maximal traffic density of an isolated cell. By definition,
the maximal traffic density is the ratio of cell capacity to the
cell area:

̺1(d) =
C1(d)

min(d, 2)
.

It demonstrates that a maximal density of 1 is possible only
when d ≈ 0 or d > 3. In the latter case the network no
longer has complete coverage. The former is obtained at the
cost of very high AP density.

5.3 Use of multiple channels
We generalise the results of the previous section to a net-

work with M > 1 non-interfering channels. The APs operat-
ing on channel k, k = 0, . . . , M −1 are placed at (nM + k)d,
n ∈ Z. As in the case of a single channel, we distinguish
two cases: overlapping (d ≤ 2) and non-overlapping (d > 2)
transmission areas. The case of non-overlapping is trivial,
capacity CM is always equal to 1 because the distance be-
tween any two interfering APs is greater than 3. The case
of overlapping is obtained from equation (11) by replacing
e1 with eM :

CM (d) =
“

1 + eM

“1

d

”

+ 2

Z 1

d
+ 1

2

1

d

eM (s)ds
”−1

,

where eM (s) is the total area of cells whose AP is located on
the segment (0, sd] and uses the same channel as AP 0. The

function is illustrated in Figure 7 for M = 2, 3. Note that eM

steps by 1 at sM, s ∈ Z as a new interfering AP is included
in the segment; it remains constant for 1

2
+(M−1) and then

increases linearly with slope 1 until it reaches (s + 1)M ; it
jumps again at this point and so on.

Figure 8 illustrates the cell capacity for M = 2, 3. Capac-
ity increases as expected with the number of channels while
the qualitative behaviour remains the same. We have jumps
at points d = 1

nM
and slope discontinuity at d = 1

nM− 1

2

for

n = 1, 2, ....
The maximal traffic densities ̺M for M = 2, 3 are shown

in Figure 9. The figure shows that traffic density has an infi-
nite number of (local maximum, local minimum) pairs. This
occurs because the capacity slope decreases from 0 to −∞
as we move from 1

(n−1)M
to 1

nM
. The local maximum is at-

tained in segment [ 1

nM− 1

2

, 1
nM−1

] and the local minimum is

attained at 1
nM

. The global maximum always occurs during
interference with the first tier only and is therefore located
between 1

M− 1

2

and 1
M−1

with:

̺M (d) =
2
d

1 +
“

1
d

+ 1 − M
”2 .

The maximum of this expression is
√

M2 − 2M + 2+M −1
occurring at d∗

M = 1/
√

M2 − 2M + 2. For example, if only
two channels are used, the optimal inter-AP distance is d =
1/

√
2 and the network can accept up to 2.4 times as much

traffic as a single channel network. When M = 3 (as in
802.11b/g), capacity increases 4.23 fold when d = 1/

√
5.

6. 2D NETWORKS
We now investigate the traffic capacity of 2D networks.

The set of user classes is U = R
2. Again, the traffic distri-

bution is assumed to be uniform on the coverage region of
the network. We successively consider four network topolo-
gies. We only outline results derived in a similar way to those
for 1D networks. To obtain analytic expressions we use the
infinity norm distance, d∞(u, v) = max(|u1 − v1|, |u2 − v2|)
for all u, v ∈ R

2, instead of the 2-norm distance, d2(u, v) =
p

(u1 − v1)2 + (u2 − v2)2 for all u, v ∈ R
2. The transmis-

sion area of each AP is thus no longer a circle of radius 1
but a square with sides of length 2. Of course, the approach
applies to the usual euclidian distance as well but leads to
more complex expressions.

6.1 Two and four APs
APs in the two node network are separated by a distance

d. In the 4 node network they are at the vertices of a square
with sides of length d. Formulas for the capacity can be
derived by generalizing the method used in §5.1. Figure 5
shows the respective network capacities. The capacity of
2APs in 2D is slightly higher than in 1D. This is because
the fraction of user positions included in an exclusion zone is
somewhat smaller in 2D. On the other hand, interference in
the 4 AP network is greater leading to significantly reduced
capacity.

6.2 Infinite linear network in 2D space
We generalise to 2D the network of Figure 6. Each cell is

now a rectangle of height 2 and width d centred at the AP if
d ≤ 2 and a square with side length 2 if d > 2. M frequency



M d∗
M ̺∗

M
1

M−1
̺M

“

1
M−1

”

4 0.3156 6.1688 0.3333 6
9 0.1240 16.0632 0.1250 16
25 0.0416 48.0209 0.0417 48
100 0.0101 198.0051 0.0101 198

Table 1: Infinite linear network in 2D space.

channels are allocated to the APs as in §5.2. In this and the
next sections, we evaluate the optimal traffic density ̺∗

M .
Proceeding similarly as in the previous sections, we derive
the interference β at some fixed point (u, v) of the reference
cell:

β(u, v) = 1 + eM

“−1

d

”

+ eM

“1

d

”

+
„

eM

“u + 1

d

”

− eM

“1

d

”

«

“2 − |v|
2

”

.

The factor (2− |v|)/2 accounts for the fact that the receiver
is now situated in 2D. It is less than 1 so that capacity in
2D is greater than in 1D. We have:

CM (d) =

 

1+2eM

“1

d

”

+

„

2

Z 1

d
+ 1

2

1

d

eM (s)ds−e
“1

d

”

«

“

1−d

8

”

!−1

.

Capacity for M = 1, 4 is illustrated in Figure 10.
Maximal traffic density is given by

̺M (d) =
CM (d)

2min(d, 2)
.

It is optimal when interference occurs only with tier 1 for d
between 1

M− 1

2

and 1
M−1

. In this range, ̺M has the following

expression:

̺M (d) =
2
d

1 +
“

1 − d
8

”“

1
d
− M + 1

” .

The optimal density can be shown to be greater than 2(M −
1), the value obtained for d = 1/(M − 1). Table 1 gives the
exact optimal density derived numerically and shows that
the bound is a good approximation for M ≥ 4. The scaling
behaviour is the same for the linear network in 1D and 2D.
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Figure 10: Capacity, infinite network in 2D.
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Figure 11: Density, infinite network in 2D.

6.3 Infinite grid network in 2D space
In the 2D grid network, the APs are at the vertices of a

regular grid where the distance between adjacent vertices is
d. Each cell is a square with sides of length d if d < 2 and
2 if d > 2. The number of channels is M which we assume
to be the square of an integer. For the sake of completeness
we give the expression of β(u, v) and CM :

β(u, v) =

„

2e√M

“1

d

”

+1

«2

+
2

d

„

e√M

“u + 1

d

”

−e√M

“1

d

”

«

+
2

d

„

e√M

“v + 1

d

”

− e√M

“1

d

”

«

−
„

e√M

“u + 1

d

”

−e√M

“1

d

”

«„

e√M

“v + 1

d

”

−e√M

“1

d

”

«

,

CM (d) =

 

1 + 3e2√
M

“1

d

”

+ 4e√M

“1

d

”

− 4
1

d
e√M

“1

d

”

+

4

„

2

d
+e√M

“1

d

”

«Z 1

d
+ 1

2

1

d

e√M (s)ds−
“

2

Z 1

d
+ 1

2

1

d

e√M (s)ds
”2
!−1

.

The maximal traffic density is now given by

̺M (d) =
CM (d)

“

min(d, 2)
”2 .

The capacity and maximal traffic density are plotted in Fig-
ures 10 and 11, respectively, for M = 1, 4. The optimal
traffic density occurs in interval [ 1√

M− 1

2

, 1√
M−1

] where ̺M

is given by

̺M (d) =
4

d2

1 + 4
d

“

1
d

+ 1 −
√

M
”2

−
“

1
d

+ 1 −
√

M
”4 .

As above we can lower bound the optimal density by its
value at d = 1/(

√
M − 1), 4(

√
M − 1)2. Table 2 confirms

that this bound is a good approximation for M ≥ 4. We
observe that maximal traffic density increases 4 times as
fast as the number of frequency channels.

̺∗
M > ̺M

“ 1√
M − 1

”

= 4(
√

M − 1)2.

Again, for the purpose of comparison, we provide in Table
2 the exact and approximate values for d∗

M and ̺∗
M . The

table shows that for large M , ̺∗
M scales approximately as

4(
√

M − 1)2. Thus, even if the cells are subject to more



M d∗
M ̺∗

M
1√

M−1
̺M

“

1√
M−1

”

4 0.8376 4.8395 1 4
9 0.4855 16.4856 0.5 16
25 0.2490 64.2490 0.2500 64
100 0.1111 324.1111 0.1111 324

Table 2: Infinite grid network in 2D space.

interference in 2D, the maximal traffic density scales as four
times the number of used frequency channels.

7. FLOW-LEVEL PERFORMANCE
In this section we evaluate the mean flow rate as a function

of user position and inter-AP distance d for the simple two
AP network of §5.1. In the following ̺ is traffic density per
unit of length.

7.1 Impact of traffic intensity
We take d = 1.2, which corresponds to the case of partial

coupling and overlapping transmission areas, cf. Figure 4.
The cell length is equal to 1 + d/2 = 1.6. In Figure 12 we
plot the mean flow rate as a function of traffic intensity per
cell, ρ = ̺ × 1.6, for two user positions. One user position
is at the edge of the right hand cell (u = 1.6), the other
midway between the two APs (u = 0).

Fig. 12(a) is derived from the approximate analytical model
of §4.3 while Fig. 12(b) plots results from simulation of the
underlying state-dependent processor sharing system of §3.3.
The approximation agrees closely with the simulation re-
sults. The figures show behaviour typical of a discriminatory
processor sharing system. The mean rate (for all user posi-
tions) decreases approximately linearly from 1 at zero load
(any flow receives all the cell capacity) to 0 as traffic at-
tains the capacity C evaluated in §5.1 for d = 1.2 (C ≈ 0.7).
Users at the far edge gain higher throughput on average
than users situated between the APs but the difference is
slight and disappears at the extremes. Users at u = 1.6 gain
higher throughput since they do not interfere with the other
cell while users at u = 0 always interfere. The difference
is not large, however, since all active users in a cell in any
occupancy state receive exactly the same rate.

Figures 12(c) and 12(d) correspond to NS-2 simulations
with UDP traffic. The mean flow rate and traffic inten-
sity in both scenarios are normalised to the capacity of an
isolated AP. The RTS/CTS signals are assumed to be in-
stantaneously exchanged in the Fig. 12(c) while 12(d) cor-
responds to the actual IEEE 802.11 standard. The analytic
results agree with simulations in Fig. 12(c) but differ some-
what in Fig. 12(d). The flow rate goes to zero as traffic
intensity approaches 0.6 which is less than the computed ca-
pacity C ≈ 0.7. This is because the non-negligible RTS/CTS
transmission times reduce capacity through hidden-node col-
lisions, as follows.

In 802.11b, the RTS transmission time is approximately
equal to 10 backoff slots while the minimal contention win-
dow length is 32 slots. For d = 1.2 the APs are not able
to hear each other; if one AP transmits an RTS to a user
located midway between the two APs, the other AP will
provoke a collision at the user station if it also attempts a
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Figure 12: Impact of traffic density.

transmission during the 10 slot period. On the other hand,
if the APs can hear each other, the RTS/CTS scheme suc-
ceeds if and only if the backoff counters do not have the
same value.

7.2 Impact of distance
Figure 13 plots the mean flow rate against the inter-AP

distance d for two traffic densities, ̺ = 0.25 and ̺ = 0.4.
The flow rate variations are irregular since capacity evolves
differently with d in the four regions identified in §5.1. Note
that flow rate is zero at load ̺ = 0.4 for d ∈ [0.55, 1] since
traffic intensity exceeds capacity. Flow rate increases be-
tween d = 2 and d = 3 but, of course, this does not take
into account users situated out of range of either AP.

Simulation results in Fig. 13(b) and Fig. 13(c) confirm
the accuracy the model when RTS/CTS times are neglected.
However, the plots in Fig. 13(d) show some discrepancies.
The flow rate is lower in the range 1 < d < 2. This is due to
the hidden-node problem explained above, the impact be-
ing particularly significant at high traffic load when the flow
rate goes to zero because of collisions. On the other hand,
the flow rate is slightly larger when 0 < d < 1. This is be-
cause the aggregate capacity of two APs that can hear each
other is slightly larger than the capacity of a single isolated
AP. While the backoff overhead for an isolated AP is the
mean of a random variable uniformly distributed over the
contention window, it is approximately equal to the mean of
the minimum of two uniformly distributed random variables
when two APs compete.

7.3 Impact of user position
Finally, we derive analytical results for the mean flow

transfer time W (r) of a user as a function of her/his rel-
ative location in the cell, r. By symmetry, we can focus on
cell 1. We denote by f(r) the position of that user of cell
2 located at the edge of the exclusion region of the user of
relative location r in cell 1.
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Figure 13: Impact of normalised inter-AP distance.

Proposition 1. Assuming inter-cell interference is con-
stant, as in §4.3, the mean transfer time satisfies the differ-
ential equation:

W ′(r) = θf ′(r)W (−f(r)), (12)

where θ is a constant that depends on inter-AP distance d
and traffic density ̺ only.

The proof is in Appendix B. The function f is the upper
limit of the shaded exclusion regions illustrated in Figures
4(a) to 4(d). Equation (12) can thus be solved piecewise
giving the following expressions that depend on the extent
of cell coupling.
(a’)- Total coupling, d ∈ (0, 1]:

W (r) =
1

µ
× 1

1 − (1 + d
2
)̺

r ∈ [−1,
d

2
].

(b’)- Partial coupling, overlapped transmission areas, d ∈ (1, 2]:

W (r) =

8

>

<

>

:

W (−1) r ∈ [−1, 0]

W ( d−1
2

) ×
√

2 sin
“

θ(r − d−1
2

) + π
4

”

r ∈ [0, d − 1]

W (1) r ∈ [d − 1, 1]

(c’)- Partial coupling, non-overlapped transmission areas,
d ∈ (2, 3]:

W (r) =

(

W (−1) r ∈ [−1, d − 2]

W ( d−1
2

) ×
√

2 sin
“

θ(r − d−1
2

) + π
4

”

r ∈ [d − 2, 1]

(d’)- Independent cells, d ∈ (3,∞):

W (r) =
1

µ
× 1

1 − 2̺
r ∈ [−1, 1].

Figure 14(a) plots W as a function of r for d = 1.8 and
d = 2.2, corresponding to cases (b’) and (c’) above, respec-
tively. The results highlight the negative impact of inter-
ference for users situated close to the centre of the network
and having a larger exclusion region. Simulation results in
Figures 14(b)-14(c) confirm the accuracy of the analytical
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Figure 14: Impact of user position.

approximation. However because of the hidden node prob-
lem mentioned above, we observe a larger transfer time in
Fig. 14(d).

8. CONCLUSION
We have proposed a model to evaluate the downlink traffic

capacity of a multi-cell WLAN. The capacity is defined as
the limiting traffic intensity (flow arrival rate × mean flow
size) beyond which realized flow throughput tends to zero.
The model has allowed us to evaluate the capacity of some
toy network configurations providing insight into the impact
of inter-cell interference.

We observe an abrupt increase in capacity as APs cease to
interfere directly. The impact of interference via the users
to whom they transmit is less significant and decreases as
the inter-AP distance increases.

For multi-channel networks with a regular pattern of fre-
quency re-use, the variation in capacity as a function of dis-
tance produces clear local maxima and minima in achievable
traffic density. Optimal AP placement corresponds to spac-
ing neighbouring APs using the same channel by slightly
more than their transmission range. Capacity rapidly de-
creases to a global minimum when the inter-AP spacing is
small enough to bring APs into direct conflict.

With optimal AP placement, the capacity of an M -channel
2D grid network is 4M times that of a single channel net-
work. That the gain is amplified by the factor of 4 is due to
a contraction of the cell coverage area as APs (of all chan-
nels) are more closely spaced. This phenomenon is not an
artefact of the model and is a significant observation for the
design of frequency re-use in real networks.

The model allows an evaluation of the expected through-
put of a download as a function of cell load and user po-
sition. Results for the simplest 2-AP network show that
the system behaves broadly like a discriminatory processor
sharing system. Users experiencing lower inter-cell interfer-
ence gain higher throughput but the difference between best
and worst positions remains slight. Performance is mainly
governed by the traffic capacity that fixes the point where



throughput goes to zero.
The model makes many simplifying assumptions whose

significance we now briefly discuss. The traffic model as-
sumes Poisson flow arrivals and exponential flow sizes. These
assumptions are necessary for the proof of the key stability
result but we expect a reasonable degree of insensitivity to
carry over from the underlying processor sharing system.
We have assumed equal sharing of cell capacity between
concurrent flows. This would not occur if users had signifi-
cantly different round trip times, due to TCP RTT bias, for
instance. This discrepancy is unlikely to affect our broad
conclusions, however. We ignore the impact of upstream
traffic. This is clearly a bold simplification since even down-
load traffic generates TCP ACK packets in the upstream.
We suppose these ACKs can be accounted for by extending
the packet transmission time. We have chosen a simple ra-
dio propagation model and derived numerical results only
for toy symmetric networks with uniform traffic. These as-
sumptions could be removed at the cost of added complexity.

The most contestable simplifications are in the way we
model the impact of interference. As noted in the introduc-
tion, the channel access process is extremely complex and
clearly beyond any precise stochastic modelling approach.
Our assumptions, that time is slotted and that the time
to transmit a packet is proportional to the number of pro-
grammed transmissions within its exclusion zone, effectively
de-couple the complex inter-cell interference allowing the an-
alytical developments. The assumption is clearly correct
when there is no interference, and is reasonable when cells
interfere completely. In an average sense, it is also intuitively
plausible that transmission times increase linearly with the
amount of interference.

The model ignores the impact of finite RTS/CTS trans-
mission times. We have observed that this introduces dis-
crepancies due to the additional collisions that occur leading
to an overestimate of network capacity.

In future work we intend to relax some of the above as-
sumptions. We also mean to verify and quantify the pre-
dicted phenomena in a more realistic network configuration.
The ultimate objective is to derive practical guidelines for
the design and operation of dense multi-cell, multi-channel
WLAN access networks. Finally, it would be interesting
to evaluate the impact on performance of possible modifi-
cations to network operation. In particular, the assumed
FIFO queuing in APs might be replaced by a more oppor-
tunistic scheme where a packets are chosen for transmission
depending on how much interference they cause.
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APPENDIX

A. STABILITY

Proof of Theorem 1.
The proof proceeds by applying the fluid limit approach

of Dai [5]. Let x̄i
j(t) be the class-j fluid volume at AP i at

time t. This represents the number of class-j ongoing flows
when the flow population and the time are scaled by the



same factor, growing to infinity.
We denote by x̄i(t) the total fluid volume at AP i at time

t and by ξ̄i
j(t) the proportion of class-j fluid volume at AP

i at time t, when x̄i(t) > 0:

ξ̄i
j(t) =

x̄i
j(t)

x̄i(t)
with x̄i(t) =

X

j∈Ui

x̄i
j(t).

It follows from the strong law of large numbers that at any
time t such that x̄i(t) > 0 for all i = 1, . . . , N :

dx̄i
j

dt
= λi

j −
µ

δ̄i(t)

x̄i
j(t)

x̄i(t)
,

with

δ̄i(t) =
X

j∈Ui

ξ̄i
j(t)δ̄

i
j(t)

and

δ̄i
j(t) = 1 +

X

k 6=i

X

l∈Uk

ξ̄k
l (t)χ(j, l).

We first prove that ξ̄i
j(t) tends to αi

j , the proportion of
class-j traffic at AP i, for all j ∈ Ui. Note that:

dx̄i
j

dt
= λi

j > 0 if x̄j
i (t) = 0 and x̄i(t) > 0.

Now for all j, l ∈ Ui, we have at any time t such that x̄i
j(t) >

0 and x̄i
j(t) > 0:

d

dt
ln

„

x̄i
j(t)

x̄i
l(t)

«

=
dx̄i

j

dt

1

x̄i
j(t)

− dx̄i
l(t)

dt

1

x̄i
l(t)

=
λi

j

x̄i
j(t)

− λi
l

x̄i
l(t)

.

Thus the ratio x̄i
j(t)/x̄i

l(t) decreases if and only if it is larger

than λi
j/λi

l . Since ξ̄i
j(t)/ξ̄i

l (t) = x̄i
j(t)/x̄i

l(t) and αi
j/αi

l =

λi
j/λi

l, the ratio ξ̄i
j(t)/ξ̄i

l (t) decreases if and only if it is larger

than αi
j/αi

l . Using the fact that:
X

j∈Ui

ξ̄i
j(t) =

X

j∈Ui

αi
j = 1,

we deduce that ξ̄i
j(t) tends to αi

j for all j ∈ Ui when t tends
to infinity.

In view of (4) and (5), this in turn implies that δ̄i
j(t) tends

to βi
j for all j ∈ Ui and that δ̄i(t) tends to

P

j∈Ui
αi

jβ
i
j when

t tends to infinity. Thus for all ε > 0, we have for sufficiently
large t such that x̄i(t) > 0 for all i = 1, . . . , N :

dx̄i
j

dt
≤ λi

j − µ
αi

j
P

l∈Ui
αi

lβ
i
l

(1 − ε).

Note that this inequality holds even if x̄k(t) = 0 for some
k 6= i, since this can only increase the service rate of AP i.

Define the fluid workload of AP i at time t as:

w̄i(t) =
X

j∈Ui

x̄i
j(t)

µ
βi

j .

We have for sufficiently large t such that w̄i(t) > 0:

dw̄i

dt
≤ ̺i

X

j∈Ui

αi
jβ

i
j − 1 + ε,

which is negative for sufficiently small ε. Thus w̄i(t) = 0
and x̄i

j(t) = 0 for all j ∈ Ui for sufficiently large t. This
property holds for all APs: the fluid model is stable, which
implies the ergodicity of the underlying Markov process [5].
2

Proof of Theorem 2.
We show that if ̺i

P

j∈Ui
αi

jβ
i
j > 1 for all i = 1, . . . , N , the

fluid model introduced in the proof of Theorem 1 is unstable.
We prove in a similar way that ξ̄i

j(t) tends to αi
j and δ̄i(t)

tends to
P

j∈Ui
αi

jβ
i
j when t tends to infinity. Thus for all

ε > 0, we have for sufficiently large t such that x̄i(t) > 0 for
all i = 1, . . . , N :

dx̄i
j

dt
≥ λi

j − µ
αi

j
P

l∈Ui
αi

lβ
i
l

(1 + ε)

and

dwi

dt
≥ ̺i

X

j∈Ui

αi
jβ

i
j − 1 − ε,

which is positive for all i = 1, . . . , N for sufficiently small
ε. Thus wi(t) increases at least linearly for all i = 1, . . . , N :
the fluid model is unstable, which implies the transience of
the underlying Markov process [15]. 2

B. PERFORMANCE

Proof of Proposition 1.
Cell 1 corresponds to the interval [a, b] with a = − d

2
− 1

and b = min(− d
2
+1, 0). Equations (8), (9) and (10) applied

to cell 1 have the following continuous counterparts:

X(r) = λW (r),

W (r)
“

1 − ̺

2

Z b

a

φ(r)dr
”

− ̺

2

Z b

a

φ(r)W (r)dr =
φ(r)

µ
,

φ(r) = 1 + ̺
“

Z b

a

φ(r)dr
”

R b

−f(r)
X(r)dr

R b

a
X(r)dr

,

where λ = ̺µ is the flow arrival density and the last equality
follows by symmetry. Let X and φ be the integrals of X
and φ over [a, b]. Differentiating the above equations with
respect to r, we obtain:

X ′(r) = λW ′(r),

“

1 − ̺

2
φ
”

W ′(r) =
φ′(r)

µ
,

φ′(r) =
̺φ

X
f ′(r)X(−f(r)).

We deduce (12), with

θ =
̺2φ

X(1 − ̺φ

2
)
.

2


