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Abstract—When IEEE 802.11 access points (APs) share the
same channel in a multi-cell WLAN, their downlink transmissions
can interfere. Typically, an AP whose scheduled transmission to
some user is blocked by another cell will apply the CSMA/CA
back-off algorithm and continue to make reattempts to the same
user. Through analytical models and simulations, we demonstrate
that significant capacity gains can be attained by choosing an
alternative destination for the reattempt. Results demonstrate
that a simple random choice of alternative destination brings
almost the same gain as a more sophisticated algorithm that
seeks to maximize spatial reuse.

I. I NTRODUCTION

The downlink traffic capacity of multiple interfering IEEE
802.11 Access Points (APs) can be improved by introducing
opportunism in the way APs schedule their transmissions. The
envisaged multi-cell WLAN consists of a number of APs
transmitting on the same frequency channel to a population
of users distributed over the coverage area. We assume a
stochastic traffic model where finite size flows arrive according
to a Poisson process. Traffic capacity is measured by the
maximum load at which the network remains stable in the
sense that the number of flows in progress does not explode.

Traffic capacity depends on the way the APs interfere.
Under the IEEE 802.11 Distributed Control Function (DCF),
channel access is governed by the CSMA/CA algorithm. Three
features of this algorithm are relevant to our study: (i) the
backoff mechanism implemented by each station effectively
provides random access opportunities to the APs downloading
flows to their users; (ii) the two small RTS/CTS frames ex-
changed between transmitter and receiver in an access attempt
inhibit interfering stations from attempting a simultaneous
transmission; (iii) when a packet retransmission is blocked,
the AP will make repeated attempts to send the same packet
on successive expirations of the backoff counter. Our proposal
is to modify the last feature by allowing an AP to transmit to
an alternative destination after observing an initial collision.

The problem is more easily explained with reference to a
simple example. In Figure 1 we depict a network consisting of
two APs and three user stations. User stationu1 is associated
with AP1 andu2 andu3 with AP2. Transmissions tou1 and
u2 by AP1 and AP2, respectively, cannot occur at the same
time due to the channel reservation mechanism (one user
station is inhibited on hearing the CTS sent by the other)
while transmissions tou1 andu3 can. Now assume both APs
are in backoff mode and contending for channel access.AP1

has a packet destined tou1 andAP2 has a packet destined to
u2. Depending on the backoff timers, one of the APs will be

the first to try to reserve the channel. AssumeAP1 is first.
An RTS/CTS sequence is exchanged betweenAP1 and u1

preventing any transmission involvingu2. When the backoff
timer of AP2 expires, an RTS is sent tou2, but u2 is blocked
by the AP1 transmission and cannot send a CTS response.
AP2 concludes that a collision has occurred atu2 and backs
off for a random time before attempting a new transmission
to the same destination. As long asAP1 is transmitting to
u1 none ofAP2’s retransmissions will succeed. On the other
hand, if AP2 changes its destination and tries to transmit a
packet tou3 it will succeed.

AP1 AP2

u1
u2 u3

Fig. 1. Two AP network.

We propose two opportunistic scheduling algorithms
that would allow this choice of an alternative destination.
The first simply changes for a randomly chosen alternative
destination when the first is blocked. The second is more
sophisticated and seeks to optimize the choice of destination
to minimize future blocking in other AP cells. We show
that a significant increase in traffic capacity can be realized
depending on the network topology.

After an outline of related work we introduce the considered
network and traffic models. We then present the analytical
model, deriving capacity limits for a simple configuration by
the fluid limit approach. Simulations are used to validate the
results and extend application to a more complex network.

II. RELATED WORK

The considered problem, as described in the introduction, is
related to the so-called Head of Line (HoL) blocking problem
of FIFO base station schedulers studied in [1], [2]. A packet
can be blocked when the destination user is experiencing
poor radio conditions leading to repeated errors. Throughput
is improved by choosing to transmit to an alternative user
whose radio conditions are more favorable. Our proposed
non-FIFO algorithms for choosing the users to which an
AP should transmit can also be considered as opportunistic
scheduling, as considered in [3], [4], [5], [6], for example.
Like [6], we evaluate their performance in terms of the limiting
demand at which the network remains stable under a stochastic
traffic model. We are not aware of any other work that
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has considered HoL blocking or opportunistic scheduling for
multi-cell WLANs.

The above cited work concerns isolated base stations or
APs. A number of other papers have considered how through-
put can be increased by coordinating transmission in a cellular
network [7]–[9]. It is necessary to realize the optimal trade off
between a reduction in the number of simultaneous transmis-
sions and the gain in rate realized by reducing interference.
It is demonstrated in [8], [9] that considerable capacity gains
are possible compared to a baseline scenario where all stations
transmit simultaneously. Our work considers not a cellular
network but a set of interfering WLAN access points and
proposes distributed scheduling algorithms.

III. N ETWORK CAPACITY UNDER RANDOM TRAFFIC

We present a simplified slotted time version of the multi-cell
WLAN network and describe the considered traffic model.

A. A simplified network model

Consider a set of Access PointsA operating on the same
channel and a set of user classesU . With each AP i is
associated a subset of user classesUi. Each class models a
set of users having the same interference and traffic character-
istics. These users would typically be located within a small
geographical area. At any given time, a set of users are active
in that they receive traffic from their AP: the AP sends them
packets at a rate determined by the WLAN collision resolution
algorithm. APs with at least one active user are said to be
backlogged.

Collision resolution in the real multi-cell system is ex-
tremely complex to model. To progress in analysing the prob-
lem at hand we therefore make some simplifying assumptions.
We model interference between users by a functionχ from
U ×U to {0, 1}. For j, k ∈ U , χ(j, k) = 1 iff transmissions to
class-j and class-k users cannot be scheduled simultaneously.
Note thatχ(j, k) = 1 for all j, k ∈ Ui.

Time is slotted with each slot representing the transmission
time of a single packet including all overheads: RTS/CTS
exchange, ACK transmission, interference spaces SIFS and
DIFS and the backoff overhead. All APs are synchronized
and collisions are asssumed to be resolved at the start of each
time slot.

B. Traffic model

We consider a flow-level traffic model. Users become active
at random instants of time, require a finite random-sized file
to be downloaded and cease to be active when the transfer is
completed. An active user has a flow in progress. We assume
class-j users have a Poisson flow arrival rateλj (flow/s) and
an exponential flow size distribution of mean1/µ bits. This
assumption is not crucial for studying network stability. Class-
j traffic intensity is denotedρj = λj/µ.

C. Channel reservation

Resource allocation occurs in two phases, a channel reser-
vation phase and a transmission phase. During the reservation

phase, backoff and packet scheduling mechanisms combine to
define the set of users to which the APs will transmit during
the ensuing transmission phase.

We assume channel reservation operates as follows. At the
beginning of a time slot, all backlogged APs contend for
channel access. One randomly chosen AP is assumed to win
a first backoff contention. The scheduling mechanism in the
AP selects the active user to which it will transmit.

All users in neighbouring cells that interfere with the sched-
uled transmission (as determined by an RTS/CTS exchange)
are inhibited from channel access during the present slot.
The same process is repeated to choose another AP and its
scheduled transmission, among those that are not inhibitedby
previously scheduled transmissions, and so on until all APs
are either scheduled or inhibited. All scheduled packets are
transmitted in the ensuing transmission phase after which a
new slot begins. By assumption, the channel reservation phase
consumes a negligible amount of time, even when it includes
multiple backoff phases.

D. Capacity region

Let xj be the number of active class-j users. We refer to
the vectorx = (xj)j∈U as the network state. We suppose the
scheduling algorithm can be characterized by state-dependent
service ratesφj . These rates, defined at the time scale of the
flow-level process, are assimilated to the proportion of slots
that would be scheduled for the user class assuming the mix
of active users remains fixed. The evolution of the network
statex(t) is then Markovian with arrival ratesλj and service
ratesφjµ. We define the capacity region of a given scheduling
algorithm as the set of all traffic intensity vectors(ρj)j∈U such
that the Markov processx(t) is ergodic.

IV. SCHEDULING ALGORITHMS

We consider three scheduling algorithms providing progres-
sively larger capacity regions.

A. RETransmit: RET

This scheduler corresponds to the way IEEE 802.11 cur-
rently works. After each successful transmission, the AP
selects a new user at random (in fact, the user of the packet
that is currently head of line) and attempts to transmit a packet
to it in the next slot. If this user turns out to be inhibited
by previously scheduled transmissions, the slot will remain
unused by the considered AP. This choice is maintained for
successive slots until transmission is successful.

B. Change Destination: CD

CD ensures that the set of scheduled transmissions in
every slot is maximal, i.e., any other unscheduled transmission
would interfere with at least one member of the set. Instead
of waiting for a selected user to become free as in RET, the
AP simply selects another free destination.
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Fig. 2. Spatial reuse capacity of RET, CD and MCR.

C. Minimal Cost Reduction: MCR

MCR seeks to choose the least interfering destinations.
Suppose at a certain stage, we have already scheduled some
APs and know the set of free usersF . Define, forj ∈ U ,

δj =
∑

i∈A

∑

k∈Ui∩F

xkχ(j, k)
∑

l∈Ui∩F
xl

/
∑

i∈A

∑

k∈Ui

xkχ(j, k)
∑

l∈Ui
xl

. (1)

The numerator ofδj measures the fraction of free users that
would become blocked by a transmission to classj from its
associated AP. The denominator is the same fraction assuming
all users are free so thatδj is a measure of the relative
cost of choosing user classj. MCR aims at each stage to
minimize this cost. The intention in using the relative variation
of transmission cost is to schedule users when they consume
a minimal amount of resources compared to their nominal
resource consumption.

D. Contention regions

Figure 2 illustrates the spatial reuse capacity of each of the
above algorithms. Figures 2(b), 2(c) and 2(d) show a snap-shot
of a realization of the respective algorithms. Each scheduled
transmission inhibits connections in a certain space called
the contention region. This is the union of two disks, one
centred at the AP, the other at the receiver. No transmission
can take place between an AP and a receiver if either lies in
the contention region of a previously scheduled transmission.
In this example RET has the lowest spatial reuse capacity with
only 8 APs transmitting while CD and MCR schedule16 and
20, respectively.

V. A NALYTICAL DETERMINATION OF CAPACITY

In this section we derive the capacity region of the network
shown in Fig. 1 using the fluid limit approach [10], [11]. Note
that CD and MCR are equivalent for this network.

We first recall the following results from [12] for the
RET algorithm. It is shown there that service rates can be
approximated by:

φj =
ξj

∑

n∈A

∑

k∈Ui

∑

l∈Un
ξkξlχ(k, l)

, j ∈ Ui, (2)

where theξj are given by

ξj =
xj

∑

k∈Ui
xk

, j ∈ Ui. (3)

The denominator of (2) can be interpreted as the mean number
of slots required by APi to transmit a packet and the

numeratorξj indicates that the capacity of APi is shared
equally between all users of this cell.

RET scheduling:First note that ifx1 > 0 andx2+x3 > 0
service rates are as follows:

φ1 =
1

1 + ξ2

, φ2 =
ξ2

1 + ξ2

, φ3 =
ξ3

1 + ξ2

.

If one cell is empty the other behaves like a Processor Sharing
(PS) server.

Proposition 1: The capacity region of RET is defined as
follows:

{

ρ2 + ρ3 + ρ1ρ2

ρ2+ρ3

< 1 if ρ1 < ρ2 + ρ3,

ρ1 + ρ2 < 1 otherwise.

Proof of Proposition 1: The fluid volume corresponding
to class-j users is denoted bȳxj . The corresponding propor-
tion of fluid at AP i is denoted bȳξj , with j ∈ Ui. We first
consider the following two cases:

Casex̄1 = 0, x̄2 > 0, x̄3 > 0: Class-1 users observe an
M/M/1 PS queue with capacity1/(1+ξ̄2). Whenx1 = 0, the
service rate of class-2 is ξ̄2 while whenx1 > 0 it is ξ̄2/(1+ξ̄2).
Since the probability thatx1 = 0 is 1−ρ1(1+ ξ̄2), we deduce
the average fluid service rate:

φ̄2 = ξ̄2(1 − ρ1ξ̄2). (4)

Similarly, we get:

φ̄3 = ξ̄3(1 − ρ1ξ̄2). (5)

Casex̄1 > 0, x̄2 = 0, x̄3 = 0: Class2 and 3 users see
a “non-conservative” Discriminatory Processor Sharing (DPS)
server with ratesφ2 = x2/(2x2+x3) andφ3 = x3/(2x2+x3).
The probability that the DPS queue is empty is1− 2ρ2 − ρ3.
Class-1 users are served at a rate that depends on the state of
cell 2. Its mean value is given by:

π(0, 0) × 1 +
∑

x2+x3>0

π(x2, x3)
1

1 + ξ2

,

whereπ is the stationary distribution of the DPS queue. The
sum

∑

x2+x3>0
π(x2, x3)/(1 + ξ2) is also the mean service

rate of cell2. It must therefore be equal to the cell2 arrival
rateρ2 + ρ3. We deduce the fluid limit rate:

φ̄1 = 1 − ρ2. (6)
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Stability conditions: Observe that the stochastic model
satisfiesφ2/x2 = φ3/x3 for all x2, x3 > 0. This equality also
holds for the fluid limit,φ̄2/x̄2 = φ̄3/x̄3. Thus as long as̄x2

and x̄3 are positive we have:

d

dt
log

( x̄3

x̄2

)

=
ρ3

x̄3

−
ρ2

x̄2

.

This shows that either̄x2 + x̄3 → 0 or ξ̄2 → ρ2/(ρ2 +ρ3) and
ξ̄3 → ρ3/(ρ2 + ρ3).

While all fluid components are positive, we have

φ̄1 =
ρ2 + ρ3

2ρ2 + ρ3

, φ̄2 =
ρ2

2ρ2 + ρ3

and φ̄3 =
ρ3

2ρ2 + ρ3

.

If ρ1 > (ρ2 + ρ3)/(2ρ2 + ρ3) and2ρ2 + ρ3 > 1 the fluid limit
dynamical system is unstable. Ifρ1 < (ρ2+ρ3)/(2ρ2+ρ3) and
2ρ2+ρ3 < 1, the system is stable. Ifρ1 > (ρ2+ρ3)/(2ρ2+ρ3)
and 2ρ2 + ρ3 < 1, then (x̄2, x̄3) → (0, 0) and x̄1 > 0. In
view of (6) the fluid limit is stable iffρ1 < 1 − ρ2. If ρ1 <
(ρ2 + ρ3)/(2ρ2 + ρ3) and 2ρ2 + ρ3 > 1, then x̄1 → 0 and
x̄2 > 0 andx̄3 > 0. By (4) and (5) the fluid model is therefore
stable iff ρ2 + ρ3 < 1 − ρ1ρ2/(ρ2 + ρ3).

It can be verified that the above set of stability conditions
can be summarized by the inequalities in the proposition.

CD scheduling:First assumex1, x2, x3 > 0. AP1 trans-
mits to u1 if it wins the channel contention (with probability
1/2) or AP2 wins andAP2 transmits tou3 (probabilityξ3/2).
The service rate ofu1 is thus:

φ1 =
1

2
(1 + ξ3). (7)

AP2 will transmit to u2 if and only if it wins (probability
1/2) and AP2 choosesu2 as a destination (probabilityξ2).
The service rate is:

φ2 =
ξ2

2
. (8)

Finally, AP2 transmits tou3 if AP2 wins (probability1/2)
and choosesu3 (probability ξ3), or if AP1 wins (probability
1/2). The service rate is:

φ3 =
1

2
(1 + ξ3). (9)

Proposition 2: The capacity region of CD is given by

ρ2 + max(ρ3, ρ1) < 1.

Proof of Proposition 2:
From equations (7), (8) and (9) we deduce the following:

{

φ2 + φ3 = 1 ∀x1 ≥ 0, x2 ≥ 0, x3 > 0
φ1 + φ2 = 1 ∀x1 > 0, x2 + x3 ≥ 0.

These relations hold also for the fluid limits
{

φ̄2 + φ̄3 = 1 ∀x̄1 ≥ 0, x̄2 ≥ 0, x̄3 > 0.
φ̄1 + φ̄2 = 1 ∀x̄1 > 0, x̄2 + x̄3 ≥ 0.

Thus if ρ2 +ρ3 < 1 andρ1 +ρ2 < 1 neitherx̄1 nor x̄3 can be
positive after a finite time. To show the stability of the fluid
limit it remains to computēφ2 when x̄1 = 0, x̄2 > 0 and

x̄3 = 0. This means that we must consider the following four
cases

(φ1, φ2, φ3) =















(1/2, 1/2, 1/2), x1 > 0, x3 > 0,
(1/2, 1/2, 0), x1 > 0, x3 = 0,
(0, 1, 0), x1 = 0, x3 > 0,
(0, 1, 0), x1 = 0, x3 = 0.

(10)

First note that ifρ1 > 1/2, x̄1 cannot be zero beforēx2

becausēφ1 = 1/2. This means̄x2 attains zero beforēx1 and
the fluid limit is stable. Now, ifρ1 < 1/2, class-1 users observe
anM/M/1 server of rate1/2. Thusx1 is zero with probability
1 − 2ρ1. The rate allocated to class-2 users depends only on
whetherx1 is positive or zero and is given by (10). We deduce
φ̄2 = 2ρ1(1/2) + (1 − 2ρ1)1 = 1 − ρ1.

Now, sinceρ2 + ρ1 < 1, we haveρ2 < φ̄2. On the other
hand, it is obvious thatρ2 + ρ3 < 1 and ρ1 + ρ2 < 1
are necessary conditions for stability. We conclude that the
capacity region is indeed as stated in the proposition.

Figure 4(a) plots the RET and CD capacity regions when
ρ1 = 0.5. The region for RET is strictly included in that for
CD showing that RET is not Pareto efficient since bothρ2 and
ρ3 can be increased. The figure also shows that CD realizes
the maximal capacity region achievable by any scheduling
algorithm since the stated stability conditions are necessary
for the stability of any scheduling algorithm.

VI. SIMULATION RESULTS

We first report results of ns-2 simulations of the simple
network of Fig. 1. These simulations take proper account
of the CSMA/CA protocol and make no assumption of
slotted operation. The normalized results depicted in Fig.
4(b) show that the gain from opportunistic scheduling is
more significant than that predicted by the analytical model.
The main difference is that the capacity of RET suffers
from a phenomenon of short term unfairness: the CSMA/CA
algorithms typically allow one AP to capture the channel
for repeated transmissions (its backoff timer is smaller)
thus blocking the other for long periods and amplifying
the resulting loss in capacity. CD effectively counters this
phenomenon.

−3d −2d −d 0 d 2d 3d

Fig. 3. Infinite linear network in 1D.

To evaluate the interest of MCR, we have simulated a
more complex network but preserve the simplified slotted
contention model. The network consists of a linear array of
APs, as depicted in Fig. 3 The distance between two APs is
d and user traffic is uniformly distributed on the line with
traffic density̺ (in bits/s/m). Transmission range is 1.

For this network it is possible to characterize the maxi-
mal capacityCmax (expressed in bits/s) defined as̺max ×
cell length where̺ max is the maximal traffic density that can
be achieved by any scheduling algorithm:

Cmax =

{

d

1+ d

2

, 1

n
< d ≤ 1

n− 1

2

,
1

n
, 1

n− 1

2

≤ d < 1

n−1
,
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(b) ns-2 simulation.

Fig. 4. Capacity region of the network of Fig. 1.

wheren is a positive integer (proof is omitted).
We rely on packet level simulation to determine the capacity

of RET, CD and MCR. We use a simple propagation model.
Stations (APs and users) can communicate if and only if they
are within transmission range. The capture model is such that
a packet will be received successfully if and only if there is
no other transmitting station located within the transmission
range of the receiver. Time is slotted and scheduling proceeds
in two phases as described previously. Users associate with
the nearest APs. Flow sizes are distributed geometrically with
a mean size of 100 packets. To evaluate capacity, i.e., the
maximal traffic load supported by the network, we measure
the flow departure rate under heavy traffic.
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Fig. 5. Linear network in 1D.

In Figure 5 we plot simulation results for RET, CD and
MCR together with the maximal capacity. The simulations
have been performed on a network of 15 cells and the figure
shows the capacity of the central cell. We observe that when
d > 2, both CD and MCR achieve optimal capacity. Both CD
and MCR are extremely close suggesting simple randomized
opportunism is sufficient. Capacity gain with respect to RET
attains40% at d = 1.6.

VII. CONCLUSION

We have demonstrated the potential loss of traffic capacity
in multi-cell WLANs caused by a form of head of line
blocking. This occurs when a scheduled transmission in one
AP cell interferes with a previously scheduled transmission in
another AP. In IEEE 802.11, the blocked transmission will be
reattempted several times despite the likelihood that interfer-
ence is persistent and the new attempts will not succeed.

We have demonstrated that significant capacity gains are
possible by opportunistic scheduling. Two scheduling algo-
rithms of increasing complexity have been proposed. For the
representative toy networks considered in our evaluation,the
best part of the gains are achieved by the simplest algorithm
called CD. This scheduler just picks a feasible alternative
destination when the first choice is blocked. It appears to
constitute a reasonable compromise between traffic efficiency
and implementation complexity.

Simulations show that capacity gains in a real network is
likely to be greater than in the simplified model considered
for analysis. APs can capture the channel for repeated packet
transmissions thus extending the period during which contend-
ing APs suffer head of line blocking.
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